ON m-**Topological space**

Rana B. Yasseen

Dep. of mathematics, College of education For women, University of Tikrit, Tikrit, Iraq (Received / /2007, Accepted / /2008)

Abstract:

In this paper, we study the m-Compact on m-Topological spaces, and we introduce a same new m-separation axioms of m-Topological spaces (m- T_0 , m- T_1 , m- T_2) and we proof all m- separation axioms. are m- hereditary and m-Topological property.

1- Introduction:

cover of A.

Let (X, τ_x) and (Y, τ_y) be topological spaces on which m-separation axioms (T_\circ, T_1, T_2) are assumed unless explicity stated [3]. A sub class $\tau^* \subseteq p(x)$ is called supratopology on X if $X \in \tau^*$ and τ^* is closed under arbitrary union, let (X, τ^*) is called a supratopological space.

a supratopological space. The members of τ^* are called supra open sets. We called τ^* asupratopology associated with τ_x if $\tau_x \subseteq \tau^*$.let (X, τ_1^*) and (Y, τ_2^*) be asupratopological spaces. A function $f:(X,\tau_1^*) \to (Y,\tau_2^*)$ is an S^* -continuous function if the inverse image of each supra open set in Y is a supra open set in X [1]. let E be a subset of X, E is called an m-set with τ^* if $E \cap T \in \tau^*$ for all $T \in \tau^*$ Then the class τ_m of all m – sets with τ^* is contained τ^* called an m- topology with τ^* and the members of τ_m are called m- open sets. A subset B of X is called an m-closed set if the complement of B is an m-open sets. Thus the intersection of any family of m-closed set and the union of finitely many mclosed sets is an m-closed set. in case τ_m is an mtopology with τ^* on X the topological spaces (X, τ_m, τ^*) with τ^* be denoted by (X,τ_m) [5]. The m-closure (resp. m-interior) of a subset E of X will be denoted by m - CL(E) (resp. m - int(E)) is the intersection of all m-closed subset of X containing E (resp. is the union of all m – open subsets of X which is contained in E). We say that a function $f:(X,\tau_m) \to (Y,\mu_m)$ is called m-open function. If the image of any m- open set in X is an m-open set in Y, we say that f is a S^* - homeomorphism if and only if f is bijective, f is supra open function and f is S^* -continous [5].let Pbe any property in X, if P is carried by S^* -home to another space Y we say P is a topological property. Let A be subset of X, A m-cover of A is a family of subsets of X whose union includes A. A m- sub cover of A m – cover of A is a sub family of so A m –

Lemma 1.1.

Let $f:(X,\tau_m)\to (Y,\mu_m)$ be is S^* -continuous function, then function is MS-continuous.

2- $m-T_0$ - space induced by m- Topology.

Definition 2.1.

Let (X, τ_m) be an m- topological space, then (X, τ_m) is called $m-T_\circ$ space and denoted by $(m-T_\circ)$ if for any distinct pair of points x, y of X there exists one m- open set u_m in τ_m contains one of the points but not the other.

Example 2.2.

Let $X = \{a, b, c, e\}$ and

$$\begin{split} \tau^* &= \{X, \{a\}, \{c\}, \{a,c\}, \{e,a\}, \{b,c\}, \{a,c,e\}, \{a,b,c\}\} \text{ with } \phi \text{ then } \\ \tau_m &= \{X, \phi, \{a\}, \{c\}, \{a,c\}, \{e,a\}, \{b,c\}, \{a,c,e\}, \{a,b,c\}\} \text{ is } m - \tau_0 \cdot \\ \text{And we take } \tau^* \text{ is supratopology without empty set thus } \\ \tau_m &= \{X, \{a,b,c\}\} \text{ is not } m - \tau_0 \,. \end{split}$$

Remark 2.3

Every m – open set on (X, τ_m) is asupraopenset on (X, τ^*) the converse is not true.

Example 2.4.

