
Ali : Reconfigurable Self-Organizing Neural Network Design and it's FPGA

99

Reconfigurable Self-Organizing Neural Network Design and it's
FPGA Implementation

 Basma M. K. Younis Basil Sh. Mahmood Fakhraldeen H. Ali
 Technical Engineering College College of Electronics Computer Engineering Department

In Mosul University of Mosul University of Mosul

Abstract
The use of Kohonen self-organizing feature maps in real time applications requires

high computational performance, especially for embedded systems and hence neural network
chips are essential. A digital architecture of Kohonen neural network with learning capability
and on-chip adaptation and storage is proposed with the implementation of Kohonen Self-
Organizing Map (SOM) neural networks on the low-cost Spartan-3 FPGAs. The architecture
of this digital chip based on the idea that some assumptions for the restrictions of the
algorithm can simplify the implementation. Using the Manhattan distance, a special treatment
of the adaptation factor, and neighborhood functions will decrease the necessary chip area so
that a high number of processing elements can be integrated on one chip.
Keywords: FPGA, Weight Vectors, Manhattan distance, Learning

FPGA

 /

 .
FPGA .

 , ,
 ,

 .

.

Received 27 May 2008 Accepted 13 Aug. 2008

Al-Rafidain Engineering Vol.17 No.3 June 2009

100

1. Introduction
Artificial neural networks (ANNs) are systems based on mathematical algorithms,

which are derived from the field of neuroscience and are characterized by intensive
arithmetic operations [1]. These networks display interesting features such as parallelism,
classification, optimization, adaptation, generalization and associative memories [2]. As
artificial neural networks (ANNs) has gained popularity in a variety of application domains, it
is critical that these models run fast and generate results in real time. Although a number of
implementation of neural networks are available on sequential machines, most of these
implementations require inordinate amount of time to train or run ANNs, especially when the
ANN models are large. One approach for speeding up the implementation of ANNs is to
implement them on parallel processors. Another approach is to design special hardware. So
development of digital neurohardware is driven by the desire to speed-up the simulation of
ANN and/or to achieve a better performance-to-cost ratio than general-purpose systems [3].

With the arrival of Field Programmable Gate Arrays (FPGAs), it has been possible to
build an entire ANNs using only FPGA and memory. Even if today’s FPGAs are of
considerable size, each processor element (neuron) must be relatively simple if a highly
parallel computer is to be constructed from them. Also, it is possible to build very powerful
and efficient computers using bit-serial processing elements with SIMD (Single Instruction
stream, Multiple Data streams) control. A major benefit of using FPGAs is the fact that
different architectural variations can easily be tested and evaluated on real applications [4].

Among the architecture and algorithms suggested for ANNs, the Self-Organizing Map
,proposed by Kohonen, has the special property of effectively creating spatially organized
"internal representation" of various features of input signals and their abstraction [5]. In this
work, the processing elements of Kohonen neural network are designed and operational testes
are verified through image compression application using vector quantization algorithms for
reducing the transmission bit rate or the storage. The hardware organization using FPGA has
been modeled and simulated in VHDL. The Xilinx family (XC3S200FT256 Spartan-3 FPGAs
) is chosen as target technology [6],[7].

In section 2, the self-organization algorithm is introduced. Section 3 deals with two
different designed architectures for the algorithm. Section 4 talks about the synthesis and
implementation results. Section 5 gives the test results and finally, conclusions are given in
Section 6.

2. Kohonen Network Self Organizing Algorithm
Self-Organizing Maps (SOMs) as proposed by Kohonen [5] use an unsupervised

learning algorithm to form a nonlinear mapping of high-dimensional input space onto a low-
dimensional (in most cases two-dimensional) map of neurons. SOMs have been successfully
applied to a wide range of technical applications [5]. To comply with the need of high
performance and low power consumption, as forced by many applications, the use of special
purpose hardware is often inevitable. Especially in embedded applications a small physical
size of the implementation is essential. The main steps of the algorithm are :

A. Selecting of the Best Matching Cell
Consider the two-dimensional network of cells. their arrangement can be hexagonal,

rectangular, etc. Let (in matrix notation) nT
n Rxxxx],...,,[21 be the input vector that, for

simplicity and computation efficiency, is assumed to be connected in parallel to all the
neurons i in this network. (Subsets of the same input signals can be connected randomly to the

Ali : Reconfigurable Self-Organizing Neural Network Design and it's FPGA

101

cells [5]). The weight vector of cell i shall henceforth be denoted by
nT

iniii Rwwww],...,,[21 . The better measure for the match of x with wi is based on the
Euclidean distances between x and wi .

