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Abstract: 
This paper deals with the numerical solution of the forward kolmogorov equations problem, in addition to, the use of 

the Markov Chain Monte Carlo simulation technique for generating the underlying process of these equations and to 

predict the sample path behavior of this process. As an illustration of the use of this approach, numerical and numerical 

simulation results are obtained when the underlying process is of Poisson type and Continuous Time Markov Chain 

type. We obvious from the results we obtained the efficiency of Monte Carlo  Markov chain simulation technique to 

predict sample path of these  processes through out extended time periods.                                           

Introduction:                             
In the recent years the use of the Markov renewal 

equation as a nonlinear model for birth dynamics has 

been expanded dramatically. In mathematical 

demography, the Markov renewal equation has been used 

extensively as the vehicle for determining the future 

female birth trajectory in a closed population [10]. As 

these equations become more detailed, analytical results 

become very difficult to obtain, for this reason a Markov 

Chain Monte Carlo simulation for conducting 

experiments on a model of a real life system has become 

an increasingly attractive way for the study of this model 

equation. The goal of the simulation is the estimation of 

quantities of the dynamical system under study. In a 

Markov renewal equation of a pure birth process there 

are two important quantities: 

1. The distribution of the number of births in a time 

interval. 

2. The distribution of time until the population reaches a 

given size.  

However, determining these quantities when the 

underlying stochastic process is a Markov renewal 

process is an unsolved problem. To solve this problem 

we developed the Markov Chain Monte Carlo (MCMC) 

method to generate the sample paths of the Markov 

renewal process as our first objective [8]. Section 2 gives 

a short outline of a Markov renewal process. Section 3 

formulates a class of Markov renewal equations, known 

as the forward kolmogorov equations. The main results 

of this paper are presented in sections 4 and 5. Section 4 

discusses the numerical solution of these equations when 

the underlying process is a Poisson process and a 

Continuous time Markov chain. Section 5   simulates the 

underlying stochastic process of these equations by 

providing methods of simulating a Poisson process and a 

Continuous time Markov chain.  

A short outline of Markov Renewal Process: 
The Poisson process has the property that the times 

between transitions are identically independent 

distributed with an exponential distribution function [11]: 
tetF 1)(                      (1) 

Continuous time Markov chain (CTMC) is a process that 

goes from state to state according to a Markov chain, and 

each time a state is visited the process stays a random 

time that is independent of the past behavior of the 

process and has an exponential distribution [5]. 

The Markov renewal process generalizes CTMC by 

allowing the time between transitions to be arbitrarily 

distributed nonnegative random variable which may 

depend on the current state and the next state during the 

time interval (0, t] [4]. 

Markov Renewal Equations:   

The Markov renewal equation is the generalization of a 

renewal equation where the distribution function in stead 

of being numerical is matrix valued based on the fact that 

the theory of Markov renewal process generalizes 

renewal process and Markov chain, and is a blend of the 

two. Recall that the renewal process generalizes the 

Poisson process by allowing the distribution function F 

(t) to be any distribution function corresponding to a 

nonnegative random variable [9]. 

Birth Equations:    

The transition function  

})(:)({Pr)( isXjstXtP ji                 (2) 

from state i to state j which describes the stochastic 

evolution of a birth process {X (t): t   0} with birth rate 

0  satisfies a system of differential equations known 

as the forward kolmogorov equations given by [11]: 
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with initial conditions     
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where  })(Pr{)( jtXtPj               (5)   

Continuous Time Markov Chain Equations: 
Let {X(t): t 0} be a Continuous time Markov chain 

with state space   }...,2,1,0{E , recall that the 

transition function  )(tPij  define by equation (2) 

represent the probability that a Continuous time Markov 

chain presently in state i at time t will be in state j at time 

(t + s). Define 
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According to [9], we have for all states i, j and time t    

0: 
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This system of differential equations for  )(tPij  is 

known as the forward kolmogorov equations for the 

Continuous time Markov chain {X (t): t  0}. 

