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ABSTRACT

Numerical Analysis of Unsteady Natural convection in square cavity filled with a
porous media studied in this paper. The left vertical wall preserves the constant high
temperature Th , and the right wall preserves the constant low temperature Tc and
both the horizontal walls are insulated . The alternating —direction implicit method (
A.D.I ) is used to solve the non-dimensional governing equations, and finite
differences method devoted to Nussele numbers and the horizontal and vertical
velocity flow . The results are obtained for the initial transient start up to the steady

state, and for Rayleigh number( 10 < Ra <10° ). It is observed that the results for
average Nusselt number showing an undershoot during the transient period and that
the time required to reach the steady state is longer for low Rayleigh number and
shorter for high Rayleigh number.
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INTRODUCTION

Convective heat transfer in fluid-saturated porous media has received considerable attention over the
last several decades. This interest was estimated due to many applications in, for example, packed
sphere beds, high performance insulation for buildings, chemical catalytic reactors, grain storage and
such geophysical problems as frost heave. Porous media are also of interest in relation to the
underground spread of pollutants, solar power collectors, and to geothermal energy systems. Literature
concerning convective flow in porous media is abundant. Representative studies in this area may be
found in the recent books by Ingham and Pop [1], Nield and Bejan [2], Vafai [3], Pop and Ingham [4],
and Bejan and Kraus [5].

Free convection in a cavity filled with a fluid-saturated porous medium is of prime importance in many
technological applications. Examples are post-accident heat removal in nuclear reactors and
geophysical problems associated with the underground storage of nuclear waste, among others. The
problem of free convection in a rectangular porous cavity whose four walls are maintained at different
temperatures or heat fluxes is one of the classical problems in porous media, which has been
extensively studied. Much research work, both theoretical and experimental, has been done on this type
of convective heat transfer processes. A good deal of references on this problem has been presented in
the paper by Lauriat and Prasad [6], and in the recent paper by Baytas and Pop [7]. The model
commonly used consists of a porous cavity with both the vertical walls maintained at constant
temperatures, while the horizontal walls are adiabatic. The flow and heat transfer characteristics of the
steady-state flow is generally studied for this type of cavity. However, a very little work has been done
for the case of unsteady and transient flow situations. The aim of this paper is to study numerically the
problem of transient free convection in a square cavity filled with a porous medium when one of its
vertical wall is suddenly heated and the other wall is suddenly cooled, while the horizontal walls are
adiabatic. To our best knowledge, only Banu et al. [8] have presented a study of such a problem, but for
a heat-generating porous cavity with all four walls maintained at a constant temperature.

GOVERNING EQUATIONS

A schematic diagram of a two-dimensional square cavity is shown in Fig. ( 1 ). It is assumed that the
left vertical wall of the cavity heated to the constant temperature 7}, and the right vertical wall cooled
to the constant temperature 7., where 7}, > T,, and the horizontal walls are adiabatic.

In the porous medium, Darcy’s law is assumed to hold, and the fluid is assumed to be a normal
Boussinesq fluid. The viscous drag and inertia terms in the governing equations are neglected, which
are valid assumptions for low Darcy and particle Reynolds numbers. With these assumptions, the
continuity, Darcy and energy equations for unsteady, two-dimensional flow in an isotropic and
homogeneous porous medium are :
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whereu,v are the velocity components along x- and y- axes, 7 is the fluid temperature and the physical

meaning of the other quantities are mentioned in the Nomenclature.
The equations from ( 1 ) to ( 3 ) can be written in terms of the stream function y defined as

u=0w/dyand v=—0y/ox together with the following non-dimensional variables:

A T-T
x=%  y=2 p=Y, = 0= r=2 @)
L L a T, -T. oL

where 7, = (7, +7,)/2
The non-dimensional forms of the governing Equations are:
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where Ra is the Rayleigh number defined as: Ra = 2 KLA% o
The equations are subjected to the following initial conditions at 7 = 0:

w =0, 6 =0, at any X, Y (7a)
and boundary conditions at 7 > 0:

w =0, 6=0.5, at X =0, any Y (7b)
v =0, 0=-0.5, at X =1, any Y (7¢)
v =0, 00/0Y =0 atY =01 any X (7d)

NUMERICAL METHOD

By using the Alternating-Direction Implicit method ( A.D.I ) in this paper to solve the governing
equations ( eq. (5) and eq. (6) ) , at any increase in the time, doing in two stage of time. Then the eq.
(5) written as :