(1)...)j(x)j(wE
k

j
ii

1

2

 where k is the number of elements in the input and weight vectors. The minimum
distance defines the "winner" wc.

B. Updating the Weight Vectors
It is crucial to the formation of ordered maps that the cells doing the learning are not

affected independently of each other, but as topologically related subsets, on each of which a
similar kind of correction is imposed. During the process, such selected subsets will then
encompass different cells. The net corrections at each will thus tend to be smoothed out in the
long run. An even more intriguing result from this sort of spatially correlated learning is that
the weight vectors tend to attain values that are ordered along the axes of the network.

In biophysically inspired neural network models, correlated learning by spatially
neighboring cells can be implemented using various kinds of lateral feedback connection and
other lateral interconnections. In the present process, we want to enforce lateral
interconnection directly in a general form, for arbitrary underlying network structure, by
defining a neighborhood set Nc around a cell c. At each learning step, all the cells within Nc
are updated, where cells outside Nc are left intact. This neighborhood is centered around that
cell for which the best match with input x is found:

(2)...}wxmin{wx ic

The width or radius of Nc can be time-variable. In fact, for good global ordering, it is
experimentally turned out to be advantageous to let Nc be very wide in the beginning and
shrink monotonically with time (Figure 1).

Figure 1:Examples of Topological Neighborhood Nc(t), where t1<t2<t3 for Different
Arrangements (a)Rectangular (b)Circular and(c)Hexagonal

The explanation for this may be that a wide initial Nc, corresponding to a coarse
spatial resolution in the learning process, first induced a rough order in the wi values, after
which narrowing the Nc improves the spatial resolution of the map; the acquired global order,
however, is not destroyed later on. It is even possible to end the process with Nc={c}. That is,
finally updating the best-matching unit "winner" only, in which case the process reduces to

Al-Rafidain Engineering Vol.17 No.3 June 2009

102

simple competitive learning. Before this, however, the "topological order" of the map would
have to be formed. The update process in discrete time notation is:

31 ...
Nc(t)iif
Nc(t)iif

)t(w
(t)]w(t)[x(t)(t)w

)(tw
i

ii
i

where (t) is a scalar value "adaptation gain" 0< (t) <1 which is related to a similar gain used
in the stochastic approximation process [5], (t) should decrease with time.

An alternative notation is to introduce a scalar "kernel" function hci=hci(t)

(4)...)]t(w)t(x)[t(h)t(w)t(w iciii 1

whereby, above, hci(t)= (t) within Nc and hci(t)=0 outside Nc. On the other hand, the
definition of hci can also be more general; a biological interaction often has the shape of "bell
curve" . Denoting the coordinate of cell c and i by the vector rc and ri respectively, a proper
form for hci might be:

(5)...)
rr

exp(hh ci
ci 2

2

0

with h0=h0(t) and = (t) as suitable decreasing functions of time [5].

3. Hardware Architectures
The chip should contain a high number of elements so that large maps are possible

without making the system too complex. To avoid the bottleneck between the processor
element (PE) and the memory, the chip should contain on-chip-memory (local RAM) for
each element. And the system should be simple enough to be extended by adding new chips
(expandable).

In order to find a solution that fits all these requirements, a compromise between the
functions of each element and the number of elements per chip has to be found. If the PE
would have the capability of calculating the exact equations of the SOM learning rule and the
distance, the necessary chip area is too large for a high number of elements per chip. On the
other hand, restrictions that are made for the calculations should not change the function of
self organizing feature maps.

