On Weakly π–Regular Rings Anas S.Youns

Dept.of Math., College of Basic Education, University of Mosul, Mosul, Iraq (Received / / 2007, Accepted / / 2008)

Abstract

The main purpose of this paper is to study right(left)weakly π -regular ring. Also we give some properties of a weakly π -regular ring, and the connection between such rings and CS-ring, MP-ring and Quasi-Duo ring, and finally we gives the discrimination of this ring with the generalized right principally injective modules and simple singular right R-module which is GP-injective .

1.Introduction:

Throughout this paper, R represents an associative rings with identity and all right(left) R-module are unitary. J(R) denotes the Jacobson radical of a ring R.. A ring R is said to be right(left) weakly regular if $a \in aRaR$ $(a \in RaRa)$ for every $a \in R$, R is weakly regular ring if it is both right and left weakly regular [1]. A ring R is said to be π -regular ring if for every element a in R there exists a positive integer n=n(a) depending on a, such that $a^n \in a^n \operatorname{Ra}^n$ [ξ]. A ring R is said to be reduced if R has no non-zero nilpotent element [5]. A ring R is said to be right(left) generalized semi regular ring if for all $a \in R$, there exists $b \in R$, and there exists a positive and integers n such that $a^n = a^n b$ (b a^n), and r (a^n) = r (b) (l(a^n) = l(b)). For every $a \in R$,r (a) and l (a) will stand respectively for right and left annihilators of a. A right R-Module is called generalized right principally injective (briefly right GP- injective) if for any $0 \neq a \in \mathbb{R}$, there exists a positive integer n such that $a^n \neq 0$, and any right R-homomorphism of aⁿR in to M extends to one of R in to M[6].

2. Weakly π -Regular Rings (Basic properties):

A ring R is said to be right(left) weakly π -regular ring if for every element a in R, there exists a positive integer n=n(a)depending on a, such that:

 $a^n \in a^n Ra^n R$ ($a^n \in Ra^n Ra^n$). A ring R is said to be weakly π -regular ring if it is both right and left weakly π -regular[4].

Clearly every π -regular ring is weakly π -regular ring, but the converse is not true, if R be a commutative weakly π -regular ring, then R is π -regular ring, also if R is reduced then every right weakly π -regular ring is left weakly π -regular ring.

Lemma 2.1: [3]

The J(R) Jacobson radical of a right weakly π -regular rings are nil.

Lemma 2.2: Let R be a right weakly π -regular ring, then R=RaⁿR (for all aⁿ is not a zero divisor) and n is a positive integer depending on a.

Proof:

Let a^n is not a zero divisor of the ring R, since R is a right weakly π -regular ring, then $a^n R = (a^n R)^2 = a^n Ra^n R$, hence $a^n (R - Ra^n R) = 0$ and $(R - Ra^n R) \subseteq r(a^n)$.

Since $r(a^n)=L(a^n)=0$, (a^n is not a zero divisor). Therefore $R=Ra^nR$.

Proposition 2.3: Let R be a ring with a condition that for all non-zero elements a in R,there exists a positive integer n=n(a) depending on a, such that $r(a^n) \cap Ra^n R=0$. Then:

- 1- If for every $b,c \in R$, (1- $ba^n c$) $\in Ra^n R$, then every right weakly π -regular ring is a left weakly π -regular ring.
- 2- Every right weakly π -regular ring is a right generalized semi regular ring.

Proof(1):

Let $0 \neq a \in R$ then there exists a positive integer n=n(a) depending on a, such that $r(a^n) \cap Ra^n R=0$, since R is a right weakly π -regular ring, then $a^n \in a^n Ra^n R$, let $b, c \in R$, then $a^n = a^n ba^n c$, then $a^n(1 - ba^n c) = 0$, then $(1 - ba^n c) \in r(a^n)$.

Since for every $b,c \in R$ (1- $ba^n c$) $\in Ra^n R$, then there exist $x \in Ra^n R$ such that:

1- $ba^{n}c=x \in Ra^{n}R$, then $1=ba^{n}c+x \in Ra^{n}R$, therefore $R = Ra^{n}R$.

Then $(1 - ba^n c) \in r(a^n) \cap Ra^n R=0$, $(1 - ba^n c) = 0$, hence $1 = ba^n c$, implies $a^n = ba^n ca^n$.

Therefore $a^n \in Ra^n Ra^n$, then R is a left weakly π -regular rings.

Proof(2):

Let $0 \neq a \in \mathbb{R}$ then there exists a positive integer n=n(a) depending on a, such that $r(a^n) \cap \mathbb{R}a^n \mathbb{R}=0$, since \mathbb{R} is a right weakly π -regular ring, then $a^n \in a^n \mathbb{R}a^n \mathbb{R}$, let $b, c \in \mathbb{R}$, then $a^n = a^n ba^n c$, let $d = ba^n c$, implies $a^n = a^n d$, we must show that $r(d) = r(a^n)$, let $x \in r(d)$, then dx=0, (multiply by a^n from left) then $(a^n d)x=0$.

Since $(a^n = a^n d)$ then $a^n x = 0$, therefore $x \in r(a^n)$, then $r(d) \subset r(a^n)$.

Let $x \in r(a^n)$, then $a^n x=0$, since $d = ba^n c \in Ra^n R$, and $dx \in Ra^n R$, and $a^n = a^n d$, then $a^n dx = 0$, implies $dx \in r(a^n)$, therefore $dx \in r(a^n) \cap Ra^n R = 0$, then dx = 0, $x \in r$ (d), we get that $r(a^n) \subseteq r$ (d), therefore R is a right generalized semi regular ring.

Lemma 2.4: Let R be a right weakly π -regular ring, then Cent(R) is π - regular.

Proof:

Let $a \in Cent(R)$, since R is a right weakly π -regular ring, then for every element a in R, there exists a positive integer n=n(a)depending on a, such that:

 $a^n \in a^n Ra^n R$, let $b, c \in R$, then $a^n = a^n ba^n c = a^n ba^{n-1} ca$, and so we have that $a^n = a^n bca^n$.

Let d = bc, implies $a^n = a^n da^n$, therefore Cent(R) is π -regular.

Theorem 2.5:

Let I be a right weakly regular ideal and R/I be a right weakly π -regular ring, then R is a right weakly π -regular ring.

Proof:

Let R/I be a right weakly π -regular ring, then for all a in R there exists a positive integer n=n(a)depending on and there exists r, sbelongs to R such that:

 $a^n + I = (a^n + I) (r + I) (a^n + I) (s + I)$ implies that $a^n + I = a^n r a^n s + I$, then $a^n - a^n r a^n s \in I$, since I is a right weakly regular ideal, then there exists t, w in I, such that:

 $a^{n} - a^{n} r a^{n} s = (a^{n} - a^{n} r a^{n} s) t (a^{n} - a^{n} r a^{n} s) w.$

 $a^{n}_{n-1}a^{n}_{n-1}ra^{n}_{n-1}s = (a^{n}_{n-1}t - a^{n}_{n-1}ra^{n}_{n-1}s t)(a^{n}_{n-1}w - a^{n}_{n-1}ra^{n}_{n-1}sw).$

 a^{n} - a^{n} r a^{n} s = a^{n} t a^{n} w - a^{n} t a^{n} r a^{n} sw - a^{n} r a^{n} s t a^{n} w + a^{n} r a^{n} s t a^{n} r a^{n} sw.

 $a^{n} = a^{n} r a^{n} s + a^{n} t a^{n} w - a^{n} t a^{n} r a^{n} s w - a^{n} r a^{n} s t a^{n} w + a^{n} r a^{n} s t a^{n} r a^{n} s w.$

 $a^{n} = a^{n} (r a^{n} s + t a^{n} w - t a^{n} r a^{n} sw - r a^{n} s t a^{n} w + r a^{n} s t a^{n} r a^{n} sw)$

Since $(r a^n s + t a^n w - t a^n r a^n sw - r a^n s t a^n w + r a^n s t a^n r a^n sw) \in Ra^n R$.

Then $a^n = a^n$ (r $a^n s + t a^n w - t a^n r a^n sw - r a^n s t a^n w + r a^n s t a^n r a^n sw$) $\in a^n Ra^n R$, hence there exist g,h in R such that:

 $ga^{n}h = r a^{n} s + t a^{n}w - t a^{n} r a^{n} sw - r a^{n} s t a^{n}w + r a^{n} s t a^{n} r a^{n} sw.$

Therefore, R is a right weakly π -regular ring.