 $let X = \{a, b, c, e\},\$

 $\tau^* = \{X, \phi, \{a\}, \{c\}, \{e\}, \{e, a\}, \{a, c\}, \{c, e\}, \{a, b\}, \{a, b, e\}, \{b, c\}, \{e, b, c\}, \{a, b, c\}, \{a, c, e\}\} \text{ and }$ $\tau_m = \{X, \phi, \{a\}, \{c\}, \{e\}, \{e, a\}, \{a, c\}, \{c, e\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, c, e\}\} \text{ notice that each of } \{a, b, c\}, \{a, b, e\} \text{ is supropen set but not } m - \text{open set.}$

Theorem 2.5.

An m-Topological space (X, τ_m) is $m - \tau_0$ - space if and only if for each pair of distinct points x, y of X, $m-cl(\{x\}) \neq m-cl(\{y\})$.

Proof:

Sufficiency, suppose that $x, y \in X$, $x \neq y$, Let $z \in X$ such that $z \in m - cl(\{x\})$ but $z \notin m - cl(\{y\})$. We claim that $x \notin m - cl(\{y\})$ for if $x \in m - cl(\{y\})$ then $m - cl(\{x\}) \subset m - cl(\{y\})$, this contradiction the fact that $z \notin m - cl(\{y\})$ consequently $x \in (m - cl(\{y\}))^c$ to which y does not belong.

Necessity $\operatorname{let}(X,\tau_m)$ be an $m-T_\circ$ -space and $x,y\in X,x\neq y,\exists$ m—open set $u_m\ni x\in u_m$ or $y\in u_m$ then u_m^c is an m—closed set which $x\in u_m$ and $y\in u_m^c$. Since $m-cl(\{y\})$ is the smallest m—closed set containing y [because $m-cl(E)=E\cup (m-\operatorname{int}(E))$], if $m-cl(\{y\})\subset u_m^c$ and therefore $x\notin m-cl(\{y\})$. The $m-cl(\{x\})\neq m-cl(\{y\})$.

Definition 2.6:

Let (X, τ_m) be an m-topological space ,let E be a subset of X ,then the $\tau_{m_E} = \{(E \cap T_m) \in \tau_m \setminus T_m \text{ is } m - openset\}$, is called relative m- topology space (m-subspace for short)

For Example.

Let $X = \{a, b, c, e\}$, τ^* is supratopology of with empty set and also $E = \{a, b, c\}$ then

 $\tau_{m_E} = \{E, \phi, \{a\}, \{a, c\}, \{b, c\}, \{b\}, \{a, b\}\} \text{ hence } (E, \tau_{m_E}) \text{ is called relative } m - \text{sub space.}$

Definition 2.7.

Let (X, τ_m) be any m-topological space if p is any property in X, then we called p is m-hereditary if its appear in a relative m-topological space if no we say p is non-m-hereditary.

Theorem 2.8.

Let (X, τ_m) be any $m - T_{\circ}$ — space, then the relative m- topological space (E, τ_{m_e}) is $m-T_{\circ}$.

Proof:

Since (X, τ_m) be the m – topology space of $m - \tau_0$, let $e_1 \neq e_2 \in X$, \exists an m – openset $u_m \subseteq X$ such that u_m containing one of e_1, e_2 but not both, since $E \subseteq X$ let $e_1, e_2 \in E$, $e_1 \neq e_2$ now we have $e_1 \in E$, $e_1 \in u_m$ then $e_1 \in E \cap u_m = u_{m_E}$ or $e_2 \in E$ and $e_2 \in u_m$ then $e_2 \in E \cap u_m = u_{m_E}$ hence is $m - T_0$ – space.

Definition 2.9

A function $f:(X,\tau_m)\to (Y,\mu_m)$ is m — homeomorphism if and only if f is abijective, m — open function and ms — continous.

Definition 2.10.

Let $f:(X,\tau_m) \to (Y,\mu_m)$ be an m- homeomorphism, let p any property in X we say that p is ms^* -topological property if p is appear in Y. **Theorem 2.11.**

The property $m-T_{\circ}$ on m- topology space is topological property.