Designs presented in this work are such a compromise, these designs are based on the idea to
simplify the equations due to hardware aspects so that an efficient implementation is possible.

Simulation of self organizing feature maps can be divided into two phases. During
learning phase, the input vector is sent to all processor elements and each PE will calculate
the distance of this input vector to its
local weight vector. In most cases, the Euclidean Distance is used. After finding the PE with
the minimum distance (Best Match), the adaptation factor is calculated for all elements and
the weights are updated. During recall phase, the new input vector is sent to all elements and
the results of the calculations are the coordinates of the Best Match.

In a digital hardware implementation, a large chip area is needed to realize the square
root and the multiplier functions. In order to get a smaller and faster chip design, the
following restrictions have been made:

Ali : Reconfigurable Self-Organizing Neural Network Design and it's FPGA

103

First: the Manhattan distance is used instead of the Euclidean distance. Therefore no
multipliers are required to calculate the distance.

6
1

...(j)wx(j)cetan distanManhat
k

j
ii

The calculation of this distance can be realized in hardware with adders and simple
gates.

Second: To calculate the weight updates, it is necessary to multiply the adaptation
factor with the difference between x and w (cf. updating the weight vectors discussed in
[9]). Due to hardware aspects, it is very easy to multiply two numbers if one of these numbers
is an element of the following set

(7)...,...,,,, n2
1

8
1

4
1

2
11

This makes it possible to use shifters instead of multipliers for the adaptation.
Third: To calculate the Neighborhood functions NC for each iteration, a lookup table

is used. This can be realized in hardware with embedded memory blocked in the chip (Block
RAMs).

3.1. Full Parallel 4×4 Network
In this section, a digital hardware implementation of self organizing 4x4 map is

presented. The chip has 26 pins as described in Figure 2, Eight different instructions can be
executed as shown in table 1.

Figure 2: 4x4 Network Block Diagram

Table 1 :The Instruction Set of 4x4 Network

Instruction Description Control Pins
Value

Reset Reset all Calculation Units 000
WriteWeight Write Weight from DataIn to Internal RAM 001

CalDist Calculate the distance between the input vector and
the weight vectors 010

CalMinDist Find Location of the Winner [Minimum] 011
LoadAlpha Load the adaptation factor 100
UpdateWeight Update Weights [the winner and surrounding] 101
ReadWeight Read the output value 110
NOP No operation 111

clock

2

3

Col

Control
8

8

DataIn

DataOut

4x4 Net

2Row

Chip Enable

Data Enable

Al-Rafidain Engineering Vol.17 No.3 June 2009

104

Description of the Design
The block diagram shown in figure 3 presents the internal structure of the designed

network. The processing elements are working in SIMD (single instruction stream, multiple
data stream) manner, controlled by an external unit. Every processing element performs the
calculation required for both learning and recall. All processing elements are synchronously
clocked with a single clock signal. An eight bit bus is used for data transfers to the processing
elements which are addressed by the row and column lines.

Figure 3: 4×4 Network Design Structure

I- Processor Element Hardware Architecture

Each neuron (PE) consists of two blocks as shown in Figure 4. The weight memory
block contains 16-byte (vector length) of SRAM used to store the synapse weight for that
neuron while all necessary operations for the data processing are implemented in the
calculation unit block which produces the adaptive weight vector elements via 8-bit bus.

A calculation will be inactive until it gets a Reset on the instructions data line. The
components of the input vector are transmitted over the input data line and the distance to the
weight vector component on the weight data line is calculated when the instruction on the
instructions data line is CalDist see table 2.

After finding the minimum, which is described further on, adaptation is started. In order to
realize the neighborhood function, a value from a lookup table (neighbor) is used to be added
to the value of input (alpha) when the instruction on the instructions data line is LoadAlpha.
Then, the new weight vector components are calculated (one component per clock cycle).
This is done when the instruction on the instructions data line is UpdateWeight.

D
at

a

cl
oc

k

C
on

tro
l

Controller

RAM

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

Ali : Reconfigurable Self-Organizing Neural Network Design and it's FPGA

105

Figure 4: One Neuron (PE) Block Diagram

 Table 2 :The Instruction Set of the Calculation Unit

Instruction Cod
e Description Mathematical Function

performed
Reset 0001 Reset the calculation unit All variables values equal zero

CalDist 0010
Calculate the distance
between the input vector
and the weight vectors

k

j
ii)j(w)j(xManhattan

1

LoadAlpha 0100 Load the adaptation factor reg = neighbor + alpha
UpdateWeig
ht 1000 Adapt the weight adaptive weight =

weight+(Input-weight)>>

Calculation Unit Hardware Architecture
In order to perform the functions mentioned above, the calculation unit could be

partitioned into the following elements:
1. The logic circuit shown in Figure 5 is used to calculate the Manhattan distance. The

operation for this circuit is controlled by the CalDist instruction.

Figure 5: Sum of Absolute Difference Circuit

2. The logic circuit shown in Figure 6 is used to calculate the number of shifting bit positions
used later in adaptation process.The operation of this circuit is controlled by the
LoadAlpha instruction.

input

weight 8

8 Calculation
Unit

clock

decoded instructions 4

2

3

neighbor

alpha 12

8

adaptive weight

Manhattan distance

weights
memory
(16 Byte)

clock

8

DI

address 4

read
write

Al-Rafidain Engineering Vol.17 No.3 June 2009

6

Figure 6: Load Alpha Instruction Circuit

3. The logic circuit shown in Figure 7 is used to calculate the updated weight values during
adaptation processing. The operation for this circuit is controlled by the UpdateWeight
instruction.

Figure 7: Update Weight Instruction Circuit

II- Control Unit Architecture
 The control unit performs many common functions like Instruction Decoding, Data
Multiplexing, Address Generating using Counter and Winner Estimator for finding the best
matching cell during learning. Figure 8 illustrates these elements.

Ali : Reconfigurable Self-Organizing Neural Network Design and it's FPGA

107

3.2 Semi-Parallel 8×8 Network
In this section, a digital hardware implementation of self organizing 8×8 map is

presented. The chip has 28 pins as described in Figure 9.

Figure 9: 8×8 Network Block Diagram

The block diagram shown in figure 10 presents the internal structure of the designed
network. Every processing element does the calculation required for learning and recall. All
processing elements are synchronously clocked with a single clock signal. An eight bit bus is
used for data transfers to the processing elements which are addressed by the row and column
lines. The same eight instructions of the previous design can be executed in the current design
(refer to table 1).

Instruction
Decoder

clock

3Control

Reset

WriteWeight

CalDist

CalMinDist
LoadAlpha

UpdateWeight

ReadWeight

NOP

Instruction Decoder Block

Diagram

The Data Demultiplexer Block Diagram

The Counter Block Diagram The Winner Estimator Block Diagram

DataOut

Data
Multiplexer

clock

8DataIn

Enable

DEnable

16 X 8

NcOut

Winner
Estimator

clock

16x2

CalMinDist

12

12

:
:
:

M0

M15

clock

3
3

Col

Control
8

8

DataIn

DataOut

8x8 Net

3Row

Chip Enable

Data Enable

ReadWeight Bus_out

Counter

clock

Reset

CalDist

CalMinDist

NOP

4

Figure 8: Control Unit Elements

Al-Rafidain Engineering Vol.17 No.3 June 2009

108

Figure 10: 8×8 Network Design Structure

I- Processor Element Hardware Architecture
Each neuron (PE) consists of two blocks as shown in Figure 11. The weight memory

block contains 8×16 byte of SRAM and is used to store the synapse weights for 8 neuron
aligned in a certain one of eight rows while all the necessary operations for the data
processing are implemented in the calculation unit block.

Figure 11: One Processor Element Block Diagram

A calculation unit usually does not become active until it gets a Reset on the instructions
data line. The components of the input vector are transmitted over the input data lines and the
distance to the weight vector component on the weight data line is calculated when the
instruction on the instructions data line is CalDist (refer to table 2). This is done via eight
stages. After all the distances have been calculated, the minimum one will be specified by the
controller and adaptation starts. In order to realize the neighborhood function, a value from a
lookup table (neighbor) is added to the value of input (alpha) when the instruction on the
instructions data lines is LoadAlpha. Then the new weight vector components are calculated
(one component per clock cycle). This is done when the instruction on the instructions data
line is UpdateWeight. Some times there is a need for wait cycles between instructions. Here
this is done by using the NOP instruction. Calculations are completed on eight stages. That is
why it is called semi-parallel architecture.

