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ABSTRACT

Most of the Weibull models studied in the literature were appropriate for
modelling a continuous random variable which assume the variable takes on real
values over the interval [0,00]. One of the new studies in statistics is when the
variables takes on discrete values. The idea was first introduced by Nakagawa
and Osaki, as they introduced discrete Weibull distribution with two shape
parameters q and  where 0<qg<1andf > 0. Weibull models for modelling
discrete random variables assume only non-negative integer values. Such models
are useful for modelling for example; the number of cycles to failure when
components are subjected to cyclical loading. Discrete Weibull models can be
obtained as the discrete counter parts of either the distribution function or the
failure rate function of the standard Weibull model. Which lead to different
models. This paper discusses the discrete model which is the counter part of the
standard two-parameter Weibull distribution. It covers the determination of the
probability mass function, cumulative distribution function, survivor function,
hazard function, and the pseudo-hazard function.

Keywords; Functions of discrete Weibull distribution, pseudo-hazard function,
failure studies.
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INTRODUCTION

This paper considers failure studies in which the time to failure is often
measures the number of cycles to failure and therefore, becomes a discrete
random variable. In some situations, system lifetime is expressed by discrete
random variable. The failure data in failure studies are mainly measured in
discrete time such as runs, cycles, blows, shocks, or revolutions (Nakagawa and
Osaki 1975).

The discrete Weibull arises in reliability problems when the observed
variable is discrete. Geometric and negative binomial distributions are known to
be discrete alternatives, for the exponential and gamma distributions
respectively. Discrete Weibull is an alternative to the Weibull distribution. There
are different forms of discrete Weibull distributions, one of these forms from
Nakagawa and Osaki (1975) and others from Stein and Dettero (1984), Padgett
and Spurrier(1985).

In situations where the observed data values are very large (in thousands of
cycles, etc.) a continuous distribution is considered an adequate model for the
discrete random variable, for example when an equipment operates in cycles or
demand, and the number of cycles or demands prior to failure is observed, then
the usual .reliability concepts for continuous lifetimes have to be defined again to
be adapted to discrete time (Xie et al. 2002).

Nakagawa and Osaki (1975) who pioneered the work on the discrete
Weibull distribution and submitted a form of discrete Weibull distribution with
two parameters.

They investigated, from the view points of both theory and practice, what
discrete distribution corresponds to the Weibull and then explained that failure
data in failure studies are mainly measured in discrete time such as cycles, blows
and shocks.

Stein and Dattero (1984) submitted a paper that defined another discrete
Weibull distribution and compared it to the distribution of Nakagawa and Osaki
(1975). They said that discrete Weibull distribution should possess three
properties; The hazard rate should be similar to that of continuous Weibull. It
should provide the exact lifetime distribution of a specific system, and, the
lifetime should, in some sense, converge to that given by the continuous Weibull,
thus showing the connection between the two distributions.

Padgett and Spurrier (1985) introduced a paper that provided three
families of discrete parametric distribution which are versatile in fitting
increasing, decreasing and constant failure rate models to either uncensored or
right—censored discrete life test data.

Ali Khan et al. (1989) discussed two discrete distributions and a simple
method is presented to estimate the parameters for one of them. They compared
this method with the method of moments, and they concluded that the estimates
appear to have almost similar properties.

Salvia (1996) referred to a new hazard function of discrete Weibull
distribution with the parameter > —1. The hazard function is increasing when

£ >0 and decreasing when £ <0.



3 2014 Al 79 axl) 20 Alaall A a1 g Apalaidy) a glal) Alaa
shidtoll Juag 21595 Joa

DISCRETE WEIBULL DISTRIBUTION

Discrete Weibull models can be obtained as the discrete counter parts of
either the distribution function or the failure rate function of the standard
Weibull model.
Let £ >0 be the shape parameter and 0<g<1 also the shape parameter, then the

probability mass function of discrete Weibull distribution is given by :
p) =g g, x=0,12,... (1)
where X is a nonnegative integer value.
Then the distribution function is given by:
F(x)=1—q , x=0,1,2,... (2)
= : x<0

The survivor function is given by :

F(x)=1-F(x) @)

Fe)=q" @
and the hazard function (failure rate) is given by:

h(x) =1-q*" = (5)

The hazard function can be increasing, decreasing or constant depending
on the value of g, similar to the continuous Weibull distribution, and the
distribution function is similar to the two-parameter Weibull distribution. It has
application in reliability when the response of interest is a discrete variable.