A complete discussion of uniqueness and limiting 

behavior solution of this system is given in [1]. 



  

Numerical Approximation of Markov Renewal 

Equations: 

The systems of differential equations for )(tPij  

discussed in sections 3.1and 3.2 represented by equations 

(3,4) and (8) is difficult to work with analytically, and is 

not easy to use for computational purpose. For this 

reason we have to search for approximation methods to 

find the numerical approximation for these systems of 

differential equations for )(tPij .  

Numerical Approximation of Birth Equations:   
Equations (3) and (4) discussed in section 3.1 can be 

solved numerically by using the deterministic Monte 

Carlo method. One application of this method is the 

numerical differentiation. The Runge-Kutta methods are 

commonly utilized for approximation of the difference - 

differential equations (3, 4) and (8). These methods were 

developed to solve a single equation involving a single 

independent and a single dependent variable [2]. In order 

to solve equations (3) and (4) we rewrite them into the 

following finite system of  n first order differential 

equations: 
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with initial conditions   
niforyy i ,...,2,10,10    

Figure 1 plotes the results of solving equation (9) with 6 

equations (i.e. n = 6), using step size h = 0.1, 5.0  

and time t = 0, 0.5, 1.0, …, 10, against the solution of the 

first two equations (red curve for first equation, violet 

curve for the 2
nd

)   of  system (9). 

 

 
Figure 1: Solutions of Equation (9) using n = 2 

 

 

Numerical Approximation of CTMC Equations:  
In order to solve equation (8) by using the deterministic 

Monte Carlo method mentioned in section 4.1,we  

rewrite them into the following finite system of n first 

order differential equations:                                 

 (10) 0,1;.... 332211   nnnnnnnnnn qnyqyqyqyqy 

 niforyy i ,...,2,10,10   with initial conditions  

Figure 2 plotes the results of solving equation (10) with 4 

equations (i.e. n = 4), using time t = 0, 0.5, 1.0, …, 10 

against the solution of the first two equations (red curve 

for first equation, violet curve for the 2
nd

)  of  system 

(10), with appropriate relative error = 0.001 and 

absolute error = 0.001. where the values of the constants 

q's are: 

 q1 = 0.01,   q2 = 0.02 ,  q3 = 0.03 ,   q4 = 0.09 ,   q5 = 0.01 

q6 = 0.20 , q7 = 0.0023 ,  q8 = 0.15 ,  q9 = 0.02 , q10 = 0.10  

 

 
Figure 2: Solutions of Equation (10) using n = 2. 

 

Numerical Simulation of Markov Renewal 

Equations: 

In this section we discus the numerical simulation of 

Birth equations (3, 4) and CTMC equation (8) by 

providing a Markov Chain Monte Carlo (MCMC) 

method for generating the underlying process of these 

equations. MCMC draws samples by running a Markov 

chain that is constructed so that its limiting distribution is 

the joint distribution of  interest [8]. 

Numerical Simulation of Birth Equations:  
Since a Poisson process is a Birth process with rates 

 i , it is then easy to solve equations (3) and (4) by 

simulating the underlying  Poisson process of these 

equations. To generate the  arrival times that follow a 

Poisson process by using MCMC simulation [3], we use 

the model in figure (3).  

 
Fig 3: Super block generating arrival events 

based on Poisson's law. 
 

This model can be formulated in to the following 

suggested algorithm. 

Poisson process Monte Carlo (PPMC) algorithm: 

1- Set the expected number of arrivals )]1([NE   in 

any unit interval. 

2- Set the initial time t0 = 0. 

3- Generate a uniformly distributed random number U 

between 0 and 1.  

4- Taking the logarithm of U and multiplying by  

/1 .  

5- Return Utt ii ln.)/1(1     

6- Repeat steps 3 - 5  n times; stop 

. 



  

Table 1 summarizes the outputs of PPMC algorithm. 
 

