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1. INTRODUCTION 

Malaria is considered one of the most common diseases that cause death, specifically in South Africa, Sub-Saharan 

Africa, and Southeast Asia. In 2020, the World Health Organization (WHO) reported about 241 million cases of malaria, 

with an estimated 672,000 deaths[1]. The disease is caused by Plasmodium parasites when transmitted through the bites 

of infected female Anopheles mosquitoes[2]. Although there are several species of Plasmodium, most severe cases and 

deaths are caused by Plasmodium falciparum[3]. 

 

Effective treatment is crucial. However, this depends on early and accurate malaria diagnoses[3]. Microscopy is 

often used in traditional diagnostic methods where the presence of malaria parasites in blood smears is manually 

examined[4]. Although it is highly sensitive, this method has disadvantages like being time-consuming, labor-intensive, 

and inaccurate due to human factors such as fatigue and lack of experience[5]. Rapid diagnostic tests used as alternative 

diagnostic methods may lack the sensitivity of microscopy, especially in cases with low parasite density, despite offering 

faster results[6, 7]. 

 

Malaria diagnosis has developed rapidly when machine learning and deep learning techniques offer a new frontier 

for accuracy and efficiency[8]. It is possible to classify malaria cells as infected and uninfected automatically by training 

a machine learning or deep learning model on image datasets[9]. This will help improve the accuracy and reduce the cost 

and effort[10]. This paper proposes a machine-learning model for malaria classification using Convolutional Neural 
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Networks that process image data efficiently[11, 12]. The performance of the suggested model is compared with 

traditional machine learning algorithms such as Support Vector Machine (SVM) and Decision Trees applied to the NIH 

dataset[13]. 

   1.2. MOTIVATION AND CONTRIBUTIONS 

 

In this paper, we propose an approach for automatic detection and classification of malaria using Convolutional 

Neural Network (CNN). The main contribution for this paper is to enhance diagnostic accuracy and minimize the 

dependency on personal skills and ensure scalability. The key contributions of this paper include: 

• Develop a model using a custom Convolutional Neural Network for malaria detection and classification 

depending on NIH dataset 

• Enhance model generalization by employing advanced augmentation techniques. 

• Compare the proposed model with traditional machine learning models such as support vector machine 

(SVM) and Decision tree. 

• Use the cross validation to validate the model performance to ensure reliability and robustness. 

    

2. RELATED WORK 

The field of medical image classification has significantly progressed by applying machine learning techniques over 

the last few years[14]. The detection and classification of diseases such as malaria, cancer and tuberculosis are 

automated by utilizing Convolutional Neural Network (CNN) when researchers have leveraged deep learning methods 

[14]. 

 

2.1. MALARIA DIAGNOSIS USING MACHINE LEARNING  

In (2017), a deep learning framework to detect malaria parasites in blood smear images was developed by Dong et 

al. This model was a multilayer Convolutional Neural Network (CNN) and achieved an accuracy of 96.5%.[15] Although 

their study showed important results, it focused on CNN architecture and missed out on the comparison with other 

machine-learning techniques. Furthermore, there are many concerns regarding model generalization due to the absence 

of cross-validation methods. 

  

In (2018), Rajaraman et al. scrutinize the application of pre-trained CNN feature extraction models in malaria 

diagnosis. They employed CNNs trained on the ImageNet dataset and finetuned them on the NIH malaria dataset. Their 

model distinguished between the parasitized and uninfected cells and achieved a classification accuracy of 95%, showing 

the effectiveness of transfer learning in medical applications[9]. However, this model may not always generalize well to 

certain medical datasets because of heavy reliance on finetuning pre trained architectures. Therefore, malaria detection 

tasks need further optimization and customization. 

 

Another work was implemented (2019) by Liang et al. so that various machine learning for malaria diagnosis were 

compared, including Convolutional Neural Network (CNN), Random Forest (RF), and Support Vector Machine (SVM). 

They found that Models using CNN architectures exceeded the traditional machine learning algorithms, achieving an 

accuracy of 93%[11]. The study emphasized the dominance of CNNs for diagnosis tasks in medical images and noted 

that the deeper architectures and better data augmentation techniques could enhance the performance. 

 

2.2. USE OF CNNS IN MEDICAL IMAGE CLASSIFICATIONS 

There was widely adoption of Convolutional Neural Networks CNNs in medical imaging due to their ability to 

extract features from images automatically[15]. Many tasks, such as lung disease detection, diabetic retinopathy, and 

breast cancer identification, have shown the remarkable success of CNNs. State of the art performance in these areas has 

been achieved using pivotal CNNs architectures such as AlexNet, VGGNet, and ResNet[16]. 

 

In (2017), Esteva et al. used a CNN to classify skin cancer, achieving performance like what human dermatologists 

can accomplish[17]. Their study indicated the potential of CNNs to develop image-based medical diagnosis by improving 

accuracy and reducing diagnosis time, particularly in areas with limited healthcare resources. Our work for malaria 

classification based on CNNs is built on these successes. We use custom architecture design, data augmentation, and 

hyperparameter tuning for optimization. Additionally, we aim to comprehensively compare the CNNs with traditional 

machine learning models while using cross-validation techniques to validate the model performance[18]. 
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3. METHODOLOGY  

         The methodology section of this paper is used to build and design a model that utilize CNN to detect and 

classify malaria efficiently and accurately. It includes several stages: dataset description and preparation, data 

preprocessing, model architecture design, and evaluation of performance. Common challenges in medical image 

classification are addressed through carefully designed of each stage such as small size of dataset, class disproportion 

and the required model generalization. This section provides a detailed description of the processes, emphasizes the 

techniques utilized to improve performance and ensure that the proposed solutions are robust and reliable.    

3.1. DATASET DESCRIPTION 

         The NIH malaria dataset is used in this study. It is one of the most extensive datasets used for malaria classification 

tasks that is publicly available. This dataset belongs to the National Institutes of Health and contains (27,558) cell 

images of thin blood smears. The images are divided into two groups: parasitized (malaria-infected) and uninfected 

(healthy) cells[19]. Figure (1) shows the NIH dataset sample.  
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FIGURE 1. - (a) Parasitized; (b) Uninfected 

 

         The sizes of images in the dataset are slightly and they have three color channels (RGB)[20]. The two classes are 

evenly distributed in the dataset, with 13,780 parasitized cell images and 13,778 uninfected cell images as shown in 

table (1) and figure (2). The dataset was collected from various clinical settings to ensure the diversity in the 

representation of parasitic morphology. 

 

Table 1. - Summary of Dataset 

Dataset Total images Parasitized Uninfected 

NIH Malaria 27,558 13,780 13,778 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. - Malaria Image Dataset Distribution 
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3.2. DATA AUGMENTATION 
         Image rotation, flipping, zooming and shifting are some data augmentation techniques employed to enhance 

model generalization. To reduce the risk of overfitting and increase variability, data augmentation is important when 

working with medical datasets, especially for deep learning models such as CNNs that need large amounts of data to 

generalize well[21]. 

 

3.3. PREPROCESSING 

         Before training the model, it is necessary to preprocess the data. First the image data is resized to 128 x 128 to 

ensure that all images are uniform across the dataset. Then the pixel values are converted to the range between 0 and 1. 

Normalization can speed up the learning process and prevent large gradients to ensure numerical stability[21].   

During training, data augmentation techniques were applied to increase the size of the dataset artificially and introduce 

variability. Datasets are often small in medical image classifications due to the difficulty of acquiring labeled data; 

therefore, data augmentation is necessary. 

Augmentation techniques include: 

 

• Random zooming in and out (10%) 

• Rotation by random angles (up to 40 degrees) 

• Horizontal and vertical flipping  

• Random brightness adjustments  

 

3.4. MODEL ARCHITECTURE 

3.4.1. CONVOLUTIONAL NEURAL NETWORK (CNN) 

        A custom CNN architecture has been designed to optimize the malaria classification task. The CNN architecture 

comprises three convolutional layers, with a max pooling layer after each to reduce the spatial dimension of the feature 

maps. The designed CNN includes an input layer that accepts images. The size of each image is 128x128x3. Then, it is 

followed by a convolutional layer, including 32 filters of size 3x3, ReLU activation, and 2x2 max pooling. The second 

and third convolutional layers have 64 and 128, respectively, followed by ReLU activation and 2x2 max pooling. After 

that, a flattening layer is coming to convert 3D feature maps into a 1D vector. Additionally, there are fully connected 

layers 1 and 2 containing 256 and 128 neurons, respectively, and each is followed by ReLU activation. Finally, a single 

neuron is used for binary classification, and a sigmoid function is employed to classify the data into parasitized or 

uninfected. The model was trained using Adam optimizer with a learning rate of 0. 001. Since it is suitable for binary 

classification. The binary cross entropy loss function was chosen, and the model was trained for 50 epochs with a batch 

size of 32.  

 

        Since NIH dataset consists of RGB images and each image has 3 channels, the input layer should accept three 

channels. The images are resized to 128x128 to ensure the uniformity in input size. This is necessary to process images 

in the model consistently. This size keeps the important details for a good feature extraction and balances the 

computational efficiency. Three convolutional layers are used to extract spatial features from image and the number of 

filters has been increased (32,64,128) incrementally to improve the learning ability of the model against complex 

patterns. The using of three Convolutional layer keeps the balance between the model complexity and the risk of having 

overfitting especially in this dataset. A standard 3x3 filter is used because of its efficiency in capturing features 

necessary to distinguish parasitized and uninfected cells such as edges, textures, and cellular structures. To provide the 

model with required non-linearity, the Rectified Linear Unit activation function is used to enable the model to learn 

complex functions between input data and output labels. ReLU also improve the training efficiency and reduce the 

gradients problems. The maxpooling (2x2) is used to minimize the spatial dimensions of feature maps and decrease the 

computational load and reduce the model complexity. The most significant features are retained by pooling operation. 

Translational invariance is introduced to make the model more robust to slight rotation or shift. One dimensional vector 

is created from multidimensional feature maps by the flattening layer. This 1D vector is required to feed data into the 

fully connected layer.  

 

The predictions are made by accumulate features learned by the convolutional layers through fully connected layers. 

Complex relationships in the high-dimensional feature space are captured by using 256 and 128 neurons that prevent 

the overfitting by limiting the number of parameters. The output of the model is a binary classification (parasitized or 

uninfected), Therefore; a single neuron with sigmoid function is ideal in this task. The output of sigmoid function is 

probability score that make it efficient in medical applications. The use of Adam optimizer enables the combination of 

adaptive learning rates and momentum resulting in faster convergence and better optimization performance. To ensure 

stable learning and prevent the overshooting the minimum loss, the learning rate of 0.001 is used which is widely 

adopted as default value. The most appropriate loss function for binary classification tasks is binary cross entropy that 



Adil et al., Wasit Journal for Pure Science Vol. 3 No. 4 (2024) p. 105-113 

 

 

 109 

measures the convergence between true labels and predicted probabilities and ensure that if the model produced 

incorrect classification, it will be penalized heavily. The model is trained for 50 epochs that provide enough iterations 

for the model to learn patterns from data and reduce the risk of overfitting by validation monitoring or early stopping. 

Figure (3) shows the model architecture. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. - Model Architecture 
 

 

3.4.2 COMPARISON MODELS 

         Two traditional machine learning algorithms were implemented to compare the efficiency of convolutional neural 

networks. 

• Support Vector Machine (SVM): The support vector machine was used with a radial base function (RBF) 

kernel effective in high dimensional spaces[22]. SVM was trained on flattened image data. 

• Decision Tree: The Gini Impurity trains decision tree and split nodes. A decision tree can work well with a 

small dataset and limited features, even though it is simpler than CNNs.  

 

3.5. TRAINING AND TESTING 

         The dataset was divided into two subsets, training (80%) and testing (20%), and ensured that both classes 

(parasitized and uninfected) were equally represented in each of the two subsets. The model was fitted using the training 

set, while the final evaluation was done using the test set. The Adam optimizer was used to train the model due to its 

ability to use adaptive learning and handle sparse gradients. Initially, the learning rate was set to 0.001, and 50 epochs 

with a batch size 32 were utilized to train the model. Early stopping was employed to prevent overfitting by ending the 

process if there is no enhancement in the model's validation loss after a certain number of epochs. The binary cross 

entropy was used as the loss function since the result is either parasitized or uninfected, which is useful for binary 

classification tasks[23]. Different metrics were used for performance evaluation, such as accuracy, sensitivity, 

specificity, and F1- score. 