Roy and Gupta (1992) proposed an alternate discrete failure r(x). It was called
second rate of failure and was defined as follows:

_ o F(x=1)
r(x)_ln{ 0 } (6)

From (6) we have .

(x-1/
r(x) = In{q 7 }
q

r(x) = Injg*~ | )

Xie et al.(2002) advocate that r(x) can be called the discrete failure rate.
However it is important to note that r(x) is not a conditional probability whereas
h(x) is a conditional probability. He used the term pseudo-hazard function for
r(x) so as to differentiate it from the hazard function h(x). The pseudo-hazard
function can be increasing, decreasing and constant depending on the value of g
being greater, less than or equal to one. When pg=1 the discrete Weibull
distribution reduces to the geometric distribution. When g=2, it increases
linearly which is similar to the continuous case. This is the counter part of the
power law relationship linking the exponential and the Weibull distribution in
the continuous case.
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Weibull distribution has been used to analyze failure in electronic
components, ball- bearings, etc. Failure of some devices often depends more on
the total number of cycles than on the total time that they have been seen. Such
examples are switching devices, railroad tracks, and tires of automobiles. In this
case, discrete Weibull distribution will be a good approximation for such devices,
materials or structures.

RESULTS AND DISCUSSION

By taking different values for the shape parameters g and g, we can see the
variation of the mass function and other functions. Assuming a sample size of 15
with the shape parameters #=0.5,1,1.5and q=0.3, 0.7

The following graphs show probability mass function p(x), cumulative
distribution function F(x), survivor function F(x)=1—F(x), hazard function
h(x) and pseudo- hazard function r(x);
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FIGURE 1a. Probability mass function with q=0.3, =0.5,1,1.5
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FIGURE 1b. Probability mass function with q=0.7, $=0.5,1,1.5
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FIGURE 2a. Cumulative distribution function with q=0.3, p=0.5,1,1.5
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FIGURE 2b. Cumulative distribution function with q=0.7, p=0.5,1,1.5
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FIGURE 3a. Reliability function with q=0.3, p=0.5,1,1.5
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FIGURE 3b. Reliability function with q=0.7, $=0.5,1,1.5
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FIGURE 4b. Hazard function with q=0.7, p=0.5,1,1.5
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FIGURE 5a. Pseudo hazard function with q=0.3, =0.5,1,1.5
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FIGURE 5b. Pseudo hazard function with q=0.7, $=0.5,1,1.5

CONCLUSION

Discrete Weibull distribution is the counter part of the standard two-
parameter Weibull distribution. From Figures 1a and 1b we can conclude that
increasing the shape parameter g causes the probability mass function to
approach zero faster. It also shows that the shape parameter, g, has no effect on
the probability mass function.

Figures 2a and 2b show that increasing the shape parameter £ causes the
distribution function reach one faster. Also the shape parameter, g, has no effect
on the distribution function.

Figures 3a and 3b indicate that the survivor function reaches zero faster
when the shape parameter g increases.
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Figures 4a and 4b show that the hazard function increases when the shape
parameter g > 1. However, when the shape parameter g = 1 the hazard function
is constant and when the shape parameter g < 1 the hazard function decreases.
The same applies for the pseudo hazard function which is clear from Figures 5a
and 5b.

As an overall conclusion, the results show that the shape parameter g has
no effect on all functions while the shape parameter £ has the greatest effect on
these functions. This agrees with the idea of standard Weibull distribution
(Murthy et al. 2004).
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