Rate 

process Arrival times ti 

  t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

1.0  8.05 8.24 17.08 17.15 35.65 36.91 47.71 74.91 96.11 101.7 

2.0  2.96 15.36 20.46 22.38 24.09 31.44 33.26 41.61 64.21 78.81 

3.0  7.46 8.71 20.91 27.94 29.30 37.06 37.89 37.93 39.25 45.94 

4.0  4.90 7.55 9.64 9.91 11.70 15.12 15.24 16.35 21.00 21.39 

5.0  0.08 0.35 0.54 1.74 6.70 12.10 13.05 16.05 18.63 20.44 

6.0  0.20 2.62 3.46 7.89 9.78 10.60 11.20 11.60 12.50 12.50 

7.0  0.61 2.75 6.78 6.95 9.20 9.41 12.30 12.50 12.80 12.90 

8.0  1.07 1.14 2.45 2.62 7.22 9.26 10.00 10.70 12.10 13.80 

9.0  1.24 1.58 2.30 2.50 3.59 4.84 5.54 6.76 7.04 8.38 

0.1  3.43 6.62 7.39 7.80 10.70 11.7 11.90 12.60 14.10 15.90 

 

Table 1: Poisson arrival times ti . 

Figure 4 plots the arrival times 
10

1}{ iit  along with 

1.0}min{   and 0.1}max{   as 

indicated. Values of arrival times 
10

1}{ iit  from 

stationary Poisson process are marked by the crosses on 

the 
  (red upper crosses) ,   (violate down crosses) 

lines. and do appear to be fairly uniformly spread.  

  

 
Figure 4: Poisson arrival times. 

 

We generate a sequence of events where the time 

between events is independent random variable with 

exponential law. The result can be seen clearly in figure 

5, where we plot the arrival times t1 (red upper curve), t2   

(green down curve) against the parameter 0.1,....,2.0,1.0  . 

 

 
Figure 5: Generating Poisson process. 

We can also generate a Poisson process with parameter 

  by average the arrival times 
10

1}{ iit of the 10 runs 

for each value of  . The result can be shown in figure 6, 

where we plot the average arrival times 
10

1}{ iit  

against the parameter  .  

 
Figure 6: Generating Poisson process. 

 

 

 

 



  

Generating a nonstationary Poisson process by 

thinning: 
To do this we first discuss how to estimate the rate 

function )( t of a  nonstationary Poisson process using 

the following suggested method.  

Piecewise constant method: 
1- Divide the time interval I = [a, b] in to n 

subinterval  I1, I2, … , In.  

2- For each day, determine the number of arrivals 

in each of these subintervals. 

3- For each subinterval, compute the average 

number of arrivals over the m days, these n 

averages are estimates of expected number of 

arrival )]([ sNE  in corresponding subintervals. 

4- To obtain an estimates of the arrival rate )(ˆ t  

for that subinterval divide the average number 

of arrivals in that subinterval by the subinterval 

length. 

Table 2 summarizes the number of arrival customers 

to a mobile repairing shop between 10 A.M. and 2.0 

P.M. for seven different days. To obtain an estimate 

of  )( t , the 4 hour interval was divided into 24 

subintervals each of length 10 sec. 

   

