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Abstract

The present paper is defining and studding a modification of the general family
sequence of summation Baskakov-type operators. This modification is preserved that
the functions 1 and e?%*, where a >0 is fixed. We show that the uniform
convergence theorem of this sequence by using the modulus of continuity to the
function being approximated. Finally, we introduce the asymptotic formula for the

Voronovskaya-type theorem
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1. Introduction
In 1957 [2], the well-known classical Baskakov sequence are defined as

0= Y pustor (&),
k=0

n+k-—1
k

After that, many papers for new classes and modifications for the Baskakov sequence were

where p,,  (x) = ( )xk(l + %)™ ¥ and x € [0, ).

defined and studied. Here, we refer to some of them [3, 6, 8]. In 2007 [5], Duman and Ozarslan
were inserted in Szasz-Mirakyan type operators preserving 1, e**, a > 0 on [0, ). On the
other side, in 2014 [11], Mohammad and et al. have defined a general family of Baskakov
sequence as follows
1 < k
Buer(F,) = = Buier GOF (=), (1)
), & n

(n+k)r
(1+x)T

where r € Ny ={0,1, ...}, Bpir(x) = Pnk(x) and (n), is the Pochhammer symbol.

Clearly, B, xo(f,x) = M, (f, x) it reduced to the classical Baskakov sequence.

In 2016 [1], Acar et al. suggested the modification of the classical Szasz-Mirakyan operators
which preserved 1 and e2%* | a > 0. Also, they have investigated the uniform convergence and
preserving some properties of this sequence. Finally, in 2017 [7], Gupta, Yilmaz, and Aral
modified the Baskakov sequence which is preserving 1,e2%*,a > 0 on [0, o) and achieved a

better approximation for the generalization of the sequence under observation.

Many papers were studied the preserving some functions by some sequences of linear positive

operators are done. We refer here to [12,13].

This paper is constructing and studying a new sequence preserving 1 and e2%*. Here, the
construction, uniform convergence, error, and VVoronovskaya-type asymptotic formula have been

given for this sequence in Banach space.
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2. Construction of the Sequence and Preliminary Results

In this paper, we assume that g;(t) = t¢, g¥(t) = (t — x)},i = 0,1,2, where t, x € [0, ) and x
is arbitrary but fixed. Suppose that 6,, = 6,,(x) where 8,, = 0 Vx € [0, c0). We introduce a new
sequence preserving the functions 1 and e?%* for a > 0 as f € C[0, «), one has

Bn,k,r,G (f(t)' x)

~ ey 2ot (T e () @
" " k=0

where (2) is converging and satisfying the condition that is preserving the exponential function

eZat

Bn,k,r,@ (eZat’x) = g29% (3)

The sequence By, . ¢ (f,x) is of positive and linear operators and it is reducing to the sequence
By k. (f, x) whenever 6, = x.

Now, using equations (2), (3) and for sufficiently large n, one has

Bn,k,r,@ (eZat’ x)

(o]

_ 1 n+k—1 k —k 2ak
T (), (1+6,)rn kz;)(n + k), ( k ) On(1+6,) " en
B (n—1)!
S (m+r-1DI(A+6,)rtn
w0 2a\ ¥
Z(n+k+r—1)!(n+k—1)! 6, en
— (n+k-1! kln-1D! \1+0,
2a\ T
B 1 1+6,—0,en
(146, 146,
2a\ ~M-T
Hence, B, i 0 (€2%, x) = (1 +6, — BneT) . (4)
By (3), one has
—-2ax
entr —1
O =—2a >)
1—en
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Lemma 2.1. We have lim B, ¢(e%,x) = e,
n—->0o

Proof. By (4) and (5), one has

a —2ax\ T
en + e n+r
Bn,k,r,G (eat’x) = 111—{’20 a
1+en

Hence, lim B,y ¢ (€%,x) = e™*. m
n—-oo

(n+r)
n 9”

Lemma 2.2. We have By, . +9(1,x) = 1, By .9 (g1(t), x) =

nOi+0,+63+2r6% n rOn+1203+103

n n2

and By, 6 (g2(8),x) =

Proof. For the function e?t,y € R, then from (4) and Maclaurin’s expansion of e¥*, one has

(n+7r) 9 )+<n9ﬁ+0n+9,21+2r0ﬁ+r9n+r29,§+r9,21>y2
n

Bn,k,r,@ (eyt’ x) =1+ < ?