Proof:

Let $(X, \tau_m), (Y, \mu_m)$ be an m – topological—spaces $f: (X, \tau_m) \to (Y, \mu_m)$ afunction be m – home ,let $y_1 \neq y_2 \in Y$ since f is abjective , $\exists x_1 \neq x_2 \in X$ —such that $y_1 = f(x_1), y_2 = f(x_2)$ —since (X, τ_m) is $m - T_\circ$ -space ,then \exists —one m – openset u_m of X—such that

 $x_1 \in u_m$, $x_2 \notin u_m$ or $x_1 \notin u_m$, $x_2 \in u_m$ and function m – open. then

 $f(x_1) \in f(u_m), \forall x_1 \in f(u_m), x_1 \in u_m$ hence (Y, μ_m) is $m-T_\circ$ -space.

3 - $m-T_1$ - space induced by m - topology.

Definition 3.1.

let (X, τ_m) be an m- topological space ,then (X, τ_m) is called $m-T_1$ -space and denoted by $(m-T_1)$ if for any distinct pair of points x, y of X there exists two m- open sets u_m , v_m in τ_m such that, $x \in u_m$ $x \notin v_m$ and $y \in v_m$, $y \notin u_m$. for example

let $X = \{a, b, c, e\}, \tau^*$ be asupratopology of X with empty set thus

 $\tau_m = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{e\}, \{a,c\}, \{a,b,c\}, \{a,e\}, \{b,c\}, \{b,e\}, \{a,b\}, \{a,b\}$

 $\{a,b,e\}\}$ it $m-T_1$ - space

Remark 3.2.

Every $m-T_1$ - spaces is $m-T_0$ - spaces but the converse is not true according. From example (2.2) (X, τ_m) is $m-T_0$ - spaces but not $m-T_1$.

Theorem 3.3.

An m — Topological space (X, τ_m) is $m - \tau_1$ - space if and only if every singleton subset of X is m — closed.

Proof:

Suppose X is $m-\tau_1$ - space and $x\in X$ we show that $\{x\}^c$ is m - open,let $y\in \{x\}^c$.then $x\neq y$, so by $m-\tau_1$ there exist an m- openset G_x s.t $x\in G_x$ but $y\not\in G_x$ hence $x\in G_x\subseteq \{x\}^c$ and $\{x\}^c=\bigcup \{G_x:x\in \{x\}^c\}$.

Conversely, suppose $\{x\}$ is m- closed for every $x\in X$ let $x\neq y\in X$ and $x\neq y$ implies $x\in \{y\}^c$ is an m- open set and $y\in \{x\}^c$ is an m- open set. To show that (X,τ_m) is $m-\tau_1$ -space, sines $\{x\}^c,\{y\}^c$ are m- open sets, $x\in \{y\}^c$ and $y\in \{x\}^c$ then $m-\tau_1$ -space

Proposition 3.4.

Let (X, τ_m) beany $m - T_1$ — space, then any finite set is m — closed.

By Theorem 3.3 easily we get the following Proposition **Theorem 3.5.**

Let (X, τ_m) be any $m-T_1$ -space, then the relative m- topological space (E, τ_{m_n}) is $m-T_1$.

Proof:

since (X,τ_m) be an m-topology space of $m-T_1-$ space, let $e_1,e_2\in X$, \exists two an m- open sets u_m ,

 $V_m \subseteq X$ such that $e_1 \in U_m, e_2 \notin U_m$ and $e_2 \in V_m$, $e_1 \notin V_m$.since $E \subseteq X$, let $e_1 \neq e_2 \in E$ now we have $e_1 \in E$, $e_1 \in u_m$ then $e_1 \in E \cap u_m = u_{mE}$ and $e_2 \in E, e_2 \in V_m$ then $e_2 \in E \cap V_m = V_{m_E}$ thus (E, τ_{m_E}) is $m-T_1$

Theorem 3.6.

The property $m-T_1$ -space is topological property.

