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H I G H L I G H T S   A B S T R A C T  

• The advantages of TiO2 -based as  
photocatalyst are reviewed in this study. 

• The development of the group gap in 
photocatalyst (TiO2) by different doping 
was investigated. 

• Modification in the structure across the 
photocatalytic activity of TiO2 is reviewed. 

• Different preparation methods and 
applications of the Methodology of 
photocatalysts were also reviewed. 

 This study reviews recent research on the synthesis and application of titanium 
dioxide (TiO2)-based photocatalysts for environmental applications. The 
principles of non-homogenous photo-catalysis include utilizing a solid 
semiconductor, such as titanium dioxide Nano or macro, to form a stable 
suspension (heterogeneous phase) at the impact of irradiation to elevate a 
reaction at the surface interface of the different phases in the system. Recently, 
titanium dioxide has been considered the better semiconductor in non-
homogenous photoinduced treatment. TiO2-based photocatalysts have broad 
applications for industrial processes because of their exceptional 
physicochemical properties. Nevertheless, having a narrow band near the 
ultraviolet region limits its applications within visible radiation. As a result of 
this, there have been considerable research efforts to improve the visible light 
tendency of TiO2 through modifications of its optical and electronic properties. 
Several strategies, such as coupling TiO2 tightly and incorporating other metallic 
components during synthesis, have increased the bandgap of TiO2 for visible 
light applications. Moreover, an overview of nanotechnology that could enhance 
the properties of TiO2-based catalysts in an environmentally friendly way to 
decompose pollutants is also presented. The various TiO2-based photocatalysts 
have wide applications in degrading recalcitrant pollutants in the air, water, and 
wastewater treatment under visible light. 
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1. Introduction 
       The past decades' successes in research and innovations have resulted in astronomical growth in industrial activities to 
meet the ever-increasing human demands. These anthropogenic activities from the various industries have adversely affected 
air and water quality through the discharge of industrial wastes, produce wastewater from oil refineries, and emissions of 
gaseous pollutants [1-3]. Of all the various types of pollution, using petroleum fuel for mobility has resulted in a severe 
emission of toxic gaseous pollutants and particulate matters into the environment, adversely affecting human health [4-6]. The 
most significant impact of these pollutions is often experienced among the populace living in the urban area or cities [7]. The 
high concentration of these pollutants in the environment, which has resulted in various chronic diseases, has been a significant 
concern for environmentalists and researchers [3, 8]. For instance, studies have shown that high human exposure to nitrogen 
oxide (NOx) often results in asthma [9]. Hence, it is expedient to strategically reduce vehicular emissions, which will 
invariably lead to NOx reduction and minimize its effect on human health [10]. Several methods have been explored and 
reported in the literature to mitigate the effects of NOx from vehicular emissions on the environment. 

One of the emerging techniques for mitigating gaseous pollutants is using heterogeneous photo-oxidation (HPO) [11- 12]. 
The HPO techniques entail using photocatalysts, mostly semiconductors, to degrade these recalcitrant organic pollutants in the 
presence of an active radiation source and an oxidizing agent. The radiation source could be solar ultraviolet or simulated light 
[13]. Enormous light irradiation is usually produced from the sun, estimated to be 0.2-0.3 moles of photons per hour in the 
range of 300-400 nm with a UV flux of 20-30 W/m2 [14].  Hence, from the economic and environmental point of view, the sun 
has a great potential to be used as an irradiation source for photocatalytic degradation of organic pollutants [15]. Furthermore,  
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Figure 1: Application and Proportions of TiO2 used in various sectors (Data for 2013, Merchant Research and Consulting,  
               2015 [22] 
 

The HPO techniques have been reported to have a promising route for mitigating the impact of NOx and other gaseous 
substances released into the environment [16].    

The oxidant used during the NOx process is often based on very powerful oxidants, often referred to as hydroxyl radicals, 
that are usually generated during the photocatalytic process [17]. The hydroxyl radicals can oxidize a wide range of organic 
pollutants by converting them to harmless inorganic products [18]. Therefore, the HPO process has stimulated the interest in 
developing an effective electro-catalytic process that can be applied for air purification and treatment of wastes containing 
recalcitrant organic pollutants. These innovations have also resulted in introducing smart products into the markets that can be 
deployed to combat environmental pollutants in the past three decades [19]. 

Semiconductor-based photocatalysts such as titanium dioxide (TiO2), tungsten trioxide (WO3), and zinc oxide (ZnO) have 
been widely used for various applications in buildings, paving roads, vehicles side mirrors, lamps, and textiles [20- 21]. 
Specifically, TiO2 has been widely applied for various industrial applications, as represented in Figure 1. For example, TiO2 
has been applied in ink pigment production, plastic paper, synthetic fiber, rubber, electric ceramics, paints, glass, and catalysts. 
In addition, a large proportion of the TiO2 is applied in paint manufacturing. The annual global consumption of TiO2 is 
increasing due to these numerous applications. 

2. An Overview of Photocatalytic Semiconductors    
 The increasing interest in removing recalcitrant pollutants from polluted wastewater has led to the development of various 

inexpensive absorbents that can be easily applied [42]. Also, absorbents have been developed from alternative sources to make 
them accessible [44]. However, advancement in wastewater treatment has resulted in development of semiconductor materials 
that are very effective in cleaning up hazardous waste sites, pollution treatment, desalination, and environmental pollution 
awareness and control [45- 46]. Semiconductors, mostly metal oxides in nanostructures, have been employed in photocatalytic 
applications due to their excellent physicochemical properties such as band-gap, desired band edge position, large surface area, 
perfect morphology, and chemical stability, and reusability capability [24]. Table 1 shows that various semi-conductor-based 
metal oxide is similar in photocatalytic properties and capable of photoactivity under visible light, ultraviolet (UV) light, or a 
combination of visible and UV light irradiation with a band gap.  TiO2 and ZnO have been used as excellent photocatalysts to 
degrade numerous environmental contaminants. The increasing interest in TiO2 and ZnO is due to their high photosensitivity, 
stability, and large band gap. 

2.1 General Types and Characteristics of Titanium Dioxide 
TiO2 is abundant in nature as the fourth most easily found material and exists in three phases, namely anatase, rutile, and 

brookite [48]. The most stable crystalline phase-out of the three is anatase. Rutile, on the other hand, is commonly available, 
whereas brookite is very rare and often has scanty application. The properties of TiO2 and ZnO are summarized in Table 2. 

Amongst the various semiconductors, TiO2 has the most comprehensive applications as a photocatalyst [23]. ZnO, which 
could be a viable alternative to TiO2, has received less attention. Because of the large bandgap of ZnO compared to TiO2, poor 
reactivity to visible light, the high recombination ratio of photoinduced electron-hole pairs, and photo corrosion, ZnO has 
hampered its use in photocatalysis [24]. The discovery of TiO2 for electrochemical decomposition of water was reported in 
1972 by Fujishima and Honda [25]. The authors reported that water was electrochemically decomposed to hydrogen and 
oxygen using connected TiO2 and platinum electrodes under ultraviolet light. The platinum electrodes absorbed the ultraviolet 
light while the electron generated flows from the TiO2 electrode onto the platinum electrode. The reduction reaction during 
which hydrogen was produced occurs at the cathode [26]. Later in 1977, it was reported that integrating noble metals such as 
platinum and gold into the electrochemical photolysis process may enhance the photoactivity of the TiO2 [27]. Also, studies 
have shown that hydrogen can be produced by photogeneration on SrTiO3 photocatalyst and the production of hydrogen and 
methane by photolysis of ethanol over TiO2 and PtO2 [28,29]. photocatalytic applications targeting only the adsorbed 
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substances on water or air have been published by several authors [30-35]. The abundance of UV irradiation from the sun 
could be exploited for photocatalytic degradation [29]. A novel concept whereby a light source was employed for maintaining 
the TiO2 surface as a cleaning material and photocatalysts were discovered to initiate the change in the water wettability of the 
TiO2 surface before and after UV irradiation. The innovation has broadened the application of TiO2 with a highly hydrophilic 
having a stable and semi-permanent property. Fujishima and Honda, Fujishima et al., and Yamaguti and Sato [25, 26, 36] 
investigated the potential of electrochemical photolysis of water to identify the potential challenge of creating a 
photoelectrochemical tandem cell that is cost-effective, energy-efficient, and imitates natural photosynthesis. The various 
studies reported the application of TiO2 in the photolysis of water. However, there is a going interest in the multifunctional 
capabilities of TiO2 in photolysis applications. Obtaining intelligent and multifunctional TiO2 materials requires designing the 
appropriate composition, incorporating new functional components, and modifying the pristine microstructure [20]. As a result 
of the large surface area of photocatalytic piers and their nearness to exhaust gases from cars, nobles metal modified 
photocatalysts have been reported to have a great potential to reduce poisonous gaseous emissions such as sulfur dioxide, 
nitrogen oxides, carbon dioxide, and so on [30, 35, 37]. As a result of the excellent photocatalytic properties, several studies 
have reported promising findings in the degradation of the various gaseous organic pollutants from vehicular emissions [32, 
35, 38]. These photocatalysts can be categorized as self-cleaning materials with suitable physicochemical properties that can 
remove the products of oxidation of gaseous pollution from the surface with the help of water. In other words, the surface of 
TiO2 can self-renew [39]. Moreover, TiO2 nanoparticles possess some characteristics in terms of their nano-size, specific 
surface area, pore-volume, exposed surface facets, and crystalline phase content that could enhance their efficiency in 
photodegradation of gaseous pollutants in the air, thereby purifying it [40]. TiO2-based catalysts have been reported mounted 
on asphalt pavement for air purification. Besides, Pone and Cheung (2006) reported using paving blocks that make use of NO 
and TiO2 to remove waste generated. Moreover, TiO2 nanoparticles have been reportedly used as an embedded spray for 
existing pavements in Italy. In another study, Hung et al. (2007) conducted a comparative analysis of the performance of 
different photocatalysts used in the treatment of waste obtained from cement production under ideal laboratory conditions [41]. 
In a similar study by Chan et al. (2009), nano-TiO2 asphalt was applied as an environmental protection material using a 
permeability technique [42]. The application of modified N-doped TiO2 photocatalysts prepared and used by spraying onto 
sample bituminous has been reported by Yan Hua (2010). The effectiveness of photocatalytic materials in removing pollutants 
such as NOx from the atmosphere has been reported by Hassan [43]. This study, therefore, aims at delving into the various 
properties of TiO2 nanoparticles and other related photocatalysts, as well as their reaction mechanisms. Besides, their 
applications in Civil engineering as related to asphalt mixture applications are also reviewed. The various applications of 
photocatalytic materials in chemical engineering were also reviewed. The various modification strategies employed to enhance 
the photocatalytic efficacy in the various applications were also explored in the literature and reported. Finally, the modeling of 
optical pavements and the influence of modifications on the fundamental properties of asphalt mixture were analyzed and 
reported. 

Both anatase and crystallized rutile exist in quadrangular form, whereas brookite possesses a rhomboid shape. In the 
anatase phase of TiO2, there exists a hierarchical symmetry of four units in every primacy cell. The rutile phase has 
quadrangular symmetry, possessing two equivalent units for every primary cell [50]. However, crystal symmetry has a similar 
form for both rutile and anatase. Due to structural constraints resulting from high thermodynamic stability, the rutile form of 
TiO2 is not usually used for photocatalytic applications [51]. 

On the contrary, the anatase phase of TiO2 was widely investigated for potential applications as photocatalysts due to its 
excellent physicochemical properties and photoactivity. The anatase phase of TiO2 photocatalysts is highly stable in a 
photovoltaic reaction using an aqueous system.  The anatase phase has a bandgap of 3.23 eV compared to the rutile phase with 
a bandgap of 2.02 eV, making the anatase TiO2 to be widely applied in photocatalytic oxidation reactions [24]. Besides, anatase 
has a more suitable conduction domain for driving the photocatalytic oxidation reaction. During the photocatalytic oxidation 
reaction, electrons form and highly stable surface peroxide groups over the anatase. 

