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ABSTRACT 

Numerical Analysis of Unsteady Natural convection in square cavity filled with a 

porous media studied in this paper. The left vertical wall preserves the constant high 

temperature Th , and the right wall preserves the constant low temperature Tc and 

both the horizontal walls are insulated . The alternating –direction implicit method ( 

A.D.I ) is used to solve the non-dimensional governing equations, and finite 

differences method devoted to Nussele numbers and the horizontal and vertical 

velocity flow . The results are obtained for the initial transient start up to the steady 

state, and for Rayleigh number( 
42 1010 << Ra ). It is observed that the results for 

average Nusselt number showing an undershoot during the transient period and that 

the time required to reach the steady state is longer for low Rayleigh number and 

shorter for high Rayleigh number. 
◌ٌِ 
Keywords: Natural Convection, Porous, Square Cavity. 
 

 التحليل العددي لانتقال الحرارة  بالحمل الطبيعي غير المستقر

 في تجويف مربع مملوء بوسط مسامي
  :الخلاصة 

تم دراسة التحليل العددي لانتقال الحرارة بالحمل الطبيعـي غيـر المـستقر فـي تجويـف مربـع مملـوء بوسـط   

 والجـدار العمـودي الأيمـن Thالجـدار العمـودي الأيـسر يحـتفظ بدرجـة حـرارة عاليـة ثابتـة . مسامي فـي هـذا البحـث 

اسـتخدمت طريقـة الاتجـاه . ن عـزلا تامـا  وكل من الجدارين الأفقيين معـزوليTcيحتفظ بدرجة حرارة منخفضة ثابتة 

ة ، واسـتخدم طريقـة الفـروق المحـددة لحـساب عـدد نــسلت حاكمـ لحـل المعـادلات ال( A.D.I )الـضمني المتنـاوب 

ان النتــــائج المكتــــسبة للانتقــــال الحــــراري مــــن الحالــــة الابتدائيــــة إلــــى حالــــة .  الأفقيــــة والعموديــــة للجريــــان ةوالــــسرع

 (الاسـتقرار ولعـدد رالـي 
42 1010 << Ra   . ( وقـد لـوحظ إن معـدل عـدد نـسلت يبـين مـن خـلال الفتـرة العـابرة

والذي يتطلب وقت للوصول الى حالة الاسـتقرار أطـول عنـد قيمـة عـدد رالـي قليلـة وأقـصر عنـدما تكـون قيمـة عـدد 
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INTRODUCTION   

Convective heat transfer in fluid-saturated porous media has received considerable attention over the 

last several decades. This interest was estimated due to many applications in, for example, packed 

sphere beds, high performance insulation for buildings, chemical catalytic reactors, grain storage and 

such geophysical problems as frost heave. Porous media are also of interest in relation to the 

underground spread of pollutants, solar power collectors, and to geothermal energy systems. Literature 

concerning convective flow in porous media is abundant. Representative studies in this area may be 

found in the recent books by Ingham and Pop [1], Nield and Bejan [2], Vafai [3], Pop and Ingham [4], 

and Bejan and Kraus [5]. 

Free convection in a cavity filled with a fluid-saturated porous medium is of prime importance in many 

technological applications. Examples are post-accident heat removal in nuclear reactors and 

geophysical problems associated with the underground storage of nuclear waste, among others. The 

problem of free convection in a rectangular porous cavity whose four walls are maintained at different 

temperatures or heat fluxes is one of the classical problems in porous media, which has been 

extensively studied. Much research work, both theoretical and experimental, has been done on this type 

of convective heat transfer processes. A good deal of references on this problem has been presented in 

the paper by Lauriat and Prasad [6], and in the recent paper by Baytas and Pop [7]. The model 

commonly used consists of a porous cavity with both the vertical walls maintained at constant 

temperatures, while the horizontal walls are adiabatic. The flow and heat transfer characteristics of the 

steady-state flow is generally studied for this type of cavity. However, a very little work has been done 

for the case of unsteady and transient flow situations. The aim of this paper is to study numerically the 

problem of transient free convection in a square cavity filled with a porous medium when one of its 

vertical wall is suddenly heated and the other wall is suddenly cooled, while the horizontal walls are 

adiabatic. To our best knowledge, only Banu et al. [8] have presented a study of such a problem, but for 

a heat-generating porous cavity with all four walls maintained at a constant temperature. 

 

GOVERNING EQUATIONS  

A schematic diagram of a two-dimensional square cavity is shown in Fig. ( 1 ). It is assumed that the 

left vertical wall of the cavity  heated to the constant temperature Th and the right vertical wall  cooled 

to the constant temperature Tc, where Th > Tc, and the horizontal walls are adiabatic. 

In the porous medium, Darcy’s law is assumed to hold, and the fluid is assumed to be a normal 

Boussinesq fluid. The viscous drag and inertia terms in the governing equations are neglected, which 

are valid assumptions for low Darcy and particle Reynolds numbers. With these assumptions, the 

continuity, Darcy and energy equations for unsteady, two-dimensional flow in an isotropic and 

homogeneous porous medium are : 
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where vu,  are the velocity components along x- and y- axes, T is the fluid temperature and the physical 

meaning of the other quantities are mentioned in the Nomenclature.  

The equations from ( 1 ) to ( 3 ) can be written in terms of the stream function ψ  defined as 

yu ∂∂= ψ and xv ∂∂−= ψ  together with the following non-dimensional variables: 
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The non-dimensional forms of the governing Equations are: 
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where Ra is the Rayleigh number defined as: υα
β TKLg

Ra
∆= .  

The equations are subjected to the following initial conditions at 0=τ : 

 

,0ˆ =ψ   ,0=θ   at any X,Y                      (7a) 

 

and boundary conditions  at 0>τ : 

,0ˆ =ψ   ,5.0=θ   at ,0=X  any   Y                    (7b) 

 

,0ˆ =ψ   ,5.0−=θ   at ,1=X  any   Y                      (7c) 

 

,0ˆ =ψ   0=∂∂ Yθ   at 1,0=Y  any   X          (7d) 

 

NUMERICAL METHOD 

By using the Alternating-Direction Implicit method ( A.D.I ) in this paper to solve the governing 

equations  ( eq. (5) and eq. (6) ) , at any increase in the time, doing in two stage of time. Then the eq. 

(5) written as : 
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At second stage : 
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And the eq. (6) written as : 

At first stage : 
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At second stage :  
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The initial conditions are very effect in this problem, we should take that in this study. A.D.I method 

solved this problem in two stages , therefore the initial conditions in two stages , in the first stage the 

vertical initial conditions affect greater than the horizontal initial conditions, and in the second stage the 

horizontal initial conditions affect greater than the vertical initial conditions. 

The solution domain consist of grid points at which the discrimination  equations are applied. In this 

domain X and Y , by definition varies from 0 to 1, the uniform grid has been selected in both X and Y 

directions. The grid size and geometry were tested, and it was found that the following size and 

geometry give the best results comparing with the results in the literature for the steady-state flow. The 

grid size is (60*60) and the grid geometry is symmetrical about the centerlines. 

The heat transfer should be solved in the near hot left wall and the near cooled right wall by using the 

(Forward difference & backward  difference techniques  ) from this equations: 
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RESULTS AND DISCUSSION :  

The streamlines and isotherms at different time steps ranging from 0025.0=τ  to 08.0=τ  are shown in 

Fig. 2 for 1000=Ra . It can be seen that early in the transient region, the isotherms are nearly parallel 

indicating conduction heat transfer and the fluid is rising up near the hot left wall and is fallen 

downward near the cooled right wall, respectively. A recirculation flow region of small intensity sites 

close to the upper part of the hot wall or to the lower part of the cooled wall and spin the fluid towards 

the center of the enclosure (Fig. 2a). Shortly after that, the fluid travels across the upper (or lower) half 

of the enclosure (Fig. 2b). The streamlines indicate an elongation of the recirculation region of the flow 
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along with a transition to the middle of the enclosure (Fig. 2b). With increasing of time ( 01.0=τ  ), the 

majority of fluid is rising up or falling down near the hot wall and near the cooled wall, respectively 

(Fig. 2c) and the local Nusselt number is continuously decreasing near the upper part of the hot wall 

(Fig. 3b). Further, after a short time ( 02.0=τ ), the flow has been extended throughout the cavity and 

convection has became more important (Fig. 2d). For 04.0>τ the flow is then going to attain the 

steady-state regime (Fig. 2e), which happens for 08.0=τ  (Fig. 2f). The streamlines and the isotherms 

at 08.0=τ  presented in Fig. 2f are almost identical to those given by Baytas and Pop [7], and Baytas 

[10]. The development of the velocity and thermal boundary layers on the vertical walls of the cavity 

can be clearly observed from these figures, which continuously grow to the steady-state thermal 

boundary layers flow. The development of the velocity and thermal boundary layers for 210=Ra  and 
410=Ra  are similar to those shown in Fig. 2. The difference is that for low Rayleigh number 

condition the convection currents will be weaker which leads to the grow of the boundary layer will be 

slower than for high Rayleigh number condition. The stream lines and the isotherms for 210=Ra  and 
410=Ra   are not shown for brevity.  

The variation of the transient local Nusselt number with time τ  along the hot wall of the cavity at 

different positions Y is presented in Fig. 3 for 42 1010 −=Ra . It is seen that immediately after the 

process of impulsively heating starts the value of the local Nusselt number goes to infinity (is singular) 

and this is characteristic to any impulsively started heating system. Then, at small positions ( 5.0<Y  ), 

the local Nusselt number decreases for a short time followed by a constant value and then increase to 

reach the steady state value. Fig. 3c shows that this phenomenon will happen for the upper half also ( 

5.0≥Y  ) for 410=Ra . However, for 5.0≥Y  and 210=Ra  and 310=Ra  the local Nusselt number 

decreases continuously with increasing time until it reaches its steady-state value. This variation of the 

transient local Nusselt number is reflected on the average Nusselt number which is defined in Eq. (10). 

