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ABSTRACT

Complex partial differential equation (CPDESs) appeared around the year 1900. D. Pompeiu
was a famous mathematician who left a large impact in this field through introducing the

Pompeiu integral operator, which forms a basis in the subject CDEs. The complexity of
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some real-world problems has been conquered via the methods of solution for CDEs . Two-
dimensional differential transform was proposed by Chen and Ho as a powerful tool for
solving PDEs and used to solve linear and nonlinear complex partial differential equations.
This paper presents two-dimensional differential transform for the complex partial

derivatives of higher orders for a complex functions of two complex independent variables,
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method.

and then use these complex partial derivatives to find an exact solution to a complex partial
differential equation of the fourth order using two-dimensional differential transform

Introduction

Complex differential equations appeared at the end
of the last century and became today are of great
interest by the researchers because it has many
applications in science and engineering such as quantum
systems and neural networks. Two-dimensional
differential transform was introduced by Chen and Ho
[3] and it is regarded an effective method among the
methods that used for solving partial differential
equations [1], [2] and [9]. Two-dimensional differential
transform method are used for solving linear complex
partial differential equations such as [4], [5], [6] and [7]
and for nonlinear complex partial differential equations
[8]. In this paper, we are interested in solving complex
partial differential equations of higher orders using two-
dimensional differential transform method analytically.
Our review begins with.
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Our paper begins with the basic concepts for our
work. Then, it includes finding two dimensional
differential transform for some complex partial
derivatives of higher orders. Also, it introduces two
dimensional differential transform method for solving
fourth order complex partial differential equation.
Finally, the conclusions are given.

Basic Concepts
Definition 2.1. [3] Let f (X,y) be a function of two

variables which is analytic and continuously
differentiable on the nonnegative integer. Then two

dimensional differential transform of f (x,y) s
defined as follows:

10" (x,Y)]
F(p,q)—p!q! X0y
Where f (X,Yy) is the original function and F(p,q) is

the transformed function. The differential inverse
transform of function F(p,q) is defined as follows:

. (20)

x=0,y =0
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Fx,y) =Y S F(p.a)x Py,

p=0qg=0
Theorem 2.1. [3] If w (X,y)=u(x,y)xv(X,y) then
W (p.q) =U (p.q)V (p.q).

Theorem 2.2.[3] If w(X,y)=

(2.2)

I'+S

u(x,y)
ox‘oy’®

then
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W (p,a) =(p+D(p +2)---(p+r)@+D@+2)---(@ +s)

U(p+r,q+Ss).

Consider the complex function
w(z,Z)=u(x,y) +iv(x,y) where z =x +iy, and
Z =x —1ly. The first, second and third orders partial
derivatives of w (z ,Z) are given as follows:

Theorem 2.3. [5] The partial derivatives of the 1%
order of w (z,Z") are shown as:

ow 1 ow 8W

or z(ax oy )

ow 1 ow aw

oz 2(8x oy )

where

ow . .

8_x:ux IV, —=U, +iv.

Theorem 2.4. [6] The partial derivatives of the 2™
order of w (z,Z") are shown as:

. ow (z,7) 1(62w . 62w _a%N)
oz’ 4°0x*? axay oy’
W (z,7) 1(82\/\;+a2v\;) 1w
0z 0z 4 ox° oy 4
3 aZ\N(Zz’Z_)=1(62\'\Q _oi oW _82\/\/2)_
oz 4" ox oxoy oy

Theorem 2.5. [7] The partial derivatives of the 3 ™
order of w (z,Z") are shown as:

1 Ef\/\/(—za,z‘):1(83\/\/3 3 63\N2+3i 61N i 6?\/\/3)
0z 8 0x®  oxoy ox‘oy oy
(33\N(Z 7) 1 a?w ow . ow . oW
=( +i +i—)
orort 8 ax’ élxé'y2 ox‘oy oy’
owiz,z) 10w ow . ow . oW
- —=—(—+ —i -i—)
or’or 8 ox® oxoyr  oxty oyt
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8%(2,2‘) 1 oW o cow oW
; —(—-3 ;=3 ——+i—)
0z 8’ oX oy oxoy oy
The Complex Partial Derivatives of Higher Orders
of the Complex Functions
This section introduces the fourth and fifth order

partial derivatives of the complex function w (z,Z") in
real X and Yy where

terms of two variables
Z=X+ly,Z=x—ly and
w(z,Z)=u(x,y)+iv(x,y).
Theorem 3.1. The fourth order partial derivatives of
complex a function w (z,Z) are given as follows:
ow@z,z) 1tow _ow . ow . ow ow
- (b st ——+—).
0L 16°0x"  oxoy ox oy oxoy oy
B 6‘\N(z_,z) 1(6‘\N ) (’)‘\N3+2i 6‘1N _ﬂ).
ozor® 16 ox* oX oy ox°oy oy
B 8‘\N(z,z_) 1(8‘\N o'w +a”w)
oz%r* 16 ox* 8x26y2 oyt
Cw@r) 1 oW oW
Caor