In contrast, the rutile phase is hardly used for the photocatalytic oxidation reaction [52]. In a 1a situation, where there is a 
combination of both rutile and anatase in a ratio of 0.25 to 0.75, respectively, the combined phase will result in the formation 
of clusters or a thin rutile layer on the surface of the anatase nanoparticles. This might also lead to the formation of 
heterojunctions of the two crystalline phases [53]. Studies have shown that when both rutile and anatase are combined, an 
improvement in the photocatalytic efficiency exists compared to pristine rutile and anatase [54]. TiO2 has been adjudged as an 
“ideal” semiconductor for photocatalytic processes due to its numerous advantages in degrading recalcitrant gaseous 
pollutants. Besides, it is inexpensive, not toxic, and very effective at low concentration and flow rate, high flow rates, high 
stability, excellent activity, and high removal efficiency [55-56]. These excellent properties have motivated several researchers 
to be involved in the use of TiO2 for photocatalytic wastewater treatment. 

Table 1: Energy band-gap (Ebg) with a corresponding wavelength (ℷ Ebg) required for activation of various  
                           semiconductors [47] 

Photocatalysts Band gap(eV) (ℷ Ebg) Photocatalysts Band 
gap(eV) 

(ℷ Ebg) 

Si 1.1 1127 α –Fe2O3  3.1 400 
WSe2  1.2 1033 ZnO 3.2 388 
Fe2O3 2.2 564 TiO2(Anatase) 3.2 388 
CdS 2.4 517 SrTiO3 3.4 365 
WO3 2.7 459 SNO2 3.5 354 
TIO2 (rutile) 3.0 413 ZnS 3.7 335 
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Table 2: Summary of selected Properties of TiO2 and ZnO [47, 49] 

Properties at 25 oC TiO2 (Rutile) TiO2 (Anatase) ZnO  
Density (g/cm3) 4.250 3.894 5.606 
Volume (nm3/molecule) 0.0312 0.0341 0.0241 
Specific heat (J/Kmol) 55.06 55.52 43.90 
Mohs hardness 7.0-7.5 5.5-6.0 4.5 
Melting point (oC) 1840 (decomp.) Trans. to. Rutile 1970 (decomp.) 
Refractive index E//c 2.616 2.554 2.020 
(@nD, 589nm) E|c 2.903 2.493 2.02 
Relative permittivity, 𝜀𝜀  (0) 167(//c)  7.4 (|c) 
Bandgap energy (eV) 3.0 (direct) 3.8 (direct) 

3.2 (indirect) 
3.4 

Effective mass (hole) 20 0.8 0.24 
Mobility (cm2/Vs) 0.1 4-20 130-205 
Isoelectric point 5.6 6.1 10.3 

3. Principle and Mechanism of Photocatalysis 
The photocatalytic reaction can be grouped into four different stages. These stages include (i) the photo-excitation process, 

(ii) the reduction process, (iii) the oxidation process (iv) the recombination process. As shown in Figure 2, the whole process 
can be explained in detail. During the photo-excitation process, there is the generation of conduction band electrons and 
valence band holes by the absorption of light that often corresponds to the generation rate of the conduction band and valence 
band holes onto the photocatalysts. In the second stage, the conduction band electrons trapping on the photocatalysts’ surface. 
The adsorbed molecules are reduced using the trapped electrons. During the oxidation stage, the adsorbed molecules are 
oxidized by the valence band holes. Trapped holes are formed by the trapping of valence band holes on the photocatalysts’ 
surface. During the recombination stage, there is a conduction band of electrons with the valence band holes. The trapped holes 
are also recombined with the conduction band electrons. There is also recombination of the valence band holes with the 
trapped electrons. And finally, the trapped holes are recombined with the trapped electrons. 