Calculation Unit Hardware Architecture
The explained functions are performed by the following logical circuits of the

calculation unit:

D
at

a

cl
oc

k

C
on

tro
l

Controller

RAMPEPE PE PE PEPE PEPE

input

weight 8

8 Calculation
Unit

decoded instructions 5

8x3

3

N0,N1…N7

alpha 12

8

adaptive weight

Manhattan distance

weight
memory

8x16 Byte

clock

8

DOn

DIn

address 4

reset

write

Row
3Row

clock

3

Ali : Reconfigurable Self-Organizing Neural Network Design and it's FPGA

109

1. The circuit shown in Figure 5 is used to calculate the Manhattan distance. It is the same one
used by the previous design (4×4Map).

2. The logic circuit shown in Figure 12 is used to calculate the amount of shifting operations
used later in adaptation process. This circuit differs from the LoadAlpha instruction
circuit in the 4×4 design in the input neighbors. Here there are eight neighbors controlled
by the row lines.

Figure12: Load Alpha Instruction Circuit for 8×8 Map
3. The logic circuit shown in Figure 7 is used to calculate the updated weight values during

adaptation processing. The operation for this circuit is controlled by the UpdateWeight
instruction.

II- Control Unit
 The control unit performs many common functions like Instruction decoding, Data
Multiplexing, Address generating using Counter and Winner Estimator for finding the best
matching cell during learning. Figure 13 illustrates the Winner Estimator element. The rest of
circuits are the same used in the previous design.

Figure 13: The Winner Estimator Block Diagram

4. Hardware Implementation and Results
Two types of SOM architectures are presented in this work, the full parallel 4×4 map

and the semi-parallel 8×8 map. All SOMs are successfully passed the tests as the next results
prove. The differences between the two designs are also presented with, their timing analysis
and speedup.

NcOut

Winner
Estimator

clock

64x3

CalMinDist

12

12
:
:

M0

M7

3Row

Al-Rafidain Engineering Vol.17 No.3 June 2009

110

In order to check the validity and the usability of the building Kohonen neural network
hardware, function simulations have been done using MATLAB and ModelSimXE packages
and the results have been examined before the designs are implemented on the real device.
The original image (LENA image 512×512 pixels, 256 gray levels) used for the test is shown
in figure 14(a), is tested on two-dimensional SOM designs in this work.

4.1 Full Parallel 4×4 Network Result
Figures 14(b) represents the decoded image produced using MATLAB while Figures

14(c) represents the decoded outcomes using ModelSimXE simulator which are comparable
to the same results obtained from the chip under test. The SNR, PSNR, MSE, NMSE, CR_on,
CR_off, bpp_on, bpp_off for two-dimensional SOM array with 4×4 size are summarized in
table 3.

(a) Original Image (b) MATLAB Results (c) Hardware Results

Figure 14:Original and Reconstructed Images Using SOM with 4x4 Neurons

Table (4) lists the chip area occupation for this design. This report is created during synthesize
stages.
Each processing element can handle one vector component input per clock cycle. So, for an
input vector of 16 components (8-bit accuracy), the calculation of the distance (12-bit
accuracy) to the internal weight vector consumes 16 clock cycles. After that, the best match
search requires 5 clocks by the controller. The adaptation factor distribution requires 2
clock cycles. During learning, the weights of the best match element and the surrounding
elements have to be adapted. The strength of the adaptation depends on the learning step and
the position of the element corresponding to the best match position. The elements can adapt
their weights in parallel during a time of 48 clock cycles {(read weight , update weight, write
weight) *16 } plus 2 clock cycles for reset and NOP which leads to a total of 73 clock cycles
required by the network, during learning, for one input vector, see Figures 15.