3.The Connection Between Weakly π–Regular Rings and Other Rings:

In this section, we study the connection between Weakly π -regular rings and CS-ring, MP-ring, Quasi-Duo ring, the right R-Module which generalized right principally injective (briefly right GP- injective module), and simple singular right R-module which is GP-injective .

Recall that a ring R is said to be right (left) CS-ring if every non-zero right (left) ideal is essential in a direct summand [2], equivalently, every right (left) closed ideal is a direct summand, clearly every maximal right ideal is right closed.. An ideal I of a ring R is said to be right(left) pure ideal if for all $a \in I$, there exists $b \in I$ such that a=ab(ba), An ideal I is said to be right(left) Generalized pure ideal if for all $a \in I$, there exists $b \in I$, and there exists a positive integers n such that $a^n=a^nb(ba^n)$.A ring R is said to right(left) MP-ring if every maximal right(left) ideal is a left(right) pure ideal. A ring R is called right(left) Quasi-Duo ring if every maximal right(left) ideal of R is two sided ideal[3].

Theorem 3.1:

Let R be a right CS-ring with for all element a in R, L (a^n) is two sided ideal then R is a left weakly π -regular ring.

Proof:

Let R be a right CS-ring and to prove that R is a right weakly π -regular ring. Let RaⁿR + L(aⁿ) =R, if not then there a maximal right ideal M containing RaⁿR + L (aⁿ), such that RaⁿR + L(aⁿ) \subseteq M, since R is a right CS-ring, then every maximal right ideal of R is a direct summand such that: M \oplus K=R, where K is a right ideal of R.

Hence $(Ra^nR + L(a^n) \cap K) \subseteq M \cap K=0$, then $(Ra^nR + L(a^n)) \cap K=0$, also $Ra^nR \cap K=0$, $L(a^n) \cap K=0$, then $Ka^n \in Ra^nR$ and $Ka^n \in K$, therefore $Ka^n \in Ra^nR \cap K=0$, then $Ka^n=0$, then $K \subseteq L(a^n)$, a contradiction. Thus $Ra^nR + L(a^n) = R$.

Let b,c be any two elements in R, and $d \in L(a^n)$ and $1 \in R$, then $ba^nc+d=1$, then $ba^nca^n + da^n = a^n$. Therefore

 $ba^{n}ca^{n} = a^{n}$, then $a^{n} \in Ra^{n}Ra^{n}$, then R is a left weakly π -regular ring.

Theorem 3.2:

Let R be a right MP-ring with for all element a in R there exists a positive integer n such that $L(a^n) \subseteq r(a^n)$, then R is a right weakly π -regular ring.

Proof:

Let R be a right MP-ring and to prove that R is a right weakly π -regular ring. Let RaⁿR+ r(aⁿ)=R, if not, then there exists a maximal right ideal M containing RaⁿR+ r(aⁿ) such that RaⁿR+ r(aⁿ) \subseteq M, since R is a right MPring, then every maximal right ideal of R is a left pure ideal (since every left pure ideal is generalized left pure ideal). Then for all a \in M there exists b \in M and a positive integer n such that aⁿ = baⁿ, then

aⁿ-baⁿ=0, implies (1-b) aⁿ = 0, then (1-b) $\in L(a^n) \subseteq r(a^n)$ $\subseteq M$, hence $l \in M$, a contradiction.

Hence $\operatorname{Ra}^{n}R+r(a^{n})=R$. Let b,c be any two elements in R, and $d \in r a^{n}$) and $1 \in R$, then $\operatorname{ba}^{n}c + d=1$, then $\operatorname{a}^{n}\operatorname{ba}^{n}c + a^{n}d=a^{n}$, therefore $\operatorname{a}^{n}\operatorname{ba}^{n}c = a^{n}$, then $a^{n} \in \operatorname{a}^{n}\operatorname{Ra}^{n}R$, then R is a right weakly π -regular ring.

Corollary 3.3:

Let R be a ring with every maximal right ideal is a right generalized pure ideal then R is a right weakly π -regular ring.

Proof:

We must show that R is a right weakly π -regular ring, let RaⁿR+ r(aⁿ)=R, if not then there a maximal right ideal M containing RaⁿR+ r(aⁿ) such that RaⁿR+ r(aⁿ) \subseteq M, since every maximal right ideals is a right generalized pure ideal, then for all a \in M there exists b \in M and a positive integer n such that aⁿ = aⁿ b, then aⁿ (1- b)=0.