Lo gy Wy T W,
W)
a1

16 ox* ('}Xay3 axsé'y 6y4
1 oW ‘\N . a‘\/v cow o ow
( 4 -6 3_4I Tt
OX axf?y My ooy oy
Proof. To prove 2, we have
) 10 L e
acr® 8o &’ agyt ay oy

:}{ﬁ(i% 83W2+3i 631N 63)

8 ox ox”  oxay 0X 0y

+3|ﬂ—|m)ay]

xy ot a

10w . oW ow oW

:——+2|—+2i———
s gy’ %y aj“)

The other proofs are similar.
Theorem 3.2. The fifth order partial derivatives of a
complex function w (z,Z") are given as follows:

).

dw oW
x* oxoy’

G

o,
&

0
0y o

0E\N(ZZ) 1(afw Gl 10 Gl " il 5 oW +i@).
oot ayt oyt xy ay o
) OeD) L A e e
adt Rt ayt ay’ oy ay o
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N W) 1(afw afw Gl 1) Gl X dw +i@)
et R 8x8y a'oyt oyt 'y oy
Cden L e B de g d
afort R agyt adyt Ay ay ot
: dwr) 1w ,dw ,dw oW 4 oW +i@)
a'r Rt axay oyt axzayS o'y oy
oo DRI LAV o O g T g D
a3 axay ooy ooy’ ooy oy
The proofs can be made as in Theorem 3.1.
Solution of Higher Order Complex Partial
Differential Equation by Two- Dimensional

Differential Transform Method

In this section, we introduce an exact solution to a
complex partial differential equation of the fourth order
by using two dimensional differential transform method.
Example 4.1 Consider the fourth order complex initial
value problem:

ow  ow

e —t— o, -w =0, (4.1
w (x,0) =e* +2coshx 4.2)
—(x,0)=—ie* +2isinhx (4.3)
oy

i(x,O):—eX —2coshx  (4.4)
Z;V\g =ie* —2i sinhx. (4.5)

Let us utilize two-dimensional differential transform on
both sides of the equation (4.1). By Theorem 3.1,
Theorem 2.4 and Theorem 2.2 we obtain:

(Q+1)(q+2)(q g+ 4)r4(9+1)(Q+1)(Q+2)(q+3N(p+Lq+3)-e(p+1)

(p+2)a+1a+2U (p+29+2)-4(p+1(p+2)(p+3@+V (p+30+Y
Hp+)(p+2(p+3)p+4U (p+40)-40+) @2V (pg+2) + 8(p+])
@+1V (p+1q+1)+4p+1(p+2U (p+2.0)-18U (p.q)] (4.6)

Up.g+4)=

-1
V(pg +4)=W[‘4(P+1)(q +1)g+2)g+3V (p+19+3)-6(p+)

(p+200+1(0+2) (p+20+2)+4(p+1(p+2(p+3)(0 +1V (p+39+1+
(p+D(p+2)(p+3)(n+4V (p+40)-4a+)a+2V (p.0+2) - p+1)q+)
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U(p+1q+D)+4(p+1)(p+2V (p+2,0)-16/ (p,q)]
since w (x,0)= YW (p,0)x” =S (U (p,0) +iV (p,0)x”

and according to condition (4.2) we have:
w (x,0)=e" +2coshx

4.7

As a result, we obtain:

2+(-1)°
|

U (p,0)= , p=012,...

V (p,0)=0,p=0,12,....
As well as , since

ow (x,y) =ZZqW (p,q)x Py ™, that means:

oy p=0q=0
ow (x,0) & N :
Mzzw (p,)x " :Z(U (p,D)+iV (p,D)x*,

oy p=0 p=0
and according to condition (4.3), we have:
WX0)_ o 42 sinh

2 3 4 5 1\
=i[_1 é_x_ X__X_ X_ +( 1) Xn+...]
10 21 31 41 5l !

As a result , we obtain:
U((p,)=0,p=012,...

V (p,l):( p)p+1, p=012,. (4.9)

Similarly, since-

m(—W=iiq(q —IW (p,q)x "y 7%, that
oy 5040

means:

ay‘NayXO 2iw (0.2K° = ZZ(U 0,24V (0,2

and accordlng to condltlon (4.4) , we have:

a?w@(/xz,O) =—" +2coshx)

w20 3t 4 51 gl f n!
As a result , we obtain:
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—2—(-1°
U(p,2) _Z—p!’ p=012,... (4.10)
V (p,2)=0,p=012,...
Finally, since
oW (x

SIS S 9l -D@-2W (pay",

which means:

PO 63w (03¢ =T 0 (. 4V (0.9
p=0 p=0

and according to condition (4.5) , we have:

oW (x,0)

3

=—i(-e" +2sinhx)

As a result , we obtain:
U(p,3)=0,p=012,...

(4.11)

—1)°
V(p,3= (6 )' , p=012,...
p!

Now, we shall find the values of U (p,q) and
V(p,q) for q=45,..., and p=012,....
Therefore, it is clear that;

v (P,5)=%[-96(P 0 (p+14)-36(p+1)(p +2V (p+23)+8(p+1)(p+2)p +3)

U(p+32)+(p+D(p+2)(p+3)(p-+4) (p+41)-24/ (p.3)-16(p+1U (p
+12)+4(p+1)(p+2)V (p+2)-16/ (p,I)]
:ﬁ, p=01L2,....
120p!
Similarly, if g =2 is placed into equation (4.6), the
result is:

U(p.6) =%[240(p +1V (p+15)-T2(p+1)(p+2U (p+2.4)-12(p+1)(p +2)(p +3)

Vi(p+33)+(p+(p+2)(p+3)(p+4U (p+4,2)-48U (p,4)+24(p +1V (p+1
3 +4(p+1)(p+2U (p+22)-160 (p,2]
_2-(Y
blp!
and if q =3 is placed into equation (4.7), the result is:

V(p,7) :%[—480(p+1)U (p+16)-120(p+1)(p+2N (p+2,5)+16(p+1)(p+2)

(p+3U (p+34)+(p+1(p+2)(p+3)(p+4N (p+4,3)-80/ (p,5)-32(p
+U (p+14)+4(p+1)(p+2)V (p+2,3)-16/ (p,3)]
_ 2D 012
71p!

p=012...

U(p,2r+1)=0 (4.12) where r=0,12,..., By applying equations (4.6) and (4.7) as above manner
V (p,2r)=0, repeatedly, we can obtain that:
respectively. D" (2+(-D)")
If g =0 is placed into equation (4.6), the result is: U(p,2r)= (2r)ip! (4.13)
-1
U(p.4)=, [24(p 1V (p +13)-12(p +1)(p+21 (p+22)-4(p +1(p +2p +3 - and
(_1) +I+.

V(p+30)+(p+)(p+2)(p+3)(p+4U (p+4,0)-8U (p,2)+8(p+1V (p+V (P, 2r +1) =

L)+4(p+D)(p+2U (p+2,0)-16U (p,0)]
_2-(

6!p!
_2+(=DP

- 24p!
If g =1 is placed into equation (4.7), the result is:

=012...

,p=0712,....

2r+Dip!’ (419

where r =2,3,... , respectively.
Now, using the above values of U (p,q) and V (p,q)
, We obtain:

Wz =Y Y (py’

=U(0,0)+U (1,0)x +U (2,0 +U (3,0)x° +U (4,0)x * +--+U (p, 0% 4---
HV (0.04V (DX 4V 20624V B @Dx +4V ()K" +-y
HU0,2+U (L2x +U (22x +U B.2x* +U (4 " 44U (p, ¢ 4y
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[V (0,3)4V (LYK 4V (2,32 4V 3,34V (4,3)x 44V (p, x4y
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U (0,4)+U (L4)x +U (24)x 24U 3. 4)x* +U (4,4)x* 44U (p,4x "+ Jy*

3, 3, L 1 g 3 1
T R ey G e i s e L AR QR
/ 2 / 2y a2 / Zy 6y 4 3 /

3 2,2
-—X
22! y
o5 3
=Xy =Y e
6y 24y
By putting z =x +1y and Z =x —iy , we obtain:

2

= ~ 3 2,905, 32 1 52 3 2 95, 32 1 30,2
W(Z,7) =347 +=(2 + 2T +1)+=(2° -1 )+=(2 -7 +71°)+—(2"+3 7
(2.7) 8( ) 4( ) 8( ) 48(

) TP (1T )=
16 16 48

-3 2z‘+322‘2—z'3)+i(z“+4zz‘3+6z Tl 32‘+z‘4)+i(z“+2232'
128 96
‘222_3+Z_4)+i(24—22 ZZ_2+Z_4)+£(24—22 32'+Zzz‘3—z'4)+i(z“
64 9 128

Sy R Y
As a result, the solution of the CIVP (4.1)-(4.5) is:
=2 53 I
I A A AR
W(Z,T)=34T 47 4 ——F—F— -
2 6 12 4
=2 3 4 Z4
(4T +—+—4—+ )+ (24754 —+)
21 34l 12

72 3 4 ZZ Z4
=T +—+—+—+ )+ 2+ —+—+-)
203 4l 2l 4l

=’ +200shz.

Conclusion

Two-dimensional differential transform method
can be used for solving complex partial differential
equations of higher orders by transforming the complex
partial derivatives to real derivatives. Two-dimensional
differential transform method is regarded an effective
tool in finding exact solutions to the complex partial
differential equations.
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