Proof:

Let $(X, \tau_m), (Y, \mu_m)$ be m – topology spaces $f:(X,\tau_m)\to (Y,\mu_m)$. Be function is m- home. let $y_1 \neq y_2 \in Y$, since f is a bijective, $\exists x_1, x_2 \in X$ such that $y_1 = f(x_1), y_2 = f(x_2)$, since (X, τ_m) is $m-T_1$, \exists two an m-open sets u_m , v_m of X such that $x_1 \in u_m, x_2 \notin u_m$ and $x_2 \in v_m, x_1 \notin v_m$. And m – open function then $f(x_1) = y_1 = f(u_m)$ is m - open and $f(x_2) = y_2 = f(v_m)$ is m - open hence (Y, μ_m) is $m-T_1$.

4- $m-T_2$ - space induced by m - topology.

Definition 4.1.

let (X, τ_m) be an m – topological space, then (X, τ_m) is called $m-T_2$ -space and denoted by $(m-T_2)$ if for any distinct pair of points x, y of X there exists two disjoint m- open sets u_m , v_m in τ_m contains then respectively. for Example

Let $X = \{a, b, c, e\}, \tau^*$ is supratopology of X

 $\tau_{m} = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, a\}, \{e, a\}, \{b, a, e\}, \{b, c\}, \{b, e\}, \{b,$

Remark 4.2.

Every $m-T_2$ -space is $m-T_1$ -space but the converse is not true.

Example 4.3.

Let $X = \{a, b, c, e\}$, τ^* is supratopology of X with empty set and

 (X, τ^*) is $m - \tau_1$ but not $m - \tau_2$

Theorem 4.4.

Let (X, τ_m) be any $m-T_2$ space, then the relative $m-T_2$ topology space (E, τ_{m_E}) is $m-T_{2-}$ space

Proof:

Since (X, τ_m) be an m-topology space of $m-T_2$ space, let $e_1 \neq e_2 \in X$, \exists two disjoint m – open sets $u_{\scriptscriptstyle m}, \quad v_{\scriptscriptstyle m} \quad \text{of X} \; , \; \; \text{such} \quad \text{that} \quad e_{\scriptscriptstyle 1} \in u_{\scriptscriptstyle m}, e_{\scriptscriptstyle 2} \not\in u_{\scriptscriptstyle m} \quad \text{and} \quad$ $e_1 \in V_m$, $e_1 \notin V_m$.let $E \subseteq X$, $e_1 \neq e_2 \in E$ now we have $e_1 \in E$, $e_1 \in u_m$ then $e_1 \in E \cap u_m = u_{mE}$ and $e_2 \in E$, $e_2 \in V_m$ then $e_2 \in E \cap V_m = V_{mE}$. To prove $u_{mE} \cap v_{mE} = \phi$ since $u_{mE} \cap V_{mE} = (E \cap u_m) \cap (E \cap v_m) =$

 $E \cap (u_m \cap v_m) = E \cap \phi = \phi$ then (E, τ_{mE}) is $m - T_2$ -space.

Theorem 4.5.

The property $m-T_2$ -space is topological property.

Proof:

Let $(X, \tau_m), (Y, \mu_m)$ be an m-topology spaces, since $f:(X,\tau_m)\to (Y,\mu_m)$. a function is m- home. let $y_1 \neq y_2 \in Y$, since f is abijective, $\exists x_1, x_2 \in X$, $x_1 \neq x_2$ such that $y_1 = f(x_1), y_2 = f(x_2)$, since (X, τ_m) is $m-T_2$, \exists two disjoint m-open sets u_m , v_m of X, contining the respectively. Sines m – open function

$$\begin{split} f(x_1) &= y_1 \in f(u_m) = u^*_m \,, \\ f(x_2) &= y_2 \in f(v_m) = v_m^* \text{ alos } f(u_m), f(v_m) \quad \text{are} \\ m &- \text{ open in } Y \text{ ,sine's } f^{-1} \text{ is } ms - \text{ continuous} \\ u_m^* &\cap v_m^* = f(u_m) \cