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Abstract
In this paper, circular contourlet transform (CCT) is proposed, designed and

realized. As in the classical contourlet transform (CT), a double filter bank structure is
also considered in this work but in different manners. A circularly-decomposed filter
bank is first used to capture the points of discontinuities in the image edges, and then
followed by a directional filter bank to obtain smoothed contours. The resulting CCT
contains a critically sampled filter bank that decomposes images into any power of two's
number of directional subbands at multiple scales.  The designed CCT is realized by 2-
D lattice allpass sections with separable and non-separable 2-D functions of z1 and z2.
The resulting structure preserves both modularity and regularity properties which are
suitable for VLSI implementations. Objectively, the performances of the realized CCT
are tested and proved to be better than the classical CT in detail image preservation.
The resulting subband images also indicate the superiority of  the proposed CCT.

Keywords: Circular contourlet transform, Contourlet transform, Laplacian
pyramid, Directional filter bank, 2-D lattice allpass sections, Multiresolution
(multiscale & multidirection) analysis.
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I. INTRODUCTION

        Although the wavelet transform (WT) is known to be a powerful tool in many signal and
image processing applications such as compression, noise removal, image edge enhancement,
and extraction; wavelets are not optimal in capturing the two-dimensional singularities found
in images and often required in many segmentation and compression applications [1]-[3]. In
particular, natural images consist of edges that are smooth curves  which cannot be captured
efficiently by the wavelet transform. Therefore, several  new transforms are required for image
signals.

The contourlet transform (CT) is one of the new geometrical image transforms, which
can efficiently represent images containing contours and textures[4]-[6]. This transform uses a
structure similar to that of curvelets [7]-[10], that is, a stage of subband decomposition
followed by a directional transform. In the contourlet transform, a Laplacian pyramid (LP) is
employed for the first stage, while directional filter banks (DFBs) are used in the angular
decomposition stage. A comparison between the wavelet scheme and the contourlet shows the
improved edge contours of the later [6],[11]. This is attributed to the grouping of nearby
wavelet coefficients, since they are locally correlated due to the smoothness of the contours as
shown in Fig. 1. Therefore, a sparse expansion for natural images can be obtained by first
applying a multiscale transform, followed by a local directional transform to gather the nearby
basis functions at the same scale into linear structures. In essence, a wavelet-like transform for
edge detection, and then a local directional transform for contour segment detection are
applied. The overall result is an image expansion using basic elements like contour segments,
and thus are named contourlets and the process is called the contourlet transform (CT).

Circular split 2-D spectral schemes (circularly-decomposed frequency subspaces) are
known to give better performance than rectangular-support or diamond-support schemes when
it is desired to extract as low frequency information as possible in a 2-D low-pass filtering
process. This also means that circular split schemes are  preferred to extract as high frequency
information as possible in a 2-D high-pass filtering process [12].

Wavelet                                    Contourlet
Fig. 1 The successive refinement by the two systems (wavelet and contourlet) near a smooth

contour, which is shown as a thick curve separating two smooth regions.

In this paper, A circular contourlet transform (CCT) is proposed, designed and then
efficiently realized. A double filter bank structure is also applied. Using circularly-
decomposed  filter  bank, A  circular  split  scheme  (CSS)  is  first  employed  to  capture  the
points of discontinuities, and then followed by a directional filter  bank (DFB) to  obtain
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smoothed structures. The resulting CCT decomposes images  into directional subbands at
multiple scales and contains a critically sampled filter bank that decomposes  images into any
power of  two`s number of directions. The rest of this paper is organized as follows: The
contourlet transform is described in section II. Section III contains the multiscale and
multidirection analysis of such transform. In section IV, the proposed circular contourlet
transform is formulated, designed and realized using 2-D lattice allpass sections with
separable  and non-separable 2-D functions of z1 and z2 (z1 and z2 are the 2-D complex spatial
frequencies in the discrete spectral domain). The quantitive and qualitative performances of
the realized CCT transform are examined and compared with those of the classical CT
transform in section V. Finally, section VI concludes this paper.

II. THE CONTOURLET TRANSFORM
The contourlet transform consists of two major stages: the subband decomposition and

the directional transform. At the first stage, LP is used to decompose the image into subbands ,
and then the second one is a DFB which is used to analyze each detail image.  A flow graph of
the CT is shown in Fig. 2. Example of the spectral split scheme achieved by such LP is shown
in Fig. 3.  2-D filters may be employed in the realization of this stage. Example of the
directionally-decomposed frequency split scheme achieved by such DFB is shown in Fig. 4 .
2-D fan filters which serve as the building blocks of this DFB have wedge-shaped passband
spectral regions [10] as in Fig. 4.

Fig. 2 A flow graph of the contourlet transform. The image is first decomposed into subbands
by LP and then each detail image is analyzed by DFB.

Fig. 3 The spectral split scheme of LP filter  .        Fig. 4 An example of the directional
                                                                                             bank frequency partitioning  .
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It is easily shown that these wedge-shaped regions correspond to directional components of
the image [8], [9]. All 2-D filters employed are 2-D extensions of the 1-D filters previously
designed to satisfy perfect / aliasing-free reconstruction constraints [12]. The resulting 2-D
filter functions are nonseparable in z1 & z2.

Since, the CT is formed precisely via a new multiresolution analysis framework that is
similar to the link between wavelets and filter banks [1], the new elements in this framework
are multidirection and its combination with multiscale.
        With this insight, a double filter bank structure (see Fig. 5a) is used for obtaining sparse
expansions for typical images having smooth contours [5], [6]. In this double filter bank, the
LP (rectangular-support scheme) is first used to capture the points of discontinuities, and then
followed by a DFB (directionally-decomposed split scheme) to link points of discontinuities
into smooth curves [4]. The overall result is an image expansion using basic elements like
contour segments, and thus are named contourlets. In particular, contourlets have elongated
supports at various scales, directions, and aspect ratios. Thus allows contourlets to efficiently
approximate a smooth contour at multiple resolutions just like the  scheme shown in Fig. 5b.
From frequency domain point of view, CT provides  both multiscale and multidirectional
decompositions.

(a)                                                                             (b)

Fig. 5 (a) The contourlet filter bank: first, a multiscale decomposition into octave bands by LP
is computed, and then a DFB is applied to each bandpass channel, (b) A typical contourlet
frequency partition scheme.

III. MULTIRESOLUTION ANALYSIS

In the followings and for simplicity, the case with orthogonal filters, which lead to tight
frames will be considered only. The more general case with biorthogonal filters can be treated
similarly. Multiresolution analysis is divided into the following two analysis:
A)  Multiscale analysis

This is the multiresolution analysis for the LP, which is similar to the one for wavelets.
Suppose that the LP in the contourlet filter bank uses orthogonal filters and down sampling by
2 in each dimension as shown in Fig. 6 (that means M = diag(2,2)= ). Under certain
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regularity conditions, the lowpass synthesis filter G in the iterated LP uniquely defines a
unique scaling function )()( 2

2 RLt  that satisfies the following two-scale equation [1], [2].

.)2(][2)(
2Zn

ntngt (1)

where g[n] is the impulse response of the lowpass synthesis filter G. Let
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, ZnZjnt
j

j
j

nj (2)

Then the family 2, Znnj is an orthonormal basis for an approximation subspace jV at the

scale j2 . Furthermore, ZjjV  provides a sequence of multiresolution nested subspaces

...,... 21012 VVVVV where jV is associated with a uniform grid of intervals
jj 22  that characterizes image approximation at scale j2 . The difference images in the LP

contain the details necessary to increase the resolution between two consecutive
approximation subspaces. Therefore, the difference images live in a subspace jW  that is the

orthogonal complement of jV  in 1jV (see Fig. 7a) , or
.1 jjj WVV (3)

(a)                                             (b)

Fig. 6  LP scheme; (a) Analysis: Outputs are a coarse approximation c(n) and a difference d(n)
between  the  original  signal  and  the  prediction P.  The   process   can   be   iterated   by
decomposing the coarse version repeatedly, (b) Usual synthesis.