 

4. RESULTS AND DISCUSSION 

4.1. PERFORMANCE METRICS 

The following metrics were used to evaluate the models:  

• Accuracy: It denotes the ratio of corrected predictions (parasitized and uninfected) to the total predictions 
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• Sensitivity (Recall): It represents the ratio of parasitized cells identified correctly to the total number of parasitized 

cells. In medical diagnostics, this metric is necessary to reduce false negatives. 

• Specificity: It illustrates the ratio of uninfected cells identified correctly to actual uninfected cells. These metrics 

confirm that no healthy cells will be classified as infected. 

• F1 score: This metric describes the harmonic mean of precision and recall and gives a stable measure of model 

performance, particularly if the datasets are not balanced. Table (2) and figure (4) show the model performance 

metrics   

 

Table 2. - Model Performance Metrics 

Model Accuracy Sensitivity Specificity F1 Score 

CNN 97.5% 97.2% 97.8% 97.5 

SVM 91.4% 89.3% 92.7% 91.0 

Decision Tree 87.2% 85.9% 88.1% 86.5 

 

 

 

 

 

 

 

                               

 

 

 

 

 

 

 

 

 

FIGURE 4. - Model Performance Metrics 

 

When comparing performance metrics, the CNN model achieved better results than SVM and Decision Tree. Its 

sensitivity (97.2%) demonstrates how accurate the model is when identifying parasitized cells, which is very important 

in malaria diagnosis to avoid missing any infected cell. The specificity (97.8) illustrates how the model is robust and can 

identify the uninfected cells, reducing the probability of overdiagnosis. (91.4%) was a respectable accuracy achieved by 

using a Support Vector Machine (SVM); however, its sensitivity (89.3%) was less than that of CNN. This indicates that 

the SVM model could misclassify parasitized cells and cause a serious (false negative) issue in medical diagnosis. These 

results prove the dominance of deep learning when used in image classification tasks. The decision tree performance was 

the worst, with (87.2%) accuracy, and the sensitivity and specificity were lower than that of CNN and SVM. 

 

4.2. VALIDATION AND CROSS-VALIDATION 

To avoid overly dependency on a specific train-test split, 5-fold cross-validation was performed. The dataset was 

partitioned into five subsets to train and evaluate the model five times. Each time, the distinct subset was used for 
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validation, and the remaining subsets were used for training. 97.1% accuracy is achieved through the 5 folds on average, 

indicating the generalization of the CNN model, and there is no over-sensitivity to a specific training set. Figure (5) shows 

the cross-validation results (accuracy per fold)  

 

 

 

 

 

 

 

 

 

 

FIGURE 5. -  Cross-Validation Results (Accuracy per Fold) 

 

4.3. COMPARISON WITH EXISTING METHODS 

The proposed CNN model accomplished a higher accuracy of 97.5% when compared with the Rajaraman et al. (2018) 

model, which achieved 95%, and Liang et al. (2019) reported (93%) accuracy when using a hybrid approach. This 

enhancement demonstrates the optimized architecture and the importance of the data augmentation techniques that 

improve the model generalization. Rajaraman’s model had a sensitivity of 94%, while our CNN achieved 97.2%. 

Therefore, the proposed model achieved better sensitivity and specificity than models in previous studies, and the 

probability of having a false negative in malaria diagnosis would be lower. Table (3) and figure (6) show the comparison 

with previous works. 

Table 3. - Comparison with Previous Works 

Study Model Accuracy Sensitivity Specificity 

Rajaraman et al. (2018) CNN (Transfer Learning) 95% 94% 95% 

Liang et al. (2019) CNN + RF + SVM 93% 91% 93% 

This Study CNN 97.6% 97.2% 97.8% 
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FIGURE 6. - Comparison with Previous Works 

 

The optimization of the model's hyperparameters, such as learning rate and batch size, in addition to the early stopping 

that was used to prevent overfitting, led to improvements in performance. Furthermore, the simple architecture of the 

model, compared to other transfer learning methods like VGG or ResNet, which are considered as pre-trained models, 

makes it very efficient in terms of computation and suitable for real-time diagnostic applications.  

4.4. LIMITATIONS  

Although the proposed model achieved high accuracy, some limitations can be noticed in the study. First, the real-world 

clinical data is vast, while the dataset used was relatively small. Data Augmentation approaches were employed to reduce 

this drawback. However, the setting in real clinical data can differ. Second, the dataset has only two classes 

(parasitized and uninfected), while the stages of malaria infection may be multiple or mixed. In such ways, the 

classification process may be more difficult. 

5. CONCLUSION  

This research paper presents an automated system to diagnose malaria using a convolutional neural network to provide 

an efficient approach to classify parasitized and uninfected blood smear cells using the deep learning-based model. Across 

all validation folds, the proposed model achieved high accuracy, showing the reliability and effectiveness of malaria 

detection and classification. The model successfully reduces the challenges that result from imbalanced and limited 

medical data by integrating data augmentation with a convolutional neural network that offers generalization for new 

samples. 

This approach provides many advantages compared to traditional microscopy methods, reducing human error and 

processing time and ensuring scalability for deployment in resource-limited environments. The performance metrics, 

which include accuracy, precision, recall, and F1-score, demonstrate that the model has promising achievements when 

used in automated diagnosis systems and real-world applications. These results may overcome other similar outcomes 

from previous models and prove the effectiveness of CNN when used in medical image classification tasks. 

Further improvements could be explored in the future, such as using a more diverse and larger dataset, tuning the 

hyperparameter, and integrating attention mechanisms. Additionally, the system can be interpreted by medical 

professionals if methods of demonstrating ability are incorporated. Overall, this research contributes to supporting and 

improving the use of machine learning in healthcare, especially the detection of malaria through scalable and efficient 

diagnostic tools.   

In the future, we can utilize additional blood smear images to expand the dataset depending on other sources and use 

more complex pre-trained models to explore transfer learning approaches such as ResNet or DenseNe so that more 

improvements in accuracy may be achieved. Furthermore, different stages of Plasmodium infection or co-infections with 

other pathogens can be identified by developing a multiclass classification model. Finally, the model deployment could 

happen when there is an integration in real-time diagnostic tools, such as mobile applications, to be used in resource-

limited settings. 

 

REFERENCES 

 

[1] W. H. Organization, World malaria report 2023. World Health Organization, 2023. 

[2] N. White, S. Pukrittayakamee, T. Hien, M. Faiz, and O. Mokuolu, "a., & Dondorp, AM (2014). Malaria," Lancet, 

vol. 383, no. 9918, pp. 723-735. 

[3] N. Tangpukdee, C. Duangdee, P. Wilairatana, and S. Krudsood, "Malaria diagnosis: a brief review," The Korean 

journal of parasitology, vol. 47, no. 2, p. 93, 2009. 

[4] V. T. Anchinmane and R. T. Shedge, "A review of malaria diagnostic tools: microscopy and rapid diagnostic 

test," Asian Journal of Medical Sciences, vol. 1, no. 2, pp. 75-79, 2010. 

[5] M. Poostchi, K. Silamut, R. J. Maude, S. Jaeger, and G. Thoma, "Image analysis and machine learning for 

detecting malaria," Translational Research, vol. 194, pp. 36-55, 2018. 

[6] J. C. Mouatcho and J. D. Goldring, "Malaria rapid diagnostic tests: challenges and prospects," Journal of medical 

microbiology, vol. 62, no. 10, pp. 1491-1505, 2013. 



Adil et al., Wasit Journal for Pure Science Vol. 3 No. 4 (2024) p. 105-113 

 

 

 113 

[7] A. H. Alsaeedi, S. M. Hadi, and Y. Alazzawi, "Adaptive Gamma and Color Correction for Enhancing Low-

Light Images," International Journal of Intelligent Engineering & Systems, vol. 17, no. 4, 2024. 

[8] D. K. Das, M. Ghosh, M. Pal, A. K. Maiti, and C. Chakraborty, "Machine learning approach for automated 

screening of malaria parasite using light microscopic images," Micron, vol. 45, pp. 97-106, 2013. 

[9] S. Rajaraman, S. K. Antani, M. Poostchi, K. Silamut, M. A. Hossain, R. J. Maude, S. Jaeger, and G. R. Thoma, 

"Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in 

thin blood smear images," PeerJ, vol. 6, p. e4568, 2018. 

[10] A. D. Oliveira, C. Prats, M. Espasa, F. Z. Serrat, C. M. Sales, A. Silgado, D. L. Codina, M. E. Arruda, J. G. i 

Prat, and J. Albuquerque, "The malaria system microapp: a new, mobile device-based tool for malaria 

diagnosis," JMIR research protocols, vol. 6, no. 4, p. e6758, 2017. 

[11] Z. Liang, A. Powell, I. Ersoy, M. Poostchi, K. Silamut, K. Palaniappan, P. Guo, M. A. Hossain, A. Sameer, and 

R. J. Maude, "CNN-based image analysis for malaria diagnosis," in 2016 IEEE international conference on 

bioinformatics and biomedicine (BIBM), 2016: IEEE, pp. 493-496.  

[12] A. H. Alsaeedi, A. H. Aljanabi, M. E. Manna, and A. L. Albukhnefis, "A proactive metaheuristic model for 

optimizing weights of artificial neural network," Indones. J. Electr. Eng. Comput. Sci, vol. 20, no. 2, pp. 976-

984, 2020. 

[13] G. Díaz, F. A. González, and E. Romero, "A semi-automatic method for quantification and classification of 

erythrocytes infected with malaria parasites in microscopic images," Journal of biomedical informatics, vol. 42, 

no. 2, pp. 296-307, 2009. 

[14] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van 

Ginneken, and C. I. Sánchez, "A survey on deep learning in medical image analysis," Medical image analysis, 

vol. 42, pp. 60-88, 2017. 

[15] Y. Dong, Z. Jiang, H. Shen, W. D. Pan, L. A. Williams, V. V. Reddy, W. H. Benjamin, and A. W. Bryan, 

"Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells," in 

2017 IEEE EMBS international conference on biomedical & health informatics (BHI), 2017: IEEE, pp. 101-

104.  

[16] A. H. Alsaeedi, A. M. Al-juboori, H. H. R. Al-Mahmood, S. M. Hadi, H. J. Mohammed, M. R. Aziz, M. 

Aljibawi, and R. R. Nuiaa, "Dynamic Clustering Strategies Boosting Deep Learning in Olive Leaf Disease 

Diagnosis," Sustainability, vol. 15, no. 18, p. 13723, 2023. 

[17] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, "Dermatologist-level 

classification of skin cancer with deep neural networks," nature, vol. 542, no. 7639, pp. 115-118, 2017. 

[18] O. Faust, Y. Hagiwara, T. J. Hong, O. S. Lih, and U. R. Acharya, "Deep learning for healthcare applications 

based on physiological signals: A review," Computer methods and programs in biomedicine, vol. 161, pp. 1-13, 

2018. 

[19] M. H. Abed, A. H. Alsaeedi, A. D. Alfoudi, A. M. Otebolaku, and Y. S. Razooqi, "Palm vein identification 

based on hybrid features selection model," arXiv preprint arXiv:2007.16195, 2020. 

[20] A. H. Alsaeedi, Y. Alazzawi, and S. M. Hadi, "Fast Dust Sand Image Enhancement Based on Color Correction 

and New Fuzzy Intensification Operators," International Journal of Innovative Computing, vol. 13, no. 1-2, pp. 

31-35, 2022. 

[21] A. Kebaili, J. Lapuyade-Lahorgue, and S. Ruan, "Deep learning approaches for data augmentation in medical 

imaging: a review," Journal of Imaging, vol. 9, no. 4, p. 81, 2023. 

[22] S. M. Ali, A. H. Alsaeedi, D. Al-Shammary, H. H. Alsaeedi, and H. W. Abid, "Efficient intelligent system for 

diagnosis pneumonia (SARSCOVID19) in X-ray images empowered with initial clustering," Indones. J. Electr. 

Eng. Comput. Sci, vol. 22, no. 1, pp. 241-251, 2021. 

[23] A. M. Al-Juboori, A. H. Alsaeedi, R. R. Nuiaa, Z. A. A. Alyasseri, N. S. Sani, S. M. Hadi, H. J. Mohammed, B. 

A. Musawi, and M. M. Amin, "A hybrid cracked tiers detection system based on adaptive correlation features 

selection and deep belief neural networks," Symmetry, vol. 15, no. 2, p. 358, 2023. 

 