Interval Sat. Sun. Mon. Tue. Wed. Thu. Fri Average 

10.0,10.1 1 1 1 0 0 1 0 0.571 

10.1,10.2 1 0 1 2 0 2 0 0.86 

10.2,10.3 1 1 1 0 2 0 0 0.71 

10.3,10.4 0 1 0 1 0 0 1 0.43 

10.4,10.5 1 0 2 1 0 1 1 0.86 

10.5,11.0 0 1 1 0 0 1 0 0.43 

11.0,11.1 0 2 1 0 0 1 0 0.29 

11.1,11.2 0 1 1 3 1 0 0 0.86 

11.2,11.3 1 0 1 1 2 2 0 1.0 

11.3,11.4 2 1 2 0 0 0 1 0.86 

11.4,11.5 1 1 0 0 2 1 2 1.0 

11.5,12.0 0 0 2 1 0 0 1 0.57 

12.0,12.1 1 1 2 0 0 0 1 0.71 

12.1,12.2 0 1 3 2 0 1 2 1.0 

12.2,12.3 1 0 0 2 1 1 1 0.86 

12.3,12.4 3 0 0 1 1 1 0 0.86 

12.4,12.5 0 0 1 0 1 1 2 0.71 

12.5,1.0 0 0 1 1 1 0 3 0.86 

1.0,1.10 1 1 1 0 0 2 0 0.71 

1.10,1.20 0 1 2 1 0 2 0 0.86 

1.20,1.30 1 0 0 2 1 0 1 0.71 

1.30,1.40 1 0 0 1 0 0 2 0.57 

1.40,1.50 2 1 0 2 0 2 0 1.0 

1.50,2.0 1 0 1 2 1 0 0 0.71 

Table 2: Customers arrival data. 
 

Applying step 4 of the Piecewise constant method of 

specifying )( t  we get the estimation of  )( t  for 

each subintervals mentioned in table 4.   

)(ˆ t = 5.71, 8.6, 7.1, 4.3, 8.6, 4.3, 2.9, 8.6, 1.0, 8.6, 1.0, 

5.7, 7.1, 1.0, 8.6, 8.6 , 7.1, 8.6, 7.1, 8.6, 7.1, 5.7, 1.0, 7.1. 

Figure 7 plots  the estimated rate function in customers 

per minutes for the arrival process between 10 A.M. and 

2 P.M. 

 
Figure 7: Estimated rate function )( t . 

We now discuss how to generate arrival times that follow 

a nonstationary Poisson process with rate function 

)]([)( tNEt   by using MCMC method (thinning 

algorithm). We present the following suggested  thinning 

algorithms: 

Thinning algorithm : 

This algorithm is the analog to the acceptance rejection 

method for   variates generation [6]. Define the 

expectation function  )(t  by : 



t

dyyt
0
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  which is the expected number of arrivals between time 

0 and time t.   A nonstationary Poisson process with 

expectation function )(t  can be generated as follows: 

1. Generate  Poisson arrival times }{ it  at rate 1.. 



  

2. Set  )( 1

1



  ii tt  to be a nonstationary 

Poisson arrival times. 

Figure (8) plots the expectation function )(t ;obtained 

from equation 10; corresponding to the rate function 

)( t  obtained by applying step 4 of the Piecewise 

constant method.  

  

 
Figure 8: Generating a nonstationary Poisson 

process by thinning. 

From figure 7 and 8 we note that )(t  is piecewise 

linear, since )( t  was specified to be piecewise 

constant. Also, )( t  rises most steeply for those values 

of  t  where )( t  is highest.  

Numerical Simulation of CTMC Equations: 
To numerically simulate the forward kolmogorov 

equations (8), we only need to simulate the associated 

underlying CTMC process using the following 

procedure:  

Recall that a Markov chain is determined by a set of 

states, a transition matrix P, and an initial state vector X0. 

The relation between successive state vector is given by 

[7]: 

                            Xn+1 = Xn . P  ;  n   0             (12) 

and the state vector at the nth observation is given by   Xn 

= X0 .
nP . We can estimate the coordinates of the state 

vector at the nth observation using a simulation as 

follows: 

1- Determining the state vector after n transitions for a 

specific initial state i using the following suggested 

algorithm: 

 Generate U uniformly on [0, 1) 

 Select a value uj of U 

 Find the correspondig value xi of the random 

variable X using the relation: 
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   then set vj = Xn       (13) 

where the sequence {vj} is distributed as the random 

variable X. 