During the decomposition of organic pollutants, the pathways for the primary reaction in the oxidation stage are often the 
reaction that occurs directly on the surface of TiO2 with valence bands holes or trapped holes [48]. The presence of oxygen in 
the process generally speeds up the photocatalytic reaction. In the photocatalytic reaction, hydroxyl radicals and superoxides 
are responsible for oxidizing and reducing environmental contaminants [57]. There are four distinct pathways in oxidative 
decomposition to form OH radicals in the photocatalytic reaction. First, electrons are extracted directly through the valence 
band slots from the adsorbing molecules to oxidize them. In the second stage, valence band holes are superimposed on the 
surface of TiO2, often resulting in trapping holes that are used to oxidize molecules on the surface of the photocatalyst. During 
the third stage, the surface hydroxyl groups or the water adsorbed are oxidized by the valence band openings, resulting in the 
generation of adsorbed hydroxyl radicals. The molecules adsorbed by OH radicals on the surface of the photocatalyst are then 
oxidized, causing the material to break down to form carbon dioxide and inorganic ions such as NH4

+, NO3, Cl, and SO4
2- [53, 

58]. Lastly, the generated OH radicals are released from the surface to the atmosphere or into the solution. The released OH 
radical can then be used to oxidize the compounds far away from the photocatalyst surface. As the irradiation time increases, 
there is often a corresponding increase in the formation of OH radicals, leading to complete degradation of the organic 
pollutant as time progresses [59]. For example, consider NOx degradation, as illustrated by Equations (1-6) [60]. The end 
products of the photocatalytic process are usually water-soluble nitrates [61]. These water-soluble nitrates undergo a reaction 
to form soluble mineral salts, which are harmless to the environment [57]. 

 

 

Figure 2: Schematic representation of the photocatalysis in a semiconductor material [62] 
 

TiO2 ⎯h⎯ → ⎯v h + + e −    (1) 

h + +OH− →  OH ∗   (2) 
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e − +O2  → O2 ∗ −      (3) 

H + +O2 ∗ − → HO2 ∗   (4) 

NO +  HO2∗→  NO2 + OH ∗  (5) 

NO2 + OH ∗→  HNO3             (6)
   

4. Application of Semiconductor-Titanium Dioxide   
     

TiO2 as a heterogeneous photocatalyst has been demonstrated to have a great potential for various applications, most 
especially for wastewater treatment, hydrogen production from water splitting, and photo-reforming. In addition, several 
studies have demonstrated the robustness of TiO2 in the degradation of recalcitrant organic pollutants present in 
pharmaceutical wastewater.  

4.1 General Application of Titanium Dioxide 
Generally, TiO2 is found in several industries for wide applications, such as paper production, plastic, pharmaceuticals, 

and sunscreen. This is due to its transparent and UV-absorbing properties. Using TiO2 in a smart building could help in energy 
saving as a result of its light-reflecting qualities, which drastically reduce the amount of heat absorbed by the building. Hence, 
researchers (Hashimoto et al. 2005; Chen & Poon 2009) have shown dramatic energy savings through the reduction in air 
conditioners [63, 64]. In addition, there is an increasing research interest in the use of TiO2 for the promotion or improvement 
of some properties like self-cleaning, the degradation of air and water organic pollutants, anti-fogging, anti-microbial, anti-
aging, and surface cooling. 

4.2 Application of Titanium Dioxide in Water Purification  
Due to its interesting properties, photocatalytic degradation has been widely used to treat industrial wastewater from 

pharmaceuticals, refineries, and agro-allied industries. As summarized in Table 3, various modified TiO2 have been employed 
to treat pharmaceutical wastewater containing organic pollutants such as chloramphenicol, metronidazole, amoxicillin 
trihydrate, bisphenol A, naproxen sodium, and malathion. The various studies revealed that the modified TiO2 photocatalysts 
used under various conditions, such as varying irradiation time, degraded the organic pollutants to a large extent, except for 
Sn-TiO2, which performed poorly in percentage removal of the organic pollutants.   