(a)                                                   (b)
Fig. 7 (a)  Multiresolution Analysis: scale, (b) Multiresolution Analysis: direction

It is believed that the LP can be considered as an oversampled filter bank where each
polyphase component of the difference image ][nd   in Fig. 6, together with the coarse image
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][nc ,comes from a separate filter bank channel with the same sampling matrix M = diag (2,2).
Let 30,)( izFi  be the synthesis filters for these polyphase components. These are

highpass filters. As for wavelets, a continuous function )()( ti , can be associate with each of
these filters, where

.)2(][2)(
2

)(

Zn
i

i ntnft (4)

where  fi[n] is the impulse response of the highpass synthesis filter Fi(z).
So, letting )()( ti  in (4), be in the following form
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Then, for scale j2 , 2,30
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i
nj is tight frame for jW . For all scales,

2,30,
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, ZniZj
i
nj is a tight frame for )( 2

2 RL . In both cases, the frame bounds are equal to

1. Since jW is generated by four kernel functions (similar to multi-wavelets), in general it is
not a shift-invariant subspace. Nevertheless, a shift-invariant subspace can be simulated by
denoting

,30,)()( )(
,2, itt i
njknj i

(6)
where ik  are the coset representatives for down sampling by 2 in each dimension, i.e.,

.)1,1(,)1,0(,)0,1(,)0,0( 3210
TTTT kkkk (7)

With this notation, the family 2, Znnj associated to a uniform grid of intervals 11 22 jj on
2R  provides a tight frame for jW .

B) Multidirection Analysis

Using multirate identities [2], it is instructive to view an l-level tree-structured DFB
equivalently as a l2  parallel channel filter bank (as in Fig. 8) with equivalent analysis filters,
synthesis filters and overall sampling matrices. In Fig. 8, the equivalent directional analysis
filters are denoted as , and  the directional synthesis filters as

ll
k kD 20,)( , which correspond to the subbands indexed as in Fig. 7. The corresponding

overall sampling matrices   are proved to have the following diagonal forms [1]

)"("22
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directionhorizontalneark

S
ll

l

l
l

l
k (8)

which means sampling is separable. The two sets correspond to the mostly horizontal and
mostly vertical set of directions, respectively. From the equivalent parallel view of the DFB, it
can be seen that the family
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obtained by translating the impulse responses of the equivalent synthesis filters )( l
kD  over the

sampling lattices by )(l
kS , provides a basis for discrete signals in L2(z2). This basis exhibits

both directional and localization properties. In the iterated contourlet filter bank, the discrete
basis (9) of the DFB can be regarded as a change of basis for the continuous-domain
subspaces from the multiscale analysis of the previous LP stage. Suppose that the DFB in the
contourlet filter bank utilizes orthogonal filters and when such DFB is applied to the
difference image (detail) subspaces,  then  the   resulting  detail directional subspaces )(

,
l
kjW

in the  frequency  domain  will

Fig. 8 The multichannel view of an l-level tree-structured DFB,

be as illustrated in Fig. 9. The indexes j , k, and n specify the scale, direction, and location,
respectively. Note that the number of DFB decomposition levels l is different at different
scales j, and is denoted by jl . Recall that jW is not a shift-invariant subspace. However, its

subspaces )(
,
l
kjW  are regenerative, since they are generated by a single function and its

translations.

Fig. 9  Multiscale and multidirection subspaces generated by the transform  which is
illustrated on a 2-D spectrum decomposition .
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        For a contourlet filter bank, the following properties hold [11], [13]:
(1) If  both the LP and the DFB use perfect-reconstruction filters, then the discrete contourlet
transform achieves perfect reconstruction, which means it provides a frame operator.
(2) If both LP and the DFB use orthogonal filters, then the  CT provides a tight frame with
frame bounds equal to 1.
(3) The discrete contourlet transform has a redundancy ratio that is less than  4/3.
(4) Suppose an levell j  DFB is applied at the pyramidal level j of the LP, then the basis
images of the discrete contourlet transform(i.e. the equivalent filters of the contourlet filter

bank) will have an essential support size of jCwidth 2  and
22 jljClength , where C

is a constant.
(5) Using FIR filter realizations, the computational complexity of the CT is )(NO  for N-pixel
images.

IV. THE PROPOSED CIRCULAR CONTOURLET TRANSFORM (CCT)

A) Formulation and properties

        The proposed circular contourlet is a cascade of a circular split scheme (CSS) and a DFB
as shown in Fig. 10a . Such structure decomposes images into directional subbands at circular
multiple scales. The DFB is a critically sampled filter bank that decomposes  images into any
power of  two`s number of directions. Due to this cascaded structure, the circular multiscale
and directional decompositions are independent of each other. One can decompose each scale
into any arbitrary power of two's number of orientations and different scales can  be  divided
into  different  numbers  of  orientations. Fig. 10b also shows the proposed frequency division
of the circular contourlet transform where three of the four scales are  divided into two, four,
and eight  directional subbands from coarse to fine scales, respectively.

Figure 11 illustrates the subspace generation by CCT. In Fig. 11a , jV  is a subspace,
defined on a uniform circular grid. The difference image ( Wj subspace in the CSS) carries the
details necessary to increase the resolution from jV to 1jV on an image approximation; index k
runs to all l2 directions. Figure 11b illustrates the subspace generation by the directional
decomposition and the increase in the resolution from to  and  .  and

 , in Fig. 11c, are the resulting subspaces from the applications of the directional
decomposition on the details subspace Wj  in the CSS.

                                    (a)                                              (b)
Fig.  10 (a) The proposed the discrete circular contourlet transform implementation.
              (b) Its frequency partition scheme.
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(a)                                        (b)                                           (c)

Fig. 11 Generation of subspaces by CCT; j subspace index; k direction; l all commands
(a) CSS decomposition. (b) directional decomposition. (c) CCT subspaces.

B) Design and realization

The design of the circular split scheme (CSS) 2-D filters starts from the 1-D splitting
orthogonal filers in Fig. 12a. In such figure and for perfect-reconstruction , it can be written as

1)(~)()(~)( 11 zgzgzhzh (10)

where

)()(~

)()()(~
)()(

zhzg
and

zhzgzh

zhzg

(11)

(10) can be evaluated on the unit circle )( iez  as

1)()(
22 ii eheh (12)

It is clear, that condition (12) is met for all , even at 2/  and leads to a LP-HP
power complementary filter pairs with perfect-reconstruction. It should be noted here that
constraints (11) does not impose any phase conditions. Nevertheless,  the approach will result
in zero-phase properties of the total system. Condition (12) can easily be written in the
following from:

1)()( 22 ii egeh ,for all                                                                (13)

Keeping the condition (13) in mind, h(z) and g(z) can  be  expressed  as  the  sum  and
difference of two all-pass sections, where

)()(
2
1)( 10 zazazh                                                                                          (14a)

and

)()(
2
1)( 10 zazazg                                                                                            (14b)



Al-Rafidain Engineering             Vol.18       No.4                        August   2010

37

where )(0 za and )(1 za  are stable all-pass functions.

Fig. 12 (a) 1-D analysis bank, (b) Lattice all-pass equivalent filter bank.

The structure in Fig. 12b represents the lattice all-pass equivalence of the analysis bank
of Fig. 12a which satisfy (14a&b). It should be noted that that the  lattice all-pass equivalent
structure of the synthesis bank is identical to the 2-band analysis bank and can also be
represented as the sum and difference of two all-pass sections. However, the design of the
desired circular split scheme (CSS) 2-D filter bank  is an extension of the 1-D  filter bank via
a suitable 1-D to 2-D transformation. It should be noted, here, that the circular decomposition
scheme requires some nonlinear change of variables, such as [12]

)()( 22111 zfzfz                                                                                                            (15a)
and

)()( 1
22112 zfzfz                                                                                                      (15b)

where

2,1
1

)( ifor
z

zzf
ii

ii
ii                                                                              (16)

 with 21  for circular shape decomposition.
         The choice of 1  and 2 values provides the appropriate bending for the supports to be
look like circular shapes. On the other hand, the values of 1  and 2 are limited to

.2,11 ifori                                                                                                  (17)
to insure stability [12].

It should be noted that, (16) is nonlinear transformation called the digital spectral
transformation (DST) [12], [13]. Due to this non-linearity, these variations of variables cannot
be readily incorporated in the sampling rate alteration filters. Therefore, such changes can be
incorporated in the analysis/synthesis filters themselves, resulting in 2-D all-pass sections
which are nonseparable, although however they can be efficiently realized as will be shown in
the following discussion:

The circularly-decomposed filter banks can be realized, using the same 1-D structure
shown in Fig. 12a, but with )(zh being transformed via the DST to ),( 21 zzh  which can be
formed as [12]

))(())(()()(),( 22112121 zfhzfhzhzhzzh                                                                (18)
where 1z and 2z  are as those given in (15a&b) and )( ii zf is as given in (16).

It was proved previously in [14], that the application of this DST to linear-phase 1-D
filter leads to 2-D filters which preserve the linear-phase characteristics approximately. Thus,
it can be concluded that the application of this DST to the 1-D filter banks, in          Fig. 12a,
will lead to 2-D circular filter banks for perfect reconstruction of images. The equivalent filter
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bank in Fig. 12b can be used. Since,  it is realized in a lattice all-pass sections, then some
saving in computation can be gained , while lattice structure will provide the system with a
reduced sensitivity to finite word length of multiplier values [11].