2- To determining the probability that the system will be 

in state j on observation n, we begin in state i and track 

the system through n transitions using data from the 

transition matrix. We repeat the process k times and use 

the fraction: 

(number of times the system is in state j on observation 

n) / K          (14) 

as an estimate of the n-step transition probability 

)(nPij .  

Application: 
Consider a four states Markov chain with  initial state 

vector X0 = [ 0.2, 0.4, 0.1, 0.3] and a transition matrix:  
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61.2.1.

04.1.5.

3.03.4.
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we shall use simulation to estimate: 

1- the five step transition matrix 
5P  

2- The state vector after five transitions, as 

follows: 

The exact value of the five step transition matrix is given 

by: 





















1932.3421.1713.2934.

3097.2235.1956.2712.

2021.3267.1752.2961.

2815.2443.1922.2820.

5P  

To estimate the five step transition matrix using 

simulation, we use relation (13) for j = 1, 2, 3, 4 ; n = 5; 

and k = 10000, as an estimate for the probability that the 

system makes a transition from state 1 to state 1, 2, 3, 4 

in five steps. The result of aspecific simulation consisting 

of 10000 runs is: 





















1892.3317.1691.2749.

3067.2205.1936.2519.

1979.3197.1745.2869.

2801.2412.1895.2739.

5P  

Next to estimate the state vector after five transitions we 

use relation (14).   Suppose we have an initial state 

vector Xo = [ 0.2, 0.4, 0.1, 0.3 ]. The first step of 

simulation is to generate values distributed as a random 

variable X0 with the probability density function shown 

in table 3: 

 

State 1 2 3 4 

propability 0.4 0.2 0.1 0.3 

Table 3. 
 

To do so, we select a random number u uniformly 

distributed on (0, 1]. If u < 0.4 then the initial state is 1; if 

0.4  u < 0.6 then the initial state is 2, if 0.6  u < 0.7 

then the initial state is 3, if 0.7< u then the initial state is 

4. A simulation of 10000 runs gives the vector [ 0.2249, 

0.2449, 0.4583, 0.2863 ] as an estimate for the given 

state vector after five transitions.  

Discussion: 
This paper deals wih the numerical solution of the 

forward kolmogorov equations of type Birth equations 

and Continuous Time Markov Chain equations. This 

research also treats Markov Chain Monte Carlo 

simulation problem for simulating the underlying process 

of these equations, we discuss three methods for 

generating stationary and a non-stationary Poisson 

process, in addition to generating the Continuous-time 

Markov Chain with many applications, we can make a 



  

general comparison between numerical solution and 

numerical simulation solution of these equations as 

fllows:  

As the forward kolmokrov equations become more 

detailed, a nalytical and numerical results become very 

difficult to obtain, for this reason Markov Chain Monte 

Carlo simulation technique become an increasingly 

attractive way for generating the underlying process of 

thes equations, and has been found to be a useful and 

simple powerful test.     
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 توليد العملية التحتية لمعادلات كولموكروف التقدمية
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  ، العراق  ، الموصل جامعة الموصل،  كلية التربية الأساسية ،قسم الرياضيات   
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 :الملخص
محاكاة المونت كارلو لسلاسلل ملاركوف لتوليلد العمليلة التحتيلة تناول هذا البحث مسألة الحل العددي لمعادلات ماركوف التقدمية، إضافة إلى استخدام أسلوب 

لعلددي ننلدما تكلون لهذه المعادلات من اجل توقع مسارالعينة لهذه العمليات. لتوضيح كيفية اسلتخدام هلذا الأسللوب تلم إجلراح المحاكلاة العدديلة وإيجلاد الحلل ا
رة الزمن. وتبين ملن خللال تفحلل النتلافا كفلاحة أسللوب محاكلاة المونلت كلارلو لسلاسلل العملية التحتية من نوع بواسون ومن نوع سلاسل ماركوف المستم

 ماركوف وسهولته في توقع سلوك مسار العينة لهذه العمليات نلى امتداد الزمن.
 

 