Table 3 :Statistical Results for 4×4 SOM Map

Image SNR(dB) PSNR(dB) MSE NMSE

C
R

_o
n

C
R

_o
ff

bp
p_

on

bp
p_

of
f

MATLAB 20.0288 25.7493 173.04 0.98584

15
.7

53
8

16

0.
50

78

0.
5

Hardware 15.8172 21.6739 442.277 2.5197

Ali : Reconfigurable Self-Organizing Neural Network Design and it's FPGA

111

This means that the processing of each vector takes (73*1/50MHz)sec where (50
MHz) is the kit frequency. So a 1.46 microseconds is the time required for training by a single
vector. The total training time for Lena which consists of 16384 vectors is 23.92064
milliseconds.

Figure 15: Waveforms for One Input Vector During Learning with 4x4 SOM

4.2 Semi-Parallel 8×8 Network Result
Figures 16(b) represents, approximately, the decoded images results using MATLAB

while Figures 16(c) represent the decoded images results using ModelSimXE simulator which
are the same results obtained from the chip under test. The SNR, PSNR, MSE, NMSE,
CR_on, CR_off, bpp_on, bpp_off for two-dimensional SOM array with 8×8 size are
summarized in table 5.

(a) Original Image (b) MATLAB Results (c) Hardware Results
Figure 16:Original and Reconstructed Images Using SOM with 8x8 Neurons

Table 4: Device Utilization Summary for 4×4 SOM Map

Device Type Percentage area occupied

Number of Slices 1221 out of 1920 63%
Number of Slice Flip Flops 747 out of 3840 19%
Number of 4 input LUTs 2168 out of 3840 56%
Number of bonded IOBs 25 out of 173 14%
Number of BRAMs 9 out of 12 75%
Number of GCLKs 1 out of 8 12%
Minimum period: 11.244ns (Maximum Frequency: 88.936MHz)

Al-Rafidain Engineering Vol.17 No.3 June 2009

112

Table (6) lists the chip area occupation for this design. This report is created during
synthesizes stage.

Each processing element can handle one vector component input per clock cycle. For
an input vector of 16 components (8 bit accuracy), the calculation of the distance (12 bit
accuracy) to the internal weight vector consumes 16 clock cycles. The distance calculation is
overlapped with the best match search by the controller. The calculation of distances, with
minimum estimation, takes 147 cycles. The adaptation factor distribution overlapped with
the adaptation for elements of the best matching cell with the surrounding ones during
learning. This takes 393 clock cycle {load Alpha+ (read weight , update weight, write
weight) *16 }*8 plus 1 this leads to 393 clock cycle. The overall cycles needed to learn for
one vector are 540. So each vector takes (540*1/50MHz)sec where (50MHz) is the kit
frequency, and (0.108) milliseconds is the time required for training by a single vector. The
total training time for Lena image which consists of 16384 vectors is 1.769472 seconds. All
signals can be shown in Figure 17.

Figure 17: Waveform for One Input Vector During Learning with 8x8 SOM

Table 5 :Statistical Results for 8×8 SOM Map

Image SNR(dB) PSNR(dB) MSE NMSE

C
R

_o
n

C
R

_o
ff

bp
p_

on

bp
p_

of
f

 MATLAB 20.4517 26.1710 157.0306 0.8946

15
.0

5
88 16 0.
53

1
25 0.

5

Hardware 16.0689 21.4269 487.9631 2.78

Table 6 : Device Utilization Summary for 8×8 SOM Map
Device Type Percentage area occupied

Number of Slices 273 out of 1920 14%
Number of Slice Flip Flops 230 out of 3840 5%
Number of 4 input LUTs 527 out of 3840 13%
Number of bonded IOBs 24 out of 173 13%
Number of BRAMs 4 out of 12 33%
Number of GCLKs 1 out of 8 12%
Minimum period: 9.130ns (Maximum Frequency: 109.529MHz)

Ali : Reconfigurable Self-Organizing Neural Network Design and it's FPGA

113

5. Performance of the Systems
VHDL is used to describe a digital system at the behavioral level so that the designer

can simulate the system to test or verify the algorithm used and to make sure that the
sequences of operation are correct. This includes measurement of the performance, area
occupied (a measure of the complexity of the design); and processing time (a measure of the
running speed).