Then $(1-b) \in r(a^n) \subseteq M$, then $1 \in M$, a contradiction. Therefore $Ra^nR + r(a^n) = R$, let b, c be any two elements in R, and $d \in r(a^n)$ and $1 \in R$, then $ba^nc + d = 1$.

Then $a^nba^nc + a^nd=a^n$, therefore $a^nba^nc = a^n$, then $a^n \in a^nRa^nR$, then R is a right weakly π -regular ring.

Lemma 3.4: Let R be a right weakly π -regular ring, then every two sided ideal is a right generalized pure ideal.

Proof:

Let R be a right weakly π -regular ring, , then $a^n \in a^n Ra^n R$, there exists $b, c \in R$, such that $a^n = a^n ba^n c$, Let I be a two sided ideal of R. Then for all $a \in I$, there exists a positive integers n such that $a^n \in I(I \text{ is an ideal of } R)$, then $ba^n c \in I$ (I is a two sided ideal of R).

Let $d = ba^n c \in I$, then $a^n = a^n d$, therefore I is a right generalized pure ideal.

Lemma 3.5: If R is quasi-duo ring and left MP-ring, then R is a right weakly π -regular ring.

Proof:

We must show that R is a right weakly π -regular ring, that is meaning RaⁿR + r (aⁿ) =R, if not then there a maximal ideal M containing RaⁿR + r(aⁿ) such that RaⁿR + r (aⁿ) \subseteq M, since R is left MP-ring (every maximal left ideal is a right pure ideal) and every right pure ideals are right generalized pure ideals, then there exists a and b in M and there exists a positive integer n such that aⁿ = aⁿ b,

 $d \in r(a^n)$ and $1 \in R$, then $ba^nc+d=1$.

Then $a^n ba^n c + a^n d = a^n$, therefore $a^n ba^n c = a^n$, then $a^n \in a^n Ra^n R$, then R is a right weakly π -regular ring.

Lemma 3.6: [7]

If R is left(right) quasi-duo ring and J(R)=0, then R is reduced ring.

<u>Corollary 3.7</u>: If R is quasi-duo ring and J(R)=0 and left MP-ring, then R is a weakly π -regular ring.

Proof:

By using (Lemma 3.5) R is a right weakly π -regular ring, by using (Lemma 3.6) R is reduced ring, then R is a weakly π -regular ring.

Theorem 3.8: If R is ring with every simple right R-module is GP-injective, then R is a right weakly π -regular ring.

Proof:

Let $Ra^nR+ r(a^n)=R$, if not then there a maximal right ideal M containing $Ra^nR+ r(a^n)$ such that: $Ra^nR+ r(a^n) \subseteq M$.

We define f: $a^n R \rightarrow R/M$ by $f(a^n r)=r+M$, for every element r in R, f is a well defined function. Indeed if $a^n r_1$ $a^n r_2$ belong to $a^n R$, and $a^n r_1=a^n r_2$, then $a^n r_1 - a^n r_2 = 0$, implies that $a^n(r_1 - r_2)=0$, then $(r_1 - r_2) \in r(a^n) \subseteq M$, hence $(r_1 - r_2) \in M$, then $r_1 + M = r_2 + M$.

Then $f(a^n r_1) = f(a^n r_2)$.

Since R/M is simple module then R/M is GP-injective module, then there exists f: $a^n R \rightarrow R/M$ such that $f(a^n r)=r+M = (c+M) a^n r$, then $r+M = ca^n r + M$, let(r=1), then $1+M=ca^n + M$, from this, we get 1- $ca^n \in M$. Since $ca^n \in Ra^n R \subseteq M$, then $1 \in M$.

A contradiction. Hence $Ra^nR+r(a^n)=R$, let b,c be any two elements in R, and $d \in r(a^n)$ and $1 \in R$, then $ba^nc+d=1$.

Then $a^n ba^n c + a^n d = a^n$, therefore $a^n ba^n c = a^n$, then $a^n \in a^n Ra^n R$, then R is a right weakly π -regular ring.

Lemma 3.9: Let R be a ring with for all elements a in R there exists a positive integer n such that $L(a^n) \subseteq r(a^n)$, then $Ra^nR+r(a^n)$ is essential right ideal of R.