The support of circularly-symmetric response of 2-D low- /high-pass splitting scheme is
shown in Fig. 11a, the cutoff curve in this scheme is characterized by the circle c = ,
where c  is the 2-D cutoff frequency in rad. The pass-band is described by the

region c
2
2

2
121 0:,   while the stop-band is described by the

region 2
2

2
121 :, c .

        The same 1-D structure shown in Fig. (3.3a) with h(z) and g(z) being 1-D filters chosen to
be realized as Haar orthogonal filters [  and   is as given in (11)],
while, their 2-D versions  and  , used for the realization of the CSS  scheme,
are identical to that of (18). After designing and realizing this 2-band circular-split scheme, a
second stage of DFB still  have to be designed and realized. In such a stage, the design of the
2-D DFB will also start from the 1-D splitting filters in Fig. 12b with the two 1-D all-pass
sections  and  being replaced by their 2-D counterparts. As in Fig. 13, a 3-level tree
decomposition structure is used to serve for an 8-band directional decomposition. The Haar
orthogonal filters are also utilized, here, and realized as a two 1-D all-pass sections in  a lattice
structure, with

                                                                                                                  (19a)
and

                                                                                                           (19b)

The corresponding 2-D lattice all-pass sections in the first level of the tree structure of  Fig.13
will yield a 2-band directional-decomposed split scheme. These sections can be derived as [ 11
]

)()(),( 1
210210210 zzazzazzA (20a)

 and

)()(),( 1
211211211 zzazzazzA (20b)

The transfer functions till the outputs of the first level of directional decomposition
),( 210 zzDA and ),( 211 zzDA  can be written in matrix form as

),(
),(

11
11

2
1

),(
),(

211

210

211

210

zzA
zzA

zzDA
zzDA

                                                              (21)

 The resulting 2-band directionally-decomposed filter bank can be realized as in Fig. 12b, but
with )(0 za and )(1 za  being replaced by ),( 210 zzA  and ),( 211 zzA  given in (12a&b),
respectively.

        At the second level of the tree structure, a 4-band directional-decomposed split scheme is
also formed as in Fig. 13. It is realized just like the previously mentioned Haar lattice all-pass
structure with )(0 za and )(1 za  being replaced by
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.1,0)()(),( 2121 iforzjazjazzB iii                                                    (22)

The transfer functions till the outputs of the second level of directional decomposition
),( 210 zzDA and ),( 211 zzDA  can be written as

.1,0,),(),(),(),(
4
1),( 21121021121021 iforzzBzzBzzAzzAzzAD i (23a)

and

.3,2,),(),(),(),(
4
1),( 21121021121021 iforzzBzzBzzAzzAzzAD i      (23b)

The all-pass functions in third level of the tree structure of the directional decomposition
stage (Fig.13) form the final requirement to accomplish an 8-band directional-decomposed
split scheme. These functions are given by [11]

C j i (z1,z2) = Ai(z1,z2) , for i = 0, 1                                                                               (24)

 with , for j = 1, , for j = 2,

, for j = 3, and , for j = 4.

  Thus, the overall  8-band directionally-decomposed filter bank transfer functions are

DA0
"(z1,z2) =  [A0(z1,z2)+A1(z1,z2)][ B0(z1,z2)+B1(z1,z2)][C10(z1,z2)+ C11(z1,z2)],

DA1
"(z1,z2) =  [A0(z1,z2)+A1(z1,z2)][ B0(z1,z2)+B1(z1,z2)][C10(z1,z2) - C11(z1,z2)],

DA2
"(z1,z2) =  [A0(z1,z2)+A1(z1,z2)][ B0(z1,z2) - B1(z1,z2)][C20(z1,z2)+C21(z1,z2)],

DA3
"(z1,z2) =  [A0(z1,z2)+A1(z1,z2)][ B0(z1,z2) - B1(z1,z2)][C20(z1,z2)- C21(z1,z2)],

DA4
"(z1,z2) =  [A0(z1,z2) - A1(z1,z2)][ B0(z1,z2)+B1(z1,z2)][C30(z1,z2)+C31(z1,z2)],          ..(25)

DA5
"(z1,z2) =  [A0(z1,z2) - A1(z1,z2)][ B0(z1,z2)+B1(z1,z2)][C30(z1,z2)- C31(z1,z2)],