+0F3).m

n n2

Lemma 2.3. For the sequence B, x ¢, We have

(l) Bn,k,r,@ (Lx) =1,

(n+71)

(i) Bukro (91 (1), %) = —— 0, —x,
2 2
(lll) Bn,k,r,e (géc(t),X) — ((n:l-r) Bn _ X) + (n+T‘)9nT'l|‘2(n+T')9n’
(V) Lim 1 By o (gE(0), %) = —ax(1+ ), ©)
n—oo
(V) iirgan,k,r,B (géc(t); x) = x(x + 1). (7)

Proof. By Lemma (2.2.) and Maclaurin’s expansion of e’?,
one gets the properties (i)-(iii).
The proof of consequence (iv), is given using (5) and L'Hospital's rule, as

-2ax —-2ax
en+tr —1 r [entr —1

=limn||——7 |+ | —— | x| =—ax(1 +x).
n—-oo

1—en T\ 1-en

Using the same manner, one can evaluate the value of (v). m
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Now, suppose that C*[0, o) denotes to the Banach space containing every real-valued function
that is continuous functions on [0, o) with the property lim f(x) exists and finite. This space is
X—00

normed by the uniform norm ||. [[¢+[0,c0)-
Theorem 2.4. [4]. Suppose that A,,: C*[0,00) — C*[0, ) be a sequence of linear positive
operators satisfying lim A, (e %, x) = e~** uniformly convergence in the interval [0, oo) for
n—-oo
f € C*[0,) and k = 0,1,2. Then lim A,(f(t),x) = f(x) uniformly in [0, o). After that,
n—->oo

Holhos [9] expanded Theorem (2.4.) and decided the result for such exponential functions as in
the next Theorem.

Theorem 2.5. [10]. Let Ay,: C*[0,00) — C*[0, ) be a sequence of positive linear operators
satisfying that

”An(l:x) - 1”C*[0,oo) =dap ”An(e_t’ x) - e_x”C*[O,oo) = by and

|4, (725, x) — e™**|l¢c+[0,00) = Cn, WheTe ay, by, ¢, are sequences tend to zero as n — oo.

= ”An(f! x) - f(x)”C*[O,oo) < ”f”C*[O,oo)an + (2 + an)w*(f' \/an + an + Cn) 'f € C*[O' Oo)'
where *(f,8) = max |f(x) — f(©)],8 > 0 is the modulus of continuity. Further,
Ie—x—,e—tls )
(e_x_e_t)z *
F© - fl < (1+ 55w (1,00,

3. Main Results
This section deals with the uniform convergence of the sequence B, ;. ¢ (f, x) to the function

f € €70, ). Also, we describe the error of this sequence by the uniform norm [|. || ¢+[o,c0) and

w*(f,8).
Theorem 3.1. For f € C*[0, «). We have

_xl

”Bn'kﬂ”'e(l’x) - 1| = Qn, ”Bn,k,r,e(e_t: x)—e

C*[0,00) C*[0,00) = le'

and ||Bprg(e 728, x) — e |

oy = where a,,, b,,, ¢, are sequences tend to zero as n —

o0, Then, By, i (f, x) converges uniformly to the function f and ||B,, e (f, x) —

£ oy = 20" (f,[2b, + ¢).

Proof. From Lemma (2.2.), one has

|Briro(Lx) — 1| a, = 0, therefore a,, = 0 asn — oo.

Cc*[0,0) -
Using (4), (5), and Maclaurin’s expansion for e ¢, it follows that
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Bn,k,r,@ (e —t’ x)

xy e <(1 + 2a)x(1 + x))
n 2
e (120L2x3 + 8a?x? 4+ 12ax3® — 12xa?® — 24axr + 3x3 — 8a2)
24n? —24ax —12rx — 2x* —12a —9x — 4
+0(n™3).

