The Iraqi Journal For Mechanical And Material Engineering, Vol.17, No3, Sept.2017

FREE VIBRATION ANALYSIS OF LAMINITED
COMPOSITE PLATE USING NEW HIGHER ORDER SHEAR
DEFORMATION PLATE THEORY

Ibtehal Abbas Sadiq Haider Sami Abdul-ameer
email-ebtialabas@yahoo.com email-haider.alam83@yahoo.com
College of Engineering-University of Baghdad

ABSTRACT

In the present work a theoretical analysis depends on the new higher order element
in shear deformation theory for simply supported cross-ply laminated plate is developed.
The new displacement field of the middle surface expanded as a combination of exponential
and trigonometric function of thickness coordinate with the transverse displacement taken to
be constant through the thickness. The governing equations are derived using Hamilton’s
principle and solved using Navier solution method to obtain the natural frequency. The
effect of many design parameters such as number of laminates, aspect ratio and thickness
ratio on dynamic behavior of the laminated composite plate have been studied. The modal
of the present work has been verified by comparing the results of shape functions with that
obtained by other worker. Result shows the good agreement with 3D elasticity solution and
that published by other researcher.
Key Words : Higher order shear deformation theory, composite laminated plate, free
vibration analysis, natural frequency .
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INTRODUCTION :-

Discretion
Plate dimension in x-direction
Plate dimension in y-direction
Plate thickness

Extension, bending extension coupling,

bending and additional stiffness

Elastic modulus components
Shear modulus components

Total number of plate layers
In-plane force result

Moment result per unit length
Result force per unit length
Transverse shear force result
Transverse shear force result(HSDT)

Distance from neutral axis
Cartesian coordinate system
Upper and lower lamia surface
coordinates along z-direction
Strain components

