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1. Introduction

The fractional calculus showed up in 1695
by Leibniz to L'Hospital. The subject of
fractional  calculus has picked up
significance amid the previous three decades
due for the most part to its showed
applications in various areas of engineering
and physics, which can be successfully
described by mathematical models of
fractional calculus [1-6]. Therefore, several
numerical techniques are used to get the
exact and the approximate solutions of these

models, see for instance [7-10].

The application of integral equations and integro
differential equations is an important manner
within applied physics, they are appearing and
considers as an important part in many
numerous fields of social, biological, physical

and engineering. [11, 12].

Zhou in 1986 [13] was proposed the differential
transform method (DTM), the differential
transform method has been created for tackling
different sort of differential equations. Chen [14]
has built up the differential transform method
for solving partial differential. Ayaz [15] has
applied DTM to differential-algebraic equations.
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Momani and Odibat they introduced the

generalized differential transforms method
(GDTM) [16-18].

There are different strategies for solving
two-dimensional integral or integro-differential
equations. Babolian [19] using Haar Wavelets
for solving the nonlinear two-dimensional
integral equations. Maleknejad [20] utilizing
Block pulse functions to get solutions for
nonlinear Volterra-Fredholm integral equations.
Nemati [21] he used orthogonal polynomials for
solving a class of two-dimensional nonlinear
Volterra integral equations. Tari [22] he used the
differential transform method to solve two-
dimensional and nonlinear Volterra integral
equations. In Mckee [23] utilize Euler algorithm
for solving the two-dimensional Volterra
integral equations of the first kind.

Those association for whatever remains of
this article is as follows. In section 2 we present
a few important definitions of the fractional
calculus theory and generalized differential
transforms method. While in section 3 we
illustrate how generalized differential transforms
method may be used to solve 2-DVIDE of
fractional order, also we give an numerical
example to demonstrate the effectiveness of the
present method, concluding remarks are given in

the final section.

2. Description of the method

We start this section by given some
fundamental definitions and properties of the
fractional calculus theory and GDTM which
utilized as a part of this paper.
Definition (2.1) [10]

The Riemann-Liouville  fractional
integral operator ,IYf(x) of order v > 0 is

defined as follows:

of2f () = 55 [y (= YL F(©)de, x>0 (1)
olxf(x) = f(x)

Wherel'(v) is the Gamma function.

And satisfies the following properties for

v, € >0,
Lo ol2(olf) = ol¥*e,
2. oIlx¥ = %x”“’; v>0,7 > —1,t > 0.

Definition (2.2) [10]
The Caputo fractional derivative §DZf(x) of
order v > 0 is defined as:

oDxf(x) =
{ Y- OV W (Odtn -1 < v< n

r(n-v)

L f @),
and satisfies the following properties:

1. §DXC =0, C constant;

(2)

v=ne€eN

CNVLY — rv+1 _4—vp _
2. oDyx —F(y_v+1)x ,x>0,y>-1.

Definition (2.3) [10]
The time-fractional derivative in the Caputo
sense §Dfu(x,t) for the function u(x, t) of order

v > 0 is defined as:
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o%u(x,t) _
atv

{ - fot(t -t an;‘(i?” din—1<v<n

cDfu(x,t) =

F(n—v) T (3)

0™u(x,t) _
pyean v=ne€eN

Theorem (2.1) [16-18]
If U(k), F(k) and G (k) are the differential
transform (DT) of the functions u(x), f (x) and
g(x) respectively then:
1. Ifu(x) = f(x) £ g(x) then
Uk)=F() £ GO
2. Ifu(x) = af(x) then
U(l) =aF()
3. Ifu(x) = f(x) g(x) then
UMD =X4=1F(d) Gk — d)
4. 1fu(x) = X then
UD=+1DF(+1)

5. Ifu(x) = £L2 then

UD=U+1DIA+2)..(l+m)F(l+m)
6. Ifu(x) = [ f(t)dt then

F(l-
1

7. If u(x) = x™ then

u) =2 gy = o

Uy = 6(l—m):{(1): ZO?AT/”_

8. If u(x) = sin(wx + v) then
U@ =Lsin(Z + v)
9. If u(x) = cos(wx + v) then
U= cos(Z +v)

l
10. If u(x) =e* then U(l)= =

Definition (2.4) [24]

Consider the analytical function u(x, t)
of two variables, which is defined on B € R?
Where B = [0,X] x [0, T] and (xo,to) €B.
The two- dimensional differential transform (2-
DDT) of u(x, t) is denoted by U(l,s) and is
defined on N2 U {(0,0)} as the following:

1 9su(xy)
U(ll S) = E [ axl ays ]l(Xo,to) (4)

Where u(x, t) is the original function. The
inverse (2-DDT) of U(l,s) is defined as:

uy(xt) =

Y20 2o U(L,8) (x — %)® (t = to)' (5)
Since u(x, t) is an analytical function, it is clear
that u(x, t) = uy(x, t) .

a combination of Eq.(4) and Eq. (5), with

(x0, to) = (0,0), then the function u(x, t)
become :

o woo 1 pHSu(xt)
U(X, t) = Zl=OZS=OE[ 9xlocs ]l(o'o)xlts. (6)

Theorem (2.2) [24]
Suppose that U(l, s),V (l,s) and W (l, s) are the
(DT) of the functions u(x, t), v(x, t)and w(x, t)

respectively;

1 If u(x, t)=v(x,t) tw(x,t), thenU(l,s) =
V(l,s)xW(,s)

2. If u(x,t) =av(x,t),acR , then U(l,s) =
aV(l,s)

3. If u(x,t)=v(x, t)w(x,t) , then
Uul,s) =
Yi-0Xp=oV (r,s =)Wl —1,p)

4, Ifu(x,t)=(x —x9)'(t — t)° , then
U(ll,s)=6(l—n)d(s—m)
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Theorem (2.3) [25]
Ifu(x,t) = f(x)g(t) and the function f(x) =
x*w(x), where u > —1, w(x) has the Taylor
series expansion of the form
w(x) = X7 cr(x — x0)¥* , and
(@) e <wp+ 1and v is arbitrary, or
(b) £>p + land v is arbitrary and ¢;= 0
for f =0,1,2,...,q — 1, where
qg—1<e<q.
Then the (GDT) of (5) becomes
Uye(l,s) =

0% (05) Oy
The generalized differential transform inverse of
Uy, ¢(1,s) is given by
u(x, t) =
Y120 220 Upe(Ls) (x = x0) (t — to)'® (7
Theorem (2.4) [25]

1- fu(x, t)=§Dy,v(x,t),0<v <1, then

(v(1+1)+1)
Ure(l,s) = vr(vz+1)

2- Ifv(x,t) = f(x)g(t), the function f(x)

satisfies the conditions given in

V,e(l+1,5)

theorem(2.2) and u(x, t)= gozov(x, t),

then

rwl+y+1)
Upe(l,s) = rv(uz—L)

Theorem (2.5) [24]
Ifu(x,t) = [, [ f(s,t)dsdt, U(l,s) and

he(l+1s) @

F(l,s) are the (DT) of the functions u(x, t) and
f(x,y), respectively, then

ifl=00rs=0;

0,
U(l,s) = { F(l-1,5—-1) ifl,s=1,23,.. ®)

ls

Theorem (2.6) [24]

Ifu(x,t) = [, [ f(s,)g(s,)dsdt, U(L,s),
F(l,s) and G(l,s) are the (DT) of the functions
u(x, t), f(x,t) and g(x, t), respectively, then

U(l,s) =
ifl=00rs=0;

0,
{l LA L F(r,s—p—1)G(l—7r—1,5), if s =1,2,3,...