=e

Hence,

”Bn,k,r,B (e_t; x)—e™*

C*[0,0)

n 2

e <(1 +2a)x(1 + x))

+ 1 e (12azx3 + 8a?x? + 12ax® — 12xa?® — 24axr + 3x3 — 8a2)
24n? —24ax — 12rx — 2x*> —12a — 9x — 4
+0(n?) = b,

C*[0,00)
Using the same manner, one can evaluate the images of e~%¢, as

||Bn,k,r,9 (e_Ztr x) - e—2x

c*[0,0)

n

= He_zx ((2x(1 + &)1 +x)))

LI > (3a2x3 + 4a*x? + 6ax> — 3axr + 6x%a + 3x3 — az)
3n? —3ax — 3rx + 2x* —3a —3x — 2

+0(n3)

= Cp.

c*[0,0)
That is by, c,, tend to zero as n — oo, so that B, x o (f, x) convergence uniformly to f. Also,

by using Theorem (2.5.) we have || By x.r.o(f, x) — f(x) 0wy S 20*(f,\[2by + ¢,).m

Now, we will check the asymptotic behaviors of the sequence B,, . ¢ (f, x) by proving the
VVoronovskaya-type Theorem.

Theorem 3.2. Let f, f', f"" € C*[0, o). Then, we have

x(x+1)

|7 (Bujero (F, ) = £(0)) + ax(1 + 0)f' () =222 £7(0)| < Ipa NI (0] +
lgnCOIF" GO+ 2(2qn + x(x + 1) + rn(x))w*(f”,\/iﬁ), where

pn(x) = n Bok,r6 ((t—x),x) + ax(1 + x),
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1
Qn(x) = E ( n Bn,k,rﬂ((t - x)z, x) - x(l + x));

() = n? \/Bn,k,rﬂ((e—x — ety %) jBn,k,r,e«t — %)%, ).

Proof. By Taylor's expansion we have,

fll( )

f@) =f0)+f'(x0)(t—x)+ (t —x)* + h(t, x)(t — x)?

f"m-f" ()
2

where h(t,x) = , and n is a number lying between x and t.

Now. Applying B,, . »¢ to both sides of Taylor's expansion, we get

)

Bn,k,r,G (f} x) = Bn,k,r,9 (f(x); X) + f,(x)Bn,k,r,H((t X) X) +— 2

+ Bn,k,r,@ (h(t, x) (t - x)Z; x)-

B jro((t —x)% x)

We multiply both sides with n and applying Lemma (2.3), we get

1
1 (Basoro () = £(0) + axCe + D () - 25D

< Ipn G GO + 1gn I GOl + [nBrjero (A(E X)(E = )%, 0)|  (8)

where

pn(x) =n Bn,k,r,@ ((t - x)'x) +ax(1+ x),
an(®) =5 (1 By ((t = )% %) — x(1+ 2)).

By (6) and (7), one can have that if n —» o, p,(x) —» 0 and g,,(x) — 0, for all x € [0, o). Now,
an evaluation of the term |nB,, ;.o (h(t, x) (t — x)?, x)| is given as follows, |£(t) — f(x)| <

(1+('x _t))w (£,8), &> 0, we get

o < (14500,

20°(f",6), e —e~t| < &

Since, |h(t,x)| < ((e-xae )) ), leF—et] > 6

)

—X_p-t
then, |(t, )| <2(1+( ))w F",5).
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If we use it (8), we get
|nBpjr0(h(E,x)(t — %)% x)| < 2nw* (", 8)Bpjro ((t — x)2,x)
_|__n *( " 5)3 (( -X _ —t)Z t— 2 )
52 f",6)Bnre((e e (t —x)%,x).

Apply Cauchy-Schwarz inequality, we get

B kr,e (h(t, ) (t — )%, %) < 200" (f", 8) By k0 ((t — x)%, %)

+ 550 ("0 [Bukro (e = e ) [Buir((6 = )%, )

1
Choose § = N and

T (x) = \/nan,k,r,G ((e*—e HYx) \/nan,k,r,H ((t —x)%,x),

Getting

1 (Bujero (F(0,2) = F(2)) + ax(1 + 2)f"(x) — (

f"( )‘

< I @IIF 1+ 1 I (1 + 2(20 + 2 + 1) + 7w (7, 7=)

1
,ﬁ).
Corollary 3.3. Let f, f', f" € C*[0, ). Then, the inequality
15"_)72) n(Bn,k,r,G(f(t); x) — f(X)) =—ax(1+x)f'(x) + x(x+1)f (x)

holds for any x € [0, ).

x(x+1)

Proof. |n(Bure(f,x) = F(2)) + ax(1 +x)f'(x) -

—f"(x)[=0asn - .

Hence, the Corollary holds. =
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