Transverse shear strain

Poisson’s ratio components
Stress components

Fiber orientation angle
Acrbitrary constant

Flexural displacement
Flexural displacement

Flexural displacement

it

h
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Stiffness matrix

Principal material coordinate system
non-dimensional natural frequency

Gpa
Gpa
N/m

N.m/m
N/m

I zz=

Degree

Rad/sec

Composite materials are so necessary in many engineering applications, as vehicles parts
industry, aero structures industry and medical devices industry. With the wide use of
composite plate in the modern industry, static and dynamic analysis of plate structure
under different types of loads and different boundary condition become a main part in
design procedure. In the past few years, many researchers resorted to the development of
many theories to clearly predict the response of laminated plate composite material. It is
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necessary to know the theories of laminated composite plates, because it is not possible to
provide accurate analysis without knowledge of theories. These theories can be classified
in to three type's single layer theories, layer-wise theories and continuum based 3D
elasticity theories Pervez.et al.2010. Many researchers had studied static and dynamic
analysis of composite plate by using higher order shear deformation theory, and other
researchers have studied the natural frequency of simply supported composite plate.N. D.
Phan.et al.1985. developed Analysis of laminated composite plates using a higher-order
shear deformation theory. A higher-order shear deformation theory used to analysis
laminated anisotropic composite plates for deflections, stresses, natural frequencies and
buckling loads. The theory accounts for parabolic distribution of the transverse shear
stresses, and requires no shear correction coefficients. A displacement finite element model
of the theory developed, and applications of the element to bending, Vibration and stability
of laminated plates were discussed. The present solutions are compared with those
obtained using the classical plate theory and the three-dimensional elasticity theory.
M.Rastgaar Aagaah.et al. 2006. Studied Natural frequencies of laminated composite
plates used third order shear deformation theory. Natural frequencies of square laminated
composite plates for different supports at edges presented. Using a third order shear
deformation theory of plates (TSDT), which was categorized in equivalent single layer
theories (ESL), a new set of linear equations of motion for square multi-layered composite
plates had been derived. Laminated plates were supposed to be either angle ply or cross-
ply. Moreover, FEM was used to solved the equations and find the fundamental natural
frequencies. Finally some results for plates with different combination of layers and
supports are reported. The results are compared to the results. Hiroyuki Matsunaga 2000.
Developed .Natural frequencies and buckling stresses of cross-ply laminated composite
plates are analyzed by taking into account the effects of shear deformation, thickness
change and rotatory inertia. By using the method of power series expansion of
displacement components, a set of fundamental dynamic equations of a two-dimensional
higher-order theory for thick rectangular laminates subjected to in-plane stresses is derived
through Hamilton's principle. Several sets of truncated approximate theories are applied to
solve the eigenvalue problems of a simply supported thick laminated plate. In order to
assure the accuracy of the present theory, convergence properties of the lowest natural
frequency and buckling stress are examined in detail. Numerical results are compared with
those of the published existing theories and FEM solutions. The modal displacement and
stress distributions in the thickness direction are obtained and plotted in figures. It is
noticed that the present global higher-order approximate theories can predict the natural
frequencies, buckling stresses and stresses of thick multilayered composite laminates as
accurately as three dimensional solutions. Ration and stability of cross-ply laminated
composite plates according to a global higher-order plate theory. Akavci.et al.2003.
Presented buckling and free vibration analysis of laminated composite plate by using two
new hyperbolic shear-deformation theories. Two new hyperbolic displacement models,
HPSDT1 and HPSDT2, are used for the buckling and free vibration analysis of simply
supported orthotropic laminated composite plates. The models contain hyperbolic
expressions to account for the parabolic distributions of transverse shear stresses and to
satisfy the zero shear-stress conditions at the top and bottom surfaces of the plates. The
equation of motion for thick laminated rectangular plates subjected to in-plane loads is
deduced through the use of Hamilton’s principle. Closed-form solutions are obtained by
using the Navier technique, and then the buckling loads and the fundamental frequencies
are found by solving eigenvalue problems. Song Xiang.et al. 2009. Presented Natural
frequencies of generally laminated composite plates using the Gaussian radial basis
function and first-order shear deformation theory. The Gaussian radial basis functions and
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first-order shear deformation theory are presented to calculate the natural frequencies of
generally laminated composite plates. Several numerical examples are used to show
convergence and accuracy of the present method. The results of the present paper are in
good agreement with the results already reported in the literature, which demonstrate the
high numerical accuracy of the Gaussian radial basis function for vibration analysis of
generally laminated composite plates. Mantari.et al. studied Static and dynamic analysis
of laminated composite and sandwich plates and shells by using a new higher-order shear
deformation theory. A new higher order shear deformation theory for elastic
composite/sandwich plates and shells is developed. The new displacement field depends on
a parameter ‘‘m’’, whose value is determined so as to give results closest to the 3D
elasticity bending solutions. The present theory accounts for an approximately parabolic
distribution of the transverse shear strains through the shell thickness and tangential stress-
free boundary conditions on the shell boundary surface. The governing equations and
boundary conditions are derived by employing the principle of virtual work. These
equations are solved using Navier-type, closed form solutions. Shells and plates are
subjected to bi-sinusoidal, distributed and point loads. Results are provided for thick to thin
as well as shallow and deep shells. Adnan Naji.et al. 2012. Developed free vibration
analysis of laminated composite plate using HOST 12. The present works an application of
a Higher Order Shear Deformation Theory (HOST 12) to problem of free vibration of
simply supported symmetric and anti-symmetric angle-ply composite laminated plates. The
theoretical model HOST12 presented incorporates laminate deformations which account
for the effects of transverse shear deformation, transverse normal strain/stress and a
nonlinear variation of in-plane displacements with respect to the thickness coordinate —
thus modeling the warping of transverse cross-sections more accurately and eliminating the
need for shear correction coefficients. Solutions are obtained in closed-form using Navier’s
technique by solving the eigenvalue equation. Plates with varying number of layers,
degrees of anisotropy and slenderness ratios are considered for analysis. Huu.et al.2013.
Various efficient higher-order shear deformation theories are presented for bending and
free vibration analyses of functionally graded plates. The displacement fields of the present
theories are chosen based on cubic, sinusoidal, hyperbolic, and exponential variations in
the in-plane displacements through the thickness of the plate. By dividing the transverse
displacement into the bending and shear parts and making further assumptions, the number
of unknowns and equations of motion of the present theories is reduced and hence makes
them simple to use. Equations of motion are derived from Hamilton’s principle. Analytical
solutions for deflections, stresses, and frequencies are obtained for simply supported
rectangular plates. The accuracy of the present theories is verified by comparing the
obtained results with the exact three-dimensional (3D) and quasi-3D solutions and those
predicted by higher-order shear deformation theories. Atteshamuddin S. Sayyad.et al.
2015. Studied Bending, Vibration and Buckling of Laminated Composite Plates Using a
Simple Four Variable Plate Theory. A simple trigonometric shear deformation theory is
applied for the bending, buckling and free vibration of cross ply laminated composite
plates. The theory involves four unknown variables which are five in first order shear
deformation theory or any other higher order theories. The in-plane displacement field uses
sinusoidal function in terms of thickness co-ordinate to include the shear deformation
effect. The transverse displacement includes bending and shear components. Satisfies the
zero shear stress conditions at top and bottom surfaces of plates without using shear
correction factor. Equations of motion associated with the present theory are obtained
using the dynamic version of virtual work principle. A closed form solution is obtained
using double trigonometric series suggested by Navier.
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In the present work, a new higher order displacement field in which the displacement of
the middle surface expanded as a combination of exponential and trigonometric functions
of the thickness coordinate and the transverse displacement taken to be constant through
the thickness, is proposed. Necessary equilibrium equations and boundary conditions are
derived by employing the principle of virtual work. The theory accounts for adequate
distribution of the transverse shear strains through the plate thickness and the tangential
stress-free boundary conditions on the plate boundary surface, therefore a shear correction
factor is not required. Exact solutions for natural frequency of simply supported plates are
presented.

THEORETICAL ANALYSIS :-
Displacement Field:

In the present work, a new higher order displacement field in which the
displacement of the middle surface expanded as a combination of exponential
trigonometric function of the thickness coordinate and the transverse displacement taken to
be constant through the thickness is developed. The displacement field of the new higher
order theory of laminated composite plate is: J.N.Raddy 2003

a(ey.d) =uley) — 2 (o) + (D8, (5y)

(1-a)
v(xy,2) =v(xy) - z (aij + £(2)8,(x,) (1-b)
wix,y,z) =w(xy) (1-c)

Where:
w(x,v), v(x, v),w(x,v), 0, (x,v),8;(x,¥) Are the five unknown functions of middle
surface of the plate as shown in the figure(1) while f(z) represents shape functions
determining the distribution of the transverse shear strains and stresses along the thickness.
The shape function derived by different researchers are given in table 1, actually
the present modeling is a combination of exponential functions and polynomial as shown
in figure(2). With the same Reddy and Liu and generalized procedure developed by
Sadatos and free boundary conditions at the top and bottom surfaces of the plate. The new
displacement field presented in this paper is:

(e32) = u(ey) + = (56, a“’j+ Tz
ULV, Z) — WX,y Z - sin—e
h 1 (2-a)
Tz WMIE
v(x,y,z) =v(x,y)+ z [—

h (2-b)
wix, ¥,z) = wy (2-¢)
where the new function used in present work is:

f(z) = sinﬂ;—z ek +yz 3)
y= % ,m = constant

For small strains, the strain-displacement relations take the form:
d

o =
dx (4-a)

B dv
gy (4-b)
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The strain associated with the displacement field by substituting equations (2a-c) into

equations (4a-e) to give:
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Hamilton’s principles:

(5-a)
(5-b)
(5-¢)
(5-d)
(5-€)

(6)

The equation of motion of the new higher order theory will be derived using the
dynamic version of the principle of virtual displacements: Raddy, 2003

0= [ 8U +8V — 8K
The virtual strain energy oU is:
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R
8U=[ff;._{f; g0k + Ty Es:’f.}. + 0,y 55‘;{}. + cr}_gé“si‘.g + o, 828 ] dxdyldz] =0 (8)

8U = [(N,6el, + M 8s;, + P,8s, + N,8e) + M,8s), + P,6s] + NG, +
M8z, + Pls, + Q,82), + kyded, + Q,82), + ky 6=, —)dxdy =0
(9)
Where:
(N;,M;,P;,Q;j and K;) are the result of the following integration:

(Ni, Mi, P) =S¥, [Geeof (1,25t Zen )dz (1= 1,26)

(Q1, KL)=%¥_, _I":,{_ e [1,%[??1 * sin 1—3 + cos %jET)dE

I .EF'{ T TE T E
(Qz, K2)=ZN_, _I"z;{_._ o5 [1,;(m * sin—+ cos T:]e R )dz
The virtual strains are known in terms of virtual displacement in equation (5) and then
substituting the virtual strain into equation (9) and in integrating by parts to relative the
virtual displacement (du , 6v , 6w) in range of any differentiation, then we get:

— _ (e mm IM, _aMy 9By N, mn IM, _
0=—[[520u+——*80;, —— w + 2280, + =6v +- 286, — 2w +
ap, 8N, 8, mmn dM, mn dMg 8 M, 4
5280, + T8u+ 2 6v + T e80, + T 80, + 2526w+ 5280, +
2256, — 27 Q,80, —2Q, - K,80, — K,50,]9xdy = 0

(10)
The virtual work done by applied forces év is:
SV = — J' q Sw dxdy
e 1)

h . .

5K = [[Zof[u + z (226, —2) + £(z)8, ) [6u + z (Z=88, — ZX) +£(z)86, | +
v+ z (%26, -2+ f(2)8, |« [ov + z (Z=56,
§K =

(1w + 1,288, - 1,25+ 1,8, ) 6 + (Lu + 1,206, — 1
(Lu +1,270, —1, 22 +1,0, )22

dw

ey

)+ f(z]EEl:'] + ww )dv

dw

218, )2 56, —
. T . dw . .

. mm . B’ . . . mm . B’ Oy mm .

. mmn . ow’ 4B Aw . mm . ow’ . .
(Lv+1,2e, - I 5+ 156, )a_er (v +1,2"0, - I 5+ 16, )8, +
Ilwﬁw'] dxdy

(12)
Where: 1, 1,, I3, 1, I, I, are the moment of inertia .
Equation of motion
The Euler-Lagrange is obtained by substituting Eq.(8 — 11) into Eq.(7) and then
setting the coefficient of (du , v, dw , 801, 60, ) over Qg of Eq.(7) to zero separately, this
give five equations of motion as follows:

aN, dN, — . mn o .. o dw ,
du— oy 3y Lu + 1,7 0, —1, 5 T 1,8,
N, N, _ . mn oo o dw .
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The result forces are given by: Raddy, 2003

Nl zL:+'_ D-l
Ny¢ = EE=1 J;k Ozdz
N, Og

{lﬁl}= 2o} f@) 02 (14a-f)

The plane stress reduced stiffness Q;;
E, E.

Q11=111\ » Qup = v, rQn
Qee = Gyz» Qe = G:a f Q55 Gys (15)

From the constitutive relation of the k™ lamina the transformed stress-strain relation of an
orthotropic lamina in a plane state of stress are:

O Q11Q12Q167 [Exx
[ﬂyyl = [lesz st] [Eyyl
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JX_'V‘ 816‘12&‘166 xy

o Y
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The force results are related to the strains by the relations:
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Navier's Solution

In Navier's method the generalized displacements are expanded in a double
trigonometric series in terms of unknown parameters. The choice of the function in the
series is restricted to those which satisfy the boundary conditions nf the problem as shown
in Fig.3. Substitution of the displacement expansion into the rning equations should
give a set of algebraic equation among the parameter of the expansion.Simply supported
boundary conditions are satisfied by assuming the following form of displacements:
Raddy, 2003
u(x,y) = Xi=1 Lo=q Umy cos(ox) sin(By)
v(xy) = X o ey Vi, sin(ox) cos(By)
wixy) =2>_, X2, W, sin(ox) sin(By)
0;(xy) = Xn=12a=1 6,4, cos(ax) sin(By)
0,(xy) = £2o; T2, 6, sin(ax) cos(By) (19)
where:
0="", B == (Upns Vs Wy, 84, 8, ) are arbitrary constants.