Is =T=04p=
(10)
3. Finding Approximate Solution
Consider the (2-DVIDE) of fractional

order of the form:

%u(x,t) n ou(xt)

_ x t x+t
T " 1+e*+e"+e +

Iy Jy u(s,y)dsdy (12)
Which have the exact solution u(x,t) = e**t,
x,t €[0,1],

with the initial conditions:

{u(x, 0) =e*
u(0,t) = et

According to The (GDTM) present previously

(12)

in Section 2, equation (12) can be written as

follows:

MUW(Z +1,8)+ G+ 1DUls+1)=

r(vl+1)
O3+ PR g
Then
Upe(l+1,5) = % [~(s+ DU s+ 1) —
s(D6(s) + @Jr@ n 6(?!;5!@) 4 ua-lls,s_l) 14)

The (GDTM) of the initial conditions (12) are
given by;
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U,s(1,0) = % 1=012,..
Upe(0,8) == s=012,..

Now, if I=0, s=1 in (14):

Upe(LD)= ——|[-22+1] =0

r(v+1)
For 1=0, s=2
Upe(12)= 5[ =35 +3] = 0
For 1=0, s=3

_ 1 1 —
U e (L35 [ =4+ = 0

Uye(1,8) =0,
Also, if I=1, s=1 in (14):

r(v+1)
r2v+1)

For I=1, s=2

Uv,s(zll):

[-2(0) +1] =

r(v+1)

Uv,s(zlz):

For I1=1, s=3

1 I'(wv+1)
3IT(2v+1)

Upe(2,3)=

_1 I'(v+1)
UW(ZA)_Z T (2v+1)

Now, if I=2, s=1 in (14):

r(2v+1) [_ r'(wv+1) l]
r3v+1) rv+1) 2

UU,£(3'1):

For 1=2, s=2

r(v+1)
2IT(3v+1)

Uv,£(3:2)= -

For 1=2, s=3

r(v+1)

Ure(3,3)= = 3IM(3v+1)

r'(v+1)

Ure(34)= = 4T (3v+1)

_ 1] _ 1 T(w+D)
r(2v+1) [ 3(0)+ 2] T 2T(2u+1)

Similarly for I1=3, s=1 in (14):

Up,e(4,1)=

Therefore,
solution of the 2-DVIDE of fractional order for

r(av+1) [ ]
r4v+1) 'T(3v+1) 6

r'(v+1) 1

from (5), the approximate

v = ¢ = 1 and for different value of m and n can

be given as:

2 txZ

113,3(9c,t)=(1+t+t2—2+’;—3!)(x+"7 +E 4

t2x?
4

2

)

2 3 tt x| x
war ) = (1+t+S+-+ - 4x+ S+ 4

tx? n tx*  t2x% t2x3 | t%x*  t3x? t3x4)
12 4

12 48 12 144

(16)

4

+ (17)

4 tS t6 t6

2 3
us,s(x't)=(1+t+%+%+—+—+—+a+

t
4! 5! 6!

t7 8 x%  x x> x® x7  x8  tx?
-+ +x+—-—-+-—+=—=+=4+—+
7! 8! 2! 4! 5! 6! 7! 8! 2
tx*  tx®>  tx®  tx7 tx8 t2x2  t2x3  t2x*
12 60 240 480 4032 4 12 4!
t2x5  t2x6  t2x7  t2x8  t3x%2  t3x3  t3x*

5! 288 1440 8960 12 36 72
t3x5  t3x6  t3x7 t3x8 t4x2  t4x3 | tx*
240 864 5040 20160 48 144 288
t*xS  t*x® t*x7?
g2t ot 5 (18)
960 4320 17280

Following Table 1 represents the absolute error

between the exact and approximate solution of

the proposed method for Example 1 using

different values of n and m when v = ¢ = 1.
Also Figures (1), (2) and (3) presents the
comparison graphically between the results

obtained by the exact and the approximate

solution for various values of x and twithn =
m = 48,16

when v=e=1
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Tablel: Absolute error between the exact and the
approximate solutions by GDTM for different values