For the comparison of the design with other implementations of the self-organizing
maps, the performance of the architecture is determined for the recall phase and for the
learning phase. This can be done by using performance metrics CPS (Connections Per
Second) for the recall phase and CUPS (Connection Updates Per Second) for the learning
phase [8]. Furthermore, the classification rate and the adaptation rate are given (i.e. classified
or adapted vectors per second respectively). All these values are summarized in table 7.

Table 7 : Hardware performance metrics

4x4 Map 8x8 Map

CPS 12.8 GCPS 3.2 GCPS

CBS 51.2 GCBS 12.8 GCBS

CUPS 3.2 GCPS 800 MCPS

Classification rate 2380,000 340,000

Training rate 704,000 92,000

 The implementation performance of the two designs are compared with each other
(Figure 18). Also, the different speeds for each design are compared with that when
softwarely running on computer (Pentium4, 2.26GHz, 248MB RAM). Refer to Figure19.
Figure 20 illustrates the obtained speedup.

Figure18: Processing Time of Parallel(FPGA) Processor

Al-Rafidain Engineering Vol.17 No.3 June 2009

114

Figure19: Processing Time of Parallel(FPGA) and Sequential(PC) Processors

Figure 20: Obtained Speedup for The Two Designs

6. Conclusions
In this paper, we have presented for self organization map neural network two chips ,

designed , realized on FPGA and tested to carry out their designed functions. The results
given verify that the Kohonen neural network chip is capable of on-chip learning where its
processing elements have on-chip memory and therefore can perform on-chip learning. The
first chip of 26 pin and 4x4 PEs arranged as a SIMD array can be easily extended to 8x8 or
more and has a speed up of 1337 over the P4 computer of 2.26GHzfrequency . The second
chip is of 28 pins and 8x8 PEs arranged also as a SIMD array but working in a semi-parallel ,
it has a speed up of 757 over the P4 computer of 2.26GHz frequency .

Ali : Reconfigurable Self-Organizing Neural Network Design and it's FPGA

115

References
[1] F. Lara, "Artificial Neural Networks: An Introduction", Instrumentation and Development

Vol. 3 Nr.9/1998.
[2] Misra, M., "Parallel Environments for Implementing Neural Networks", Neural

Computing Surveys Vol. 1, 48-60, 1997.
[3] Yihua Liao," Neural Networks in Hardware: A Survey", Department of Computer

Science, University of California, Davis One Shields Avenue, Davis, CA 95616.
 http://wwwcsif.cs.ucdavis.edu/~liaoy/research/NNhardware.pdf.
[4] J. Zhu and P. Sutton," FPGA Implementations of Neural Networks a Survey of a Decade

of Progress". International Conference on Field Programmable Logic and Applications
(FPL'03), pp. 1062-1066, LNCS 2778, Springer Verlag, Berlin, Heidelberg, 2003.

[5] Teuvo Kohonen, "The Self-Organizing Map", Proceedings of the IEEE, Vol.78, No. 9,
September 1990.

[6] Xilinx, Inc., Datasheet "Spartean-3 FPGA Family: Complete Data Sheet",DS099 January
17, 2005.

[7]Xilinx, Inc., "Spartan-3 Starter Kit Board User Guide",UG130 (v1.0) April 28, 2004.
[8]M. Porrmann, S. Rüping, U. Rückert "SOM Hardware with Acceleration Module for

Graphical Representation of the Learning Process", Proc. of the Seventh International
Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems,
MicroNeuro'99, Granada, April 7-9, 1999, pp. 380-386.

[9] Younis , B.,M.,K. ;"Hardware Design and Implementation of Kohonen Neurons ";Ph.D.
Thesis ;University of Mosul ,College of Engineering; January 2007 .

The work was carried out at the college of Engg. University of Mosul

http://:@wwwcsif.cs.ucdavis.edu/%7Eliaoy/research/NNhardware.pdf.