The Navier solution exists if the following stiffnesses are zero,
Ajg = Byg = Dyg =By = Fyg = Hyg = Ay = By = Dy = B = Fpg = Hyg = Ay =
Jis =Ly =1, =10
Substituting equation (19) into the equations of motion (13), we get the following eigen
value equations at any fixed values of m and n:

475



FREE VIBRATION ANALYSIS OF LAMINITED Dr.lbtehal A. Sadig
COMPOSITE PLATE USING NEW HIGHER ORDER Haider S. Abdul-ameer
SHEAR DEFORMATION PLATE THEORY

c14

Ciz Cy3 Gy Cyg My My; Myz Mgy Myzq (U

Cap  Ca3 Coy Cyg Myy My Myy My, My Vi

Cys Cag Cgs Cag|— w?|my3 My Mgy myamyg [{ W + =0 (20)
Coe GCgy Cyy Cyg My, My, Mg, My, My | (6,

Cie Cgs Cys Cgg Myg Myg Mag My Mgl | §,

s=mn

For nontrivial solutions of equation (20) the corresponding determinants must be equal to

ZEro:

I[€] = w2[M]| =0
Where the stiffness element of k; are:

Ci1 =
Ciz =

=D

(]
w
b=

I

":5l11'352 _ﬁesﬁz
A af—Agalfl

=By’ + By,af? + 2B, af?

mi mim )
_BnT“ —Eja HGGTB Eib
mT mT
_leT af—Epaf HGGT af—E,afp
—Ay, B* — AEEEI:
Bizazﬁ + B::BE + EBEE.CCEB
mT Mt
_BlzT“B_Eu“B Bee — h alB—E,af
b mm b
= —E,,B2—Bg — 0 — Egga®— By — B2
;;B =12 h (=1 22 h E

—Dyya* — 2Dy,a’? — DypB* — 4D, o B

T mm . 2 mm ,
1 —u -|-qu af<+ quc:cB‘ +F o —|—2D56—cc B + 2F o B°

m
mz'”z 2 m*n 2 2
__Dn e _zpnT“ DE.E. e B EFE.E.TE — Hyyjo” —Be6p” —

m® n*

TC
—Ass R — 255 E Lss

- P a2 A
& & Ly

m mt

_Diz? ':IB_EFHT aB— Dss? EIB_ZFGGT aB—Hpafp
—Hgza
2 T

=Dy mh: B‘_EFEE?B‘ — Dy mh: o —2Fg ?“‘ — Hypf" — Hggt” —

m
AnH

h? _144T_]44 — Ly

And mass elements :

mMyy =
mMyy =

Iy
-l =mg,

mT

_Ii

—L,f = my,

mt
my; =1, +1; = Mgy

h

mgy =1; + 15 [“;‘; sz

mg. = —I.f—I;

,B L

h

476



Ibtehal A.  The Iragi Journal For Mechanical And Material Engineering, Vol.17, No.3, Sept.2017

3 3
s =

It
I]’I:TIZH T
m55 = IET-FEIET_'_IG

The main computer programming has been built to carry out the analysis required for
solving the equations of motion and determine the fundamental natural frequency of
composite laminated simply supported plate using new higher order shear deformation
plate theory. A computer code written in (Matlab R13).