of x and t.
n=m=4 n=m=8 n=m=16
x ¢ Absolute Absolute Absolute
error error error

0.25 0.25 7.44156304e-02 | 7.44149467e-02 7.44149468 e-02

0.25 0.5 1.69157948e-01 | 1.69425659-01 1.69425721 e-01

0.5 0.25 1.67106489¢-01 1.66786755e-01 1.66786748 e-01

0.5 0.5 3.61131221e-01 | 3.61084578e-01 3.61084655 e-01

0.75 0.25 2.88130207e-01 | 2.85579904e-01 2.85579640 e-01

0.75 0.5 6.11334982e-01 | 6.08665286e-01 6.08665082 e-01

1.0 0.25 4.49381586e-01 | 4.38301569e-01 4.38298029 e-01

1.0 0.5 9.40890459¢-01 9.28058919e-01 9.28054760e-01
8 T T
=©—Exact D
7L =©~— Approx. /|
6F ]
5 = )
2
=1
4t ]
3t ]
2+ ]
10 I | | | | L |
1 2 3 4 5 6 7 8 9

Nodes 0...1 for x=0,0.5,1,...,t=0,0.5,1
Fig.(1):Represent the comparison between Exact and
Approximation solution for above example using
GDTM when N=M=4, v =¢ = 1.

=©—Exact D
L =~ Approx.

1 A4 !

0 5 10 15
Nodes 0...1 for x=0,0.25,0.5,0.75,1, t=0,0.5,1

Fig.(2):Represent the comparison between Exact and
Approximation solution for above example using
GDTM when N=M=8, v = ¢ = 1.

8 T T T T

=6~ Exact D
—©— Approx.

7k

0 5 10 15 20 25
Nodes 0...1 for x=0,0.25,0.5,0.75,1, t=0,0.25,0.5,0.75,1

Fig.(3):Represent the comparison between Exact and
Approximation solution for above example using GDTM
when N=M=16. v = ¢ = 1.
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4. Conclusion

In this article, the GDTM is used to get
an approximate solution of the 2-DVIDE of
fractional order. The fractional derivatives are
given here in the Caputo sense because the
Caputo fractional derivative allows traditional
initial and boundary conditions to be included in
the formulation of the problem. Comparisons are
made between approximate solutions and exact
solutions, the numerical result are obtained
using Matlab R2016a to test the applicability
and validity of the proposed algorithm.

References
[1] Osama H.M., Fadhel S.F., Mohammed G.S.

AL-Safi., 2015,
Algorithm For Solving The Time-Fractional

Sinc-Jacobi Collocation

Diffusion-Wave Equations, international
Journal of Mathematics and Statistics
Studies UK.; Vol. 3, No. 1,pp. 28-37.

[2] Osama H.M., Fadhel S.F., Mohammed G.S.
AL-Safi., 2015, Numerical solution for the
time - Fractional Diffusion-wave Equations
by using
Method,
Modeling, Vol. 5, No. 1,pp. 49-57.

[3] Osama H.M., Fadhel S.F., Mohammed G.S.

AL-Safi., 2015, Shifted Jacobi tau method

for solving the space fractional diffusion

Sinc-Legendre Collocation

Mathematical ~ Theory  and

equations”, IOSR Journal of Mathematics
(IOSR-JM), No. 10, No. 3,pp. 34-44.

[4] Mohammed G.S AL-Safi, Farah L.J., Muna
S.A., 2016,
Telegraph Equation of Space Fractional

Numerical Solution for

Order using Legendre Wavelets Spectral
tau Algorithm, Australian Journal of Basic
and Applied Sciences,Vol. 10, No.12, pp.
383-391.

[5] Mohammed G.S. AL-Safi, Ligaa Z.H., 2017,
Approximate  Solution for advection
dispersion equation of time Fractional
order by using the Chebyshev wavelets-
Galerkin  Method, Iraqi
Science.; Vol. 58, No.3B, pp.1493-1502.

[6] Osama H.M, Mohammed G.S .AL-Safi,
Ahmed A.Y. 2018, Numerical Solution for

Fractional Order Space-Time Burger's

Journal of

Equation Using Legendre Wavelet -
Chebyshev Wavelet Spectral Collocation
Method, Journal of Al-Nahrain University,
Vol. 21, No. 1, pp.121-127.

[7] Odibat Z., Momani S., 2006, Application of
variational iteration method to nonlinear
differential equations of fractional order,
Int. J. Nonlinear Sci.Numer. Simul.Vol. 7,
No. 1, pp.15-27.