Proof:

Let a be any element of a ring R, and assume that RaⁿR+ r(aⁿ) \cap I=0, where I be a non zero right ideal of R, then RaⁿR \cap I=0, r(aⁿ) \cap I=0, since Iaⁿ \subseteq RaⁿR, Iaⁿ \subseteq I, then Iaⁿ \subseteq RaⁿR \cap I=0, then Iaⁿ=0, then I \subseteq L(aⁿ) \subseteq r(aⁿ), I \subseteq r(aⁿ), then I=0, a contradiction. Therefore, RaⁿR+ r(aⁿ) is essential right ideal of R.

Theorem 3.10: If R is a ring with every simple singular right R-module is GP-injective, and for all element a in R, $L(a^n) \subseteq r(a^n)$, where n is a positive integers then R is a right weakly π -regular ring.

Proof:

We must show that R is a right weakly π -regular ring, that is meaning that RaⁿR+ r(aⁿ)=R, if not then there is a maximal right ideal M containing RaⁿR+ r(aⁿ) such that RaⁿR+ r(aⁿ) \subseteq M, then by (Lemma 3.9), RaⁿR+ r(aⁿ) is essential right ideal of R, then R/M is GP-injective module, then there exist a positive integers n such that any R-homomorphism of aⁿ R in to R/M extends to one of R in to R/M, we define f: aⁿR \rightarrow R/M by f(aⁿr)=r+M, for every elements r in R, f is a well defined function because that if aⁿr₁, aⁿr₂ belongs to aⁿR, and aⁿr₁=aⁿr₂, then aⁿr₁ -aⁿr₂ =0, implies aⁿ(r₁ - r₂)=0.

Then $(r_1 - r_2) \in r(a^n) \subseteq M$, hence $(r_1 - r_2) \in M$, then $r_1 + M = r_2 + M$, then $f(a^n r_1) = f(a^n r_2)$, then there exists f: $a^n R \rightarrow R/M$ such that $f(a^n r) = r + M = (c+M) a^n r$, then $r+M = ca^n r + M$.

Let(r=1), then 1+M= caⁿ +M, Thus 1- caⁿ \in M, and hence $1 \in M$, a contradiction.

Therefore $Ra^nR + r(a^n)=R$, let b,c be any two elements in R, and $d \in r(a^n)$ and $1 \in R$, then $ba^nc + d=1$.

Then $a^nba^nc + a^nd=a^n$, therefore $a^nba^nc = a^n$, then $a^n \in a^nRa^nR$, then R is a right weakly π -regular ring.

Refrences

1-Camillo V. and Xiao Y. (1994);"Weakly Regular Rings", Communication in Algebra 22 (10), 4095-4112.

2-Güngöroğlu Gonca (2000); "Strongly Prime Ideals in CS-Rings", Turk J. Math. 24, 233-238. 3-Kim N. K. and Lee Y.(2000); "On Right Quasi - Duo Rings Which are π -Regular Rings", Bull. Korean Math. Soc. 37,no.2,pp.217-227.

4-Kim J. Y. and Jin H. L.(2007);"On Weak π -Regularity and the Simplicity of Prime Factor

Rings", Bull. Korean Math. Soc. 44; No.1 , pp. 151-156.
5-Ming R.Y.C.(1998);" A Note On Regular Rings,II (**)", Riv. Math. Univ. Parma(6)1,71-80.
6-Nam S. B.(1999);"A Note on Simple Singular GP_injective Modules", Kangweon - Kyungki Math. Jour. 79 No. 2,pp. 215-218.
7-Yu Hua-Ping(1995) ;"On Quasi-Duo Rings", Glasgow Math. J.37,21-30.

π حول الحلقات الضعيفة المنتظمة من النمط

انس سالم يونس

قسم الرياضيات ، كلية التربية الأساسية ، جامعة الموصل ، الموصل ، العراق (تاريخ الاستلام: / /٢٠٠٧ ، تاريخ القبول: / / ٢٠٠٧)

الملخص

الهدف الرئيسي من هذا البحث هو دراسة الحلقة المنتظمة الضعيفة اليمنى (اليسرى) من النمط π ، كذلك أعطينا بعضا من خواصها الأساسية وترابطها مع الحلقة من النمط CS، حلقة الـ MP وحلقة الـQuasi-Duo ، وأخيرا أعطينا التميز لهذه الحلقة مع المقاسات الغامرة من النمط GP والمقاسات البسيطة الشاذة(المنفردة) من النمط GP .