RESULTS AND DISCUSION :-

The natural frequency for free vibration of composite laminated plate with different design
parameters for simply supported boundary condition, is analyzed and solved using
MATLAP programming. To examine the validly of the derived equation and performance
of computer programming for free vibration of composite laminated simply supported
plate, a comparison [ 3D elasticity &J.Raddy & J.L.Mantari ] for two, three, four and six
layers cross ply Laminated (0/90/0) and (0/90/90/0) and simply supported on all edge,
while the mechanical properties of each layers are (E;=40, E,=1, Es=1, p=1,v1,=Vv13=0.25,
V23=0, G1,=G13=0.6, G23=0.5). Table(2) show the fundimantal frequancy for a four-layer
symmetric laminate square plate (a/h=5), as a function of modulus ratios (Ei/ E>). For the
ratios of E1/E2 change from 5 to 40, the percentage error in predicting the natural
frequencies using the present theory is less than1% in all the cases. The present theory is
also in very close agreement with the other shear deformation theories, however FSDT
results are slightly higher than the exact one. Table(3) shows the Non-dimensional
fundamental frequencies of antisymmetric square laminated plate for various values of
modules ratio and thickness ratio (a’/h = 5) The results of the present theory and other
theaories such as (Raddy, S.S. Akavci and Kant) are compared with the three dimentional
elasticity results (3D). for all the laminate types considered at lower range of (E; / E») ratio
equal to (3 and 10), the error in present theory is less compared to other theories. Whereas
for the laminates at higher range of (E1/ E;) ratio equal to (20 to 40) the theory of kant give
better accurate results in comparison to other theories.Table (4) shows the Non-
dimensional fundamental frequencies of square simply supported laminated plate (a=b) a

cross ply (0/90/0) and orthotropic ratio E—‘-z 40 , which shows a good results when

compared with other researches such as (é.Xiang & K.Ming and Raddy).Table 5 we
consider a four layer [0/90/90/0] simply supported plate with the effect of width-to-

i

thickness ratio. The normalized frequency w~ = (wb?) (Ei) “ is showen in table 5.the
results show that HSDT solution a gree well with available results given in Zhen.et al.
2006, Wu et al. 1994, Matsunaga 2000, Cho et al. 1991. Figure(4) shows that the
fundamental frequency various side-to-thickness ratio (a/h) of laminated cross ply (0/90)
for the present work compared with TSDT which shows the same trend of curve. Figure(5)
shows that the fundamental frequency various side-to-thickness ratio (a/h) of laminated
cross ply (0/90/0/90/0/90) for the present work compared with TSDT which shows the
trend of curve for present work closed to the trend of curve for TSDT.

CONCLUSIONS :-
A new higher order shear deformation theory of laminated composite plates is presented.

The theory accounts for an adequate distribution of the transverse shear strains through the
plate thickness and the tangential stress-free boundary conditions on the plate boundary
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surface, therefore a shear correction factor is not required. The governing equations and
boundary conditions are derived by employing the principle of virtual work. These
equations are solved via a Navier-type, closed form solution. The accuracy of the present
code is ascertained by comparing it with various available results in the literature. The
results show that the present model performs better than all the higher order shear
deformation theories compared here for analyzing the dynamic behavior of multilayered

composite plates .

Table 1: Different shear shape strain functions.

Modal

f(z)function

Touratier 1991

h
f(z) =— sinE
II

h

Karma 2003

f(z) = zo—2(z/h)*

Mantari 2012

mmz
cCoE—)—

Tz
f(z) = sinTe h +yz

Present

MM

f(z) = sin%eT +yz

Table 2: Nondimentionalized fundamental frequencies of simply supported square plates

T .
wo = w% I'Ei,afh = §,
14 2z
3D Present | Mantari | Touratier | FSDT
E,/E, 2011 1991
3 6.618 | 6.5768 | 6.565 6.560 6.570
10 8.210 |8.2675 | 8.286 8.274 8.298
20 9.560 |9.5097 | 9.552 9.530 9.567
30 10.272 1 10.2464 | 10.305 | 10.277 10.326
40 10.752 1 10.7545 1 10.826 | 10.793 10.854
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Table (3) Nondimentionalized fundamental frequencies a simply supported antisymmetric

cross-ply square laminated plate with (a/h =5), w™ = wﬂ—?;

|
vE
EleZ
Method 3 Diff 10 Diff 20 Diff 30 Diff% 40 Diff%
% % %

3D Elasticity | 6.257 | - 6.984 | - 7.674 - 8.176 - 8.562 -
(ﬂf?ﬂji Kant 2002 | 6.156 | 1.161 6.936 | 0.681 | 7.688 | 0.206 8.257 0.990 8.709 1.176
Raddy 1984 | 6.216 | 0,655 6.988 | 0.057 | 7.821 | 1.915 8.505 4.023 9.087 6.131
S. Akavci | 6.218 | 0.623 6.993 1 0.281 | 7.832 | 6.058 8.522 | 4.231 9.111 6.412
2008 | 6.220 | 0.591 6.981 | 0.042 | 7.819 | 2.557 8.506 | 4.036 9.091 6.178