 

4.3 Application of Titanium Dioxide in Air Purification  
The various industrial activities and vehicular mobility often result in the emissions of gaseous pollutants to the 

environment. Among these various organic pollutants are formaldehyde, naphthalene, polycyclic aromatic hydrocarbons, 
trichloroethylene, tetrachloroethylene, carbon monoxide, and nitrogen dioxides have been identified as the most important air 
pollutants. Hence, researchers and environmentalists have focused on various strategies to reduce the impacts of these organic 
air pollutants on the environment. Table 4 summarizes research efforts in the last decades whereby different modified TiO2 
were applied for degrading the various organic and inorganic pollutants. The various studies revealed that the photocatalysts 
effectively removed over 80% of the organic pollutants from the air. The TiO2-based photocatalysts' activities were largely 
dependent on several factors such as the organic pollutants concentration, air humidity and flow rate, the pollutants' nature and 
source of light radiation, and the physicochemical properties of the photocatalysts. As shown in Figure 3, the ultraviolet light 
source facilitates the degradation of the organic pollutants, thereby assisting in the decontamination of the air.  

Table 3: Summary of the application of TiO2-based photocatalysts for wastewater treatment 

TiO2-based 
photocatalysts 

Organic pollutants Irradiation 
time (min) 

Percentage 
removal (%) 

References 

Ag-TiO2 Chloramphenicol (20) mg/L 30 ~100 [65] 
Fe2O3-TiO2 Bisphenol 120 97 [66] 
Sn-TiO2 Amoxicillin trihydrate (10–40 mg/L) 30 0.25 [67] 
Zr-TiO2 Bisphenol A (15–60 mg/L) 80 100 [68] 
Ni-TiO2 Naproxen sodium (10 mg/L) 360 84 [69] 
Cu-TiO2 Mefenamic Acid (10 mg/L) 90 97 [70] 
Fe-TiO2 Naproxen sodium (10 mg/L) 360 99 [69] 
N-TiO2 Malathion (15 mg/L) 150 97 [71] 
Fe-TiO2 4-nitrophenol (10 mg/L) 300 92 [72] 
Ag-TiO2 Metronidazole (15–30) mg/L 120 96.55 [73] 
Ag-TiO2 Amoxicillin (20 mg/L) 300 63.48 [74] 
Cr-TiO2 2,4dichlorophenol (100mg/L) 480 83 [75] 
Ni-TiO2 Bisphenol A (10 mg/L) 120 93 [76] 
S-TiO2 Diclofenac (10 mg/L) 240 93 [77] 
N-TiO2 4-chlorophenoxyacetic acid 

(0.01–0.1 mM) 
360 100 [78] 

C-TiO2 2,4,6-trichlorophenol (10–40 mg/L) 90 98 [79] 
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Table 4: Summary of the application of TiO2-based photocatalysts 

TiO2-based 
 photocatalysts 

Organic  
pollutants in air 

Preparation method  References Removal 
efficiency 

N-Ni-TiO2 Formaldehyde Sol-gel [80] Not mentioned 
Graphene-TiO2 Acetone  Hydrothermal  [81] Not mentioned 
CNT/TiO2 Benzene Mixing [82] Not mentioned 
Pt/TiO2,  Toluene Photo-deposition [83] Not mentioned 
 Ag/TiO2 Toluene Photo-deposition [83] Not mentioned 
TiO2 P25 Ethylbenzene Commercial [84] Not mentioned 
TiO2 P25 o–Xylene Commercial [84] Not mentioned 
TiO2 Hexane Sol-gel [85] Not mentioned 
TiO2 Dichloromethane Sol-gel [41] 44% 
Fe-TiO2 Dichloromethane Sol-gel [41] 65% 
Pt/TiO2  Trichloroethylene Photo-deposition 

[83] 
improving mineralization 
 by a 3.5 time 

Ag/TiO2 Trichloroethylene Photo-deposition [83] deterredTCE 
photodegradation 

TiO2  Tetrachloroethylene Sol-gel [86] Not mentioned 
TiO2 P25 2-Propanol Commercial [87] Not mentioned 

Pt/TiO2 Carbon monoxide Mixing [88] Not mentioned 

CdS/TiO2 Nitrogen oxide Sol-gel [47] 80% 

 
Figure 3: Photocatalytic asphalt mixture [89] 