DA6
"(z1,z2) =  [A0(z1,z2) - A1(z1,z2)][ B0(z1,z2) -B1(z1,z2)][C40(z1,z2)+C41(z1,z2)],

and
DA7

"(z1,z2) =  [A0(z1,z2) - A1(z1,z2)][ B0(z1,z2) -B1(z1,z2)][C40(z1,z2)- C41(z1,z2)]

      Finally, this directional decomposition stage is cascaded with the predesigned 2-D circular
split scheme (CSS) to form the total structure of the proposed CCT and the output of the ith

band is given by

       Yi(z1,z2) = DAi
"(z1,z2) X(z1,z2)    for i = 0, 1, 2, …, 8.                                              (26)

where X(z1,z2)  is the scaled image from the CSS stage.

It can be seen that the resulting structure of Fig. 13 is a regular and a modular one. Such
properties make it suitable for VLSI implementation.
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Fig. 13   8-band directionally-decomposed analysis bank

V. ASSESSMENT AND COMPARATIVE STUDY

In this section, the performance of the proposed CCT transform is evaluated and
compared with that of the ordinary CT transform. A test image as the one shown in Fig. 14(a)
is applied as an input to both CT & CCT transforms. The resulting directional details of the
eight bands for both CT & CCT transforms are shown in Fig. 14(b). In such figure, it can be
seen that due perfect circular and directional decompositions of high frequency bands in CCT,
each band simulates the details in its direction with a better high-low frequency resolution
because of using CSS instead of LP. This indicates the superiority of CCT in preserving image
details. The objective performance of the proposed CCT transform is also evaluated via
calculating an assessment parameter which is called Deflection Ratio (DRi) at each directional
band i, for i = 0, 1, 2, …, 8. DRi is used here as a performance estimator. A proposed formula
for this deflection is given by [15],[16]

                                                            (27)

where  represents the ith detail image pixels of the ith  resulting CT or CCT bands. and
R*C is its size. Also

(28)
and

                                                                             (29)

MVi is the mean value with SDi as the standard deviation, of the same ith detail image pixels. It
should be noted that, the ratio DR should be higher at pixels with stronger reflector points and
lower elsewhere. Table-1 illustrates these DRi values for different CT and CCT directional
bands. From such table, the value of DR in each band of CT is modified in the case of CCT,
referring to accurate definition of image details in that direction. It is believed that, the use of
CSS instead of LP, is also the reason of such modifications. The previous properties nominate
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the proposed CCT as a candidate instead of  the classical CT to be utilized in those fields of
image processing (such as denoising, compression and classification) which need better edge
representations.

(a)

(b)
Fig. 14 (a) Original image, (b) It's directional details of the eight bands for both CT & CCT.

Table-1 Directional ratio DRi values for different CT and CCT directional bands

DIRECTIONAL BAND I
=

0 1 2 3 4 5 6 7

DRI  WITH CT 9.01X10-4 0.9179 0.0876 0.9118 0.0884 0.9114 0.0904 0.9093
DRI  WITH CCT 2.87X10-5 0.8970 0.1031 0.8968 0.1032 0.8968 0.1033 0.8967

VI. CONCLUSIONS

A proposed circular contourlet transform based on both circularly- and directionally-
support decomposition structures has been designed and realized utilizing lattice all-pass
sections. The idea is based on using a circular-split scheme (CSS) followed by multiresolution
DFB with many levels of decomposition. The proposed circular contourlet transform has been
discussed and an execution algorithm has been adopted for the calculation of such transform.
The details of a test image) has been analyzed via this circular contourlet transform. The
resulting detailed images have been compared with the corresponding detailed images due to
the application of the classical contourlet transform. From objective measures point of view,
the resulting assessment parameter, Deflection Rate (DR) has indicated the superiority of such
proposed CCT for perfect detail preservation. In addition to that, the resulting subband images
from the proposed CCT are visually better where significantly more levels of detail are
retrieved. The comparison also indicates that the application of the proposed circular
contourlet transform results in more continuous contours (edges). On the other hand, from
realization point of view, it is believed that the resulting structures preserve both modularity
and regularity properties which are suitable for VLSI implementations. Besides, since such
CCT is realized in a lattice all-pass sections, then some saving in computation can be gained,
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while lattice structure will provide the system with a reduced sensitivity to finite word length
effect.
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