At first stage :
~ [+1)2 ~ [+1)2 ~1+1)2 ~ [+1)2 ~ [+1)2 ~ [+1/2 l /
‘//i+1,/j - 2‘//1‘,_/‘/ + l//i—l,/j l//i,_/u{l - 2‘//1',,'/ + l//i,j—/l 9i+1,j - 9i—1,j
. + . = _Rq.—tb b (8)
(AX) (A7) 20X

At second stage :

16



Khalid Abd Al-Husain, The Iraqi Journal For Mechanical And Material Engineering, Vol.8, No.1, 2008

~ 141 P FS Iy ~ 141 ALl A4 141 1+1
l//ifl,,- B 2‘//1‘;‘ + l//irl,j l//i;‘+l B 2‘/11‘;‘ + l//i;—l 9;‘:1,_/‘ B 9:1,_/‘
> + > =—Ra - ———= 9)
(Ax) (AY) 20X
And the eq. (6) written as :
At first stage :
1+1/2 1 Alej2 A IHl2 gl 1 ALEJ2 Al plel)2 1+1)2
‘91‘,:'/ -0, 4 l//i,-;il _l//i;‘—/l ) 0. =01, B l//i:l,/j _l//ijl,/j ) 9;‘;11 - 91',;—/1
2AT 2AY 2AX 2AX 2AY
1 ! 1 1412 1+1/2 1+1/2
€i+l,j - 29[,,‘ + 91'71,; 9[,;“ - 29[3 + 6’[;71 (10)

(Ax ) (ay)
At second stage :
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The initial conditions are very effect in this problem, we should take that in this study. A.D.I method
solved this problem in two stages , therefore the initial conditions in two stages , in the first stage the
vertical initial conditions affect greater than the horizontal initial conditions, and in the second stage the
horizontal initial conditions affect greater than the vertical initial conditions.

The solution domain consist of grid points at which the discrimination equations are applied. In this
domain X and Y, by definition varies from 0 to 1, the uniform grid has been selected in both X and Y
directions. The grid size and geometry were tested, and it was found that the following size and
geometry give the best results comparing with the results in the literature for the steady-state flow. The
grid size is (60*60) and the grid geometry is symmetrical about the centerlines.

The heat transfer should be solved in the near hot left wall and the near cooled right wall by using the
(Forward difference & backward difference techniques ) from this equations:

1
dY and O, = - 9
at X=0 ' oX

0

£ 00
Qh = _J.&

0

dy (12)

at X=1

RESULTS AND DISCUSSION :

The streamlines and isotherms at different time steps ranging from 7 = 0.0025 toz = 0.08 are shown in
Fig. 2 for Ra =1000. It can be seen that early in the transient region, the isotherms are nearly parallel
indicating conduction heat transfer and the fluid is rising up near the hot left wall and is fallen
downward near the cooled right wall, respectively. A recirculation flow region of small intensity sites
close to the upper part of the hot wall or to the lower part of the cooled wall and spin the fluid towards
the center of the enclosure (Fig. 2a). Shortly after that, the fluid travels across the upper (or lower) half
of the enclosure (Fig. 2b). The streamlines indicate an elongation of the recirculation region of the flow
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along with a transition to the middle of the enclosure (Fig. 2b). With increasing of time ( 7 = 0.01 ), the
majority of fluid is rising up or falling down near the hot wall and near the cooled wall, respectively
(Fig. 2c) and the local Nusselt number is continuously decreasing near the upper part of the hot wall
(Fig. 3b). Further, after a short time ( 7 =0.02), the flow has been extended throughout the cavity and
convection has became more important (Fig. 2d). For 7 > 0.04the flow is then going to attain the
steady-state regime (Fig. 2e), which happens for 7 = 0.08 (Fig. 2f). The streamlines and the isotherms
at 7 =0.08 presented in Fig. 2f are almost identical to those given by Baytas and Pop [7], and Baytas
[10]. The development of the velocity and thermal boundary layers on the vertical walls of the cavity
can be clearly observed from these figures, which continuously grow to the steady-state thermal

boundary layers flow. The development of the velocity and thermal boundary layers for Ra =10> and

Ra =10" are similar to those shown in Fig. 2. The difference is that for low Rayleigh number
condition the convection currents will be weaker which leads to the grow of the boundary layer will be

slower than for high Rayleigh number condition. The stream lines and the isotherms for Ra = 10> and