[8] Momani S., Odibat Z., 2006 ,Analytical
solution of a time-fractional Navier—
Stokes equation by Adomian
decomposition method, Appl. Math.
Comput., Vol. 177 ,pp.488-494.

[9] Odibat Z., Momani S., 2006, Modified
homotopy

perturbation method:

Application  to  quadratic  Riccati

differential equation of fractional order,



MJPS, VOL.(5), NO.(2), 2018

Chaos
(doi:10.1016/j.chaos.2006.06.041).
[10] Podlubny 1., 1999, Fractional Differential
Equations, Academic Press, New York.
[11] Kythe P. K. and Puri P., 1992,
Computational methods for linear integral

Solitons Fractals

equations. University of New Orleans,
New Orleans.

[12] Rashed M. T., 2004, Numerical solution of
functional

differential, integral and

integro-differential equations. Applied
Numerical Mathematics, Vol. 156, pp.
485-492.

[13] Zhou J. K., 1986,Differential transform and
its application for electric circuits.
Huazhong, University Press, Wuhan,
China.

[14] Chen C. K,

differential equations by two-dimensional

1999,Solving partial

differential  transform.  Appl. Math.
Comput., Vol. 106, pp. 171-179.

[15] Ayaz F., 2004,Application of differential
transform method to differential-algebraic
equations. Appl. Math. Comput., Vol. 152,
pp. 649-657.

[16] Odibat Z., Shaher M. and Ertirk V.S,
2008, Generalized differential transform
method:  application to differential

equations for fractional order.Appl. Math.

Comput., Vol. 197, pp. 467-477.

[17] Momani S., Odibat Z, and Erturk V. S,
2007, Generalized differential transform
method for solving a space and time
fractional diffusion-wave equation,Physics
Letters. A, vol. 370, no. 5-6, pp. 379-387.

[18] Odibat Z. and Momani S.,2008, A
generalized differential transform method
for linear partial differential equations of
fractional order, Applied Mathematics
Letters, vol. 21, no. 2, pp. 194-199.

[19] Babolian E., Bazm S. and Lima P.,
2011,Numerical solution of nonlinear two-
dimensional integral equations rational
Haar functions. Communications in

nonlinear  Science and  Numerical
Simulation, Vol. 16, No. 3, pp. 1164-1175.
[20] Maleknejd K. and Mahdiani K.,
2011,Solving nonlinear mixed Volterra
Fredholm integral equations with two-
dimensional Block-pulse functions using
direct ~method. Communications in

Nonlinear ~ Science and  Numerical
Simulation, Vol. 16, No. 9, pp. 3512-3519.
[21] Nemate S.M, Lima PM. And Ordokhani Y.,
2013, Numerical solution of a class of
Volterra

two-dimensional nonlinear

integral  equations  using  Legendre
polynomials. Journal of Computational
and Applied Mathematics, Vol. 242, pp.

53-69.



MJPS, VOL.(5), NO.(2), 2018

[22]

Tari A. Shahmorad S., Rahimi M.Y. and
Talati F., 2009,Solving a class of two-
dimensional linear and nonlinear Volterra
integral equations by the differential

transform method. Journal of
Computational and Applied Mathematics,

Vol. 228, No. 1, pp. 70-76.

[23] Mckee S., Tang T. and Diogo T., 2000,An

[24]

Euler-type method for two-dimentional
Volterra integral equations of the first
kind. IMA Journal of Numerical Analysis,
Vol. 20 ,No. 2, pp. 423-440.

Mohseni M.
2010,Application of

Saeed H.,
differential

and

[25]

transforms for solving the Volterra

integro-partial differential
equations.lranian Journal of Science and
Technology, Transaction A, Vol. 34, No.
Al, pp. 59-70.

Cetinkaya A., Kymaz O. and Caml J.
2011, Solutions of Nonlinear PDE's of
Order  with

Transform

Generalized

Method.
International Mathematical Forum, Vol. 6,
no.l, pp.39 —47.

fractional
Differential