Present
3D Elasticity | 6.545 [ - 8.144 - | 9.405 -| 10.165 - 10.679 -
(l]jguj 2 Kant 2002 | 6.431 | 1.741 8.101 ] 0.527 | 9.433 | 0.291 | 10.246 0.796 10.799 1.123
Raddy | 6.500 | 0.687 8.195] 0.626 | 9.626 | 2.349 | 10.534 3.630 11.171 4.607
S. Akavci | 6.500 | 0.687 8.193 ] 0.601 | 9.620 | 2.286 | 10.526 3.551 11.161 4513
2008 | 6.512 | 0.504 8.176 ] 0.392 ] 9580 | 1.860 | 10.461 2.911 11.091 3.858

Present
3D Elasticity | 6.610 - 8.414 | - 9.839 - | 10.695 - 11.272 -
(l]jguj 3 Kant 2002 | 6.486 | 1.875 8.337 1 0.915 | 9.801 | 0.386 | 10.685 0.093 11.283 0.975
Raddy | 6.555 | 0.832 8.404 1 0.118 | 9.917 | 0.792 | 10.854 1.486 11.500 2.022
S. Akavci | 6.556 | 0.816 8.405 ] 0.106 | 9.918 | 0.830 | 10.856 1.505 11.503 2.049
2008 | 6.570 | 0.605 8.388 1 0.309 | 9.876 | 0.376 | 10.797 0.953 11.433 1.428

Present

2 —
thickness ratio(a/h), w~ = w% l'Ei
a’h
Method 2 5 10
S.Xiang&K.Ming 2009 5.533 [ 10.290 | 14.766
Raddy1997 5.205 | 10.698 | 14.753
Present 5.689 | 10.253 | 14.703
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Table (5) Nondimentional fundamental frequencies for a four layer [0/90/90/0] for various

. . E. _ a2 I?
thickness ratio (a/h), == 40,w™ = W ||£_
T ﬂq n

afh

Method 5 10 20 25 50 100

Zhen&Wanji 2006 | 10.7294 | 15.1568 | 17.8035 | 18.2404 | 18.9022 | 19.1566

Wu et al.1994 10.6820 | 15.0690 | 17.6360 | 18.0550 | 18.6700 [ 18.8350
Matsunaga 2000 10.6876 | 15.0271 | 17.6369 | 18.0557 | 18.6702 | 18.8352
Choetal. 1991 10.6730 | 15.0660 | 17.5350 | 18.0540 | 18.6586 | 18.8350
Present 10.7544 | 15.1090 | 17.6590 | 18.0751 | 18.6854 | 18.8492

, Lanmunate

w mud-plate

(x. y.z) - Lamnate reference axes

Fig.1: Laminate geometry with positive set of lamina/laminate reference axes,
displacement components and fiber orientation.
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Fig .2: Shape strain functions of different shear deformation theories.

e —————— R
atx=0and x=a f :
) ey | :
N, =M_=0 - — v
B o
v ‘ aty=0and y=56
Cwy
Uy =Wy = =
0 0 B
Ny=M_,=0

Fig.3: Boundary condition for simply supported plate .J.N.Raddy 2003
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Fundimantal Frequancy wn

0 20 40 &0 80 100 120

# L + /
Side -to- thickness ratio a/h

Fig.4: Nondimentionalized natural frequency versus side-to-thickness ratio (a/h) for cross-
ply (0/90) ati—‘- = 40. Square plate .

~&— presant

—@— TS0

Fundimantal Frequancy wn

20 40 60 8( 100 120

Side -to- thickness ratio a’h

Fig.5: Nondimentionalized natural frequency versus side-to-thickness ratio (a/h) for cross-
ply (0/90/0/90/0/90) at== = 40. Square plate.
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