Fig. 4 shows the variation of the average Nusselt number with the non-dimensional time for different 

Rayleigh numbers. The average Nusselt number showing an undershoot during the transient period 

followed by a constant steady state value for all 42 1010 −=Ra  . It is also observed that the time 

required to reach the steady state (Nu becomes constant) is longer for low Rayleigh number and shorter 

for high Rayleigh number as shown in Figs. 3 and 4. 

Further, values of the average Nusselt number along the hot wall of the cavity at the steady-state flow 

for 42 1010 −=Ra are given in Table 1. It is seen again that the present values of uN  are in very good 

agreement with that obtained by different authors, such as Walker and Homsy [11], Bejan [12], Gross 

et al. [13], and Manole and Lage [14]. Therefore, these results provide great confidence to the accuracy 

of the present numerical model. It is important to recall that the above results were obtained using the 

thermal equilibrium between the solid and fluid phases in the porous media assuming low Reynolds 

number and low porosity. The effect of the non-equilibrium is usually considered for higher fluid 

velocity as well as higher porosity which need further investigation as extension to the present research.  

 

CONCLUSIONS 

The transient free convection in a two-dimensional square cavity filled with a porous medium is 

considered in this paper. The flow is driven by considering the case when one of the cavity vertical 

walls is suddenly heated and the other vertical wall is suddenly cooled, while the horizontal walls are 

adiabatic. The non-dimensional forms of the continuity, Darcy and energy equations are solved 

numerically. The A.D.I. method is used for the convection–diffusion formulation in the uniform grid in 

both horizontal and vertical directions. It is observed during the transient period that the average 

Nusselt number showing an undershoot followed by a constant steady state value for all 42 1010 −=Ra  

and at the steady state the flow and heat transfer characteristics are similar to those from the open 
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literature. It is also observed that the time required to reach the steady state is longer for low Rayleigh 

number and shorter for high Rayleigh number.  
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NOMENCLATURE 

  

Units Define Symbol 

m/s
2 

Gravitational acceleration  G 

m
2 

Permeability of the porous media K 
M Cavity length  L 

 Local Nusselt number Nu ــــــــ

 Rayleigh number for porous media Ra ــــــــ

S time t 

K Fluid temperature  T 

m/s Velocity components along x- and y- axes , respectively  u,v 

 Non-dimensional velocity components along X- and Y- axes , respectively U,V ــــــــ

M Cartesian coordinates x,y 

 Non-dimensional Cartesian coordinates X,Y ــــــــ

Greek symbols 

m
2
/s Effective thermal diffusivity  α  

1/K Coefficient of thermal expansion β  
Non-dimensional temperature θ ــــــــ  
m/s Kinematics viscosity  υ  
Ratio of composite material heat capacity to convective fluid heat capacity σ ــــــــ  
Non-dimensional time τ ــــــــ  
m3/s Stream function  ψ  

Subscript symbol 

 Cold wall  c ــــــــ

 Hot wall  H ــــــــ

Superscript symbol 

 -  Average ــــــــ

 ^ Non-dimensional ــــــــ
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Table 1.Comparison of uN  at steady state with some previous numerical results 

 

uN  No

. 
Author  

100=Ra  1000=Ra  10000=Ra  

1 Baytas [10] 3.160 14.060 48.330 

2 Walker & Homsy [11] 3.097 12.960 51.000 

3 Bejan [12] 4.200 15.800 50.800 

4 Groos & Bear & Hickox. [13] 3.141 13.448 42.583 

5 Manole & Lage [14] 3.118 13.637 48.117 

6 Personal work  3.110 13.850 49.980 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Schematic diagram of the physical model and coordinates system 
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         Stream lines      isotherms 

 

 

Fig. 2. Stream lines and isotherms for 1000=Ra ; (a) and 0025.0=τ , (b) and 005.0=τ , (c) 

01.0=τ , 



Khalid Abd Al-Husain, The Iraqi Journal For Mechanical And Material Engineering, Vol.8, No.1, 2008  

 

 

 23

 
           Stream lines          isotherms 

 

Fig. 2.( continued ) Stream lines and isotherms for 1000=Ra ; (d) and 02.0=τ , (e) and 04.0=τ  

and (f) and 08.0=τ . 
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Fig. 3. Variation of the transient local Nusselt number with τ  at different Rayleigh number: (a) 
100=Ra , (b) 1000=Ra  and (c) 10000=Ra . 

 

 
Fig. 4. Variation of the transient average Nusselt number with τ at different Rayleigh number. 
 

 