The use of TiO2 for environmental radiation has been reported to increase the span of materials and facilitate the 
decontamination of some industrial processes, especially in the petroleum, textile, and pharmaceutical industries. Advanced 
oxidation photocatalytic degradation has gained increasing interest due to its efficiency and ease of handling of the process. 
Besides wastewater treatment and air purification, one key application of TiO2-based photocatalysts is the decontamination of 
harmful pathogens in the air. Due to the high level of contamination by pathogens, it is expedient to decontaminate indoor 
environments like residences and hospitals [90]. Most often, pathogens such as bacteria, viruses, and fungi are present in the 
air, thereby reducing the air quality, which can endanger human health. Studies have shown that TiO2-based photocatalysts are 
highly efficient in photo-disinfection the various pathogen investigated.  

5. Synthesis of Tio2-Based Photocatalysts Using Different Methods 
The need to expand the application of TiO2 in various fields of photocatalysis has increased research interest in increasing 

the threshold wavelength of 388nm to the wavelength range within the visible light spectrum. Modifying TiO2 photocatalysts 
to enhance their activities within the visible light region would enable a wider application in terms of degrading the recalcitrant 
organic pollutants in wastewater and air. Furthermore, the modifications of TiO2 could further help restrain electron-hole 
recombination, which invariably improves photosensitivity. One major strategy to achieve this is by doping the TiO2 with 
metals or non-metals. The doping of TiO2 with metals or non-metals could be achieved either by chemical or physical ion 
implantation methods.  Hence, the doping strategy facilitates shifting the TiO2 absorption band toward the visible region, 
which can be used under natural solar irradiation [91]. The doping of TiO2 can effectively be achieved using different synthesis 
methods. Various techniques have been employed for the synthesis of TiO2-based photocatalysts that is used for various 
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photodegradation applications. These techniques are summarized in Table 5. These techniques include sol-gel, reverse micelle 
mediated sol-gel, wet impregnation, chemical reduction, microemulsion, hydrothermal, microwave mediated sol-gel, and sol-
gel & hydrothermal. To increase the photoactivity of TiO2 and enhance its ability to function effectively under visible light, 
various metal dopants have been employed for the synthesis. The metal dopants that have been employed include Ag, Au, Fe, 
Cu, Ni, Co, Mn, Zn, and Mo.  

The use of the sol-gel method for the synthesis of modified TiO2 photocatalysts has been reported by several authors such 
as [89, 91 - 93] used Ti (OCH(CH3)2)4, FeCl3 as the precursor materials for synthesizing Au-TiO2 using sol-gel. Au 
composition of 0.25, 0.5, 1.0, 2.0, 4.0, and 5.0 atomic% were employed for the modification of the Au-TiO2. Also, [94] 
employed TiCl4, C2MnO4, TiCl4, C2ZnO4, and Ni (NO3) 2-6H2O as precursor materials for synthesizing Mn-TiO2 and Zn-TiO2, 
and Ni-TiO2 photocatalysts by sol-gel method. The effect of varying the concentration of the Mn, Zn, and Ni dopants on the 
photoactivity of the TiO2 was also investigated. Similarly, [91] also used Ti(OCH(CH3)2)4, Cu(CO2CH3)2 as precursors 
materials for the synthesis of Cu-TiO2 using the sol-gel method. The Cu dopant's concentration of 5.9 and 13 mol% was used 
to determine its effect on the TiO2 photoactivity. Ali et al. (2018) employed Titanium tetra-isopropoxide, silver nitrate, glacial 
acetic acid, and absolute ethanol to prepare TiO2 and Ag-TiO2 photocatalysts. The concentration of 2, 4, 6, and 8 mol% was 
used for the Ag synthesis to determine the photoactivity effect [92]. Modified forms of sol-gel, such as reverse micelle-
mediated sol-gel, microwave-mediated sol-gel, and combined sol-gel-hydrothermal methods, have also been employed to 
synthesize Ag-TiO2 Cu-TiO2 and Bi-TiO2 photocatalysts. Precursors such as Ti{OCH(CH3)2}4, AgNO3, TiCl4, C2NiO4, Ti 
(OCH(CH3)2)4, Bi (NO3)3-5H2O were employed for the synthesis of the photocatalysts with varying concentrations of dopants. 