Ra =10* are not shown for brevity.
The variation of the transient local Nusselt number with time 7 along the hot wall of the cavity at

different positions Y is presented in Fig. 3 for Ra=10° —10". It is seen that immediately after the
process of impulsively heating starts the value of the local Nusselt number goes to infinity (is singular)
and this is characteristic to any impulsively started heating system. Then, at small positions ( ¥ < 0.5 ),
the local Nusselt number decreases for a short time followed by a constant value and then increase to
reach the steady state value. Fig. 3¢ shows that this phenomenon will happen for the upper half also (

Y >0.5 ) for Ra=10*. However, for ¥ >0.5 and Ra =10 and Ra =10 the local Nusselt number
decreases continuously with increasing time until it reaches its steady-state value. This variation of the
transient local Nusselt number is reflected on the average Nusselt number which is defined in Eq. (10).
Fig. 4 shows the variation of the average Nusselt number with the non-dimensional time for different
Rayleigh numbers. The average Nusselt number showing an undershoot during the transient period

followed by a constant steady state value for all Ra =10°—10* . It is also observed that the time
required to reach the steady state (Nu becomes constant) is longer for low Rayleigh number and shorter
for high Rayleigh number as shown in Figs. 3 and 4.

Further, values of the average Nusselt number along the hot wall of the cavity at the steady-state flow

for Ra =107 —10*are given in Table 1. It is seen again that the present values of Nu are in very good
agreement with that obtained by different authors, such as Walker and Homsy [11], Bejan [12], Gross
et al. [13], and Manole and Lage [14]. Therefore, these results provide great confidence to the accuracy
of the present numerical model. It is important to recall that the above results were obtained using the
thermal equilibrium between the solid and fluid phases in the porous media assuming low Reynolds
number and low porosity. The effect of the non-equilibrium is usually considered for higher fluid
velocity as well as higher porosity which need further investigation as extension to the present research.

CONCLUSIONS

The transient free convection in a two-dimensional square cavity filled with a porous medium is
considered in this paper. The flow is driven by considering the case when one of the cavity vertical
walls is suddenly heated and the other vertical wall is suddenly cooled, while the horizontal walls are
adiabatic. The non-dimensional forms of the continuity, Darcy and energy equations are solved
numerically. The A.D.I. method is used for the convection—diffusion formulation in the uniform grid in
both horizontal and vertical directions. It is observed during the transient period that the average

Nusselt number showing an undershoot followed by a constant steady state value for all Ra =10 —10*
and at the steady state the flow and heat transfer characteristics are similar to those from the open
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literature. It is also observed that the time required to reach the steady state is longer for low Rayleigh
number and shorter for high Rayleigh number.
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NOMENCLATURE
Symbol Define Units
G Gravitational acceleration m/s’
K Permeability of the porous media m’
L Cavity length M
Nu Local Nusselt number S
Ra Rayleigh number for porous media B
t time S
T Fluid temperature K
u,v Velocity components along x- and y- axes , respectively m/s
U,V | Non-dimensional velocity components along X- and Y- axes , respectively B —
X,y Cartesian coordinates M
XY Non-dimensional Cartesian coordinates N
Greek symbols
a Effective thermal diffusivity m’/s
B Coefficient of thermal expansion 1/K
(% Non-dimensional temperature B
v Kinematics viscosity m/s
o Ratio of composite material heat capacity to convective fluid heat capacity —
T Non-dimensional time —_—
v Stream function m’/s
Subscript symbol
c Cold wall —_—
H Hot wall —_—
Superscript symbol
- Average -
A Non-dimensional e
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Table 1.Comparison of Nu at steady state with some previous numerical results

Author

Nu

Ra =100

Ra =1000

Ra =10000

Baytas [10]

3.160

14.060

48.330

Walker & Homsy [11]

3.097

12.960

51.000

Bejan [12]

4.200

15.800

50.800

Groos & Bear & Hickox. [13]

3.141

13.448

42.583

Manole & Lage [14]

3.118

13.637

48.117
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Fig. 1 Schematic diagram of the physical model and coordinates system
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Stream lines isotherms

Fig. 2. Stream lines and isotherms for Ra =1000; (a) and 7 = 0.0025, (b) and 7 =0.005, (c)
7=0.01,
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Stream lines isotherms

Fig. 2.( continued ) Stream lines and isotherms for Ra =1000; (d) and 7 =0.02, (e) and 7 =0.04
and (f) and 7 = 0.08.
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Fig. 3. Variation of the transient local Nusselt number with 7 at different Rayleigh number: (a)
Ra =100, (b) Ra =1000 and (¢) Ra =10000.
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Fig. 4. Variation of the transient average Nusselt number with 7 at different Rayleigh number.
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