Besides the sol-gel method, wet-impregnation of the metal precursors into the TiO2 has been reported by Tayade et al. 
(2006) for the synthesis of Ag-TiO2, Fe-TiO2, and Ni-TiO2 using Ti{OCH(CH3)2}4, AgNO3, TiO2 (Degussa P25), Cu(NO3)2, 
and CoSO4, TiOSO4 as precursors. Furthermore, the effect of varying the Ag, Fe, and Cu dopants on the TiO2 photoactivity 
was also investigated [93]. 

Table 5: Summary of synthesis techniques employed for TiO2-based photocatalysts 

TiO2-based 
photocatalyst 

Preparation methods Chemicals  References 

Ag-TiO2  Sol-gel Ti{OCH(CH3)2}4, AgNO3 [92] 
Ag-TiO2  Reverse micelle mediated sol–gel Ti{OCH(CH3)2}4, AgNO3 [95] 
Ag-TiO2  Wet impregnation Ti{OCH(CH3)2}4, AgNO3 [8] 
Ag-TiO2  Chemical reduction TiO2 powder, AgNO3 [96] 
Ag-TiO2 Microemulsion (Ti(OC4H9)4, HAuCl4-4H2O [97] 
Au-TiO2 Photolysis Ti{OCH(CH3)2}4, FeCl3 [98] 
Fe-TiO2 Wet impregnation Ti{OCH(CH3)2}4, Fe (NO3)3-9H2O [8] 
Fe-TiO2 Hydrothermal Ti{OCH(CH3)2}4, CuCl2 [99] 
Cu-TiO2 Sol-gel Ti{OCH(CH3)2}4, Cu(CO2CH3)2 [91] 
Cu-TiO2 Wet impregnation TiO2 (Degussa P25), Cu(NO3)2 [8] 
Cu-TiO2 Microwave mediated sol–gel TiCl4, C2NiO4 [100] 
Ni-TiO2 Sol-gel Commercial TiO2, Ni(NO3)2-6H2O [94] 
Ni-TiO2 Hydrothermal Ti{OCH(CH3)2}4, Ni(OCOCH3)2-4H2O [101] 
Ni-TiO2 Wet impregnation CoSO4, TiOSO4 [8] 
Co-TiO2 Hydrothermal Ti{OCH(CH3)2}4, CoCl2 [102] 
Co-TiO2 Wet impregnation CoSO4, TiOSO4 [8] 
Bi-TiO2 Sol-gel & hydrothermal Ti{OCH(CH3)2}4, Bi (NO3)3-5H2O [103] 
Mn-TiO2 Sol-gel TiCl4, C2MnO4 [94] 
Zn-TiO2 Sol-gel TiCl4, C2ZnO4 [94] 

 

 
Figure 4: (a) The TiO2 solution spraying process (b) the painting process of TiO2 solution [43] 
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6. Conclusions 
The study has presented an overview of the modification of TiO2 photocatalysts used for various applications such as air 

purification and wastewater treatment. The distinctive properties of TiO2 and modified TiO2 make it suitable for air 
purification and wastewater treatment application. The various studies have revealed that TiO2 has been modified with 
different metals and non-metals. The physicochemical properties of the modified TiO2 strongly depend on the composition of 
the photocatalysts, the type of synthesis methods, and the nature of dopants. Out of the various synthesis methods used for 
synthesizing the modified TiO2, the sol-gel was commonly used and found effective compared to other methods such as wet 
impregnation, hydrothermal, and chemical reduction. On the other hand, the TiO2 doped with noble metals was very effective 
in degrading the air and water pollutants. This can be attributed to the distinctive physicochemical and photo properties of the 
TiO2-based catalysts. Although the various modified TiO2 has been proven effective for degrading the various air and water 
pollutant, there is a need for continuous strategies to improve the properties of TiO2-based catalysts for effective mitigations of 
environmental pollutants from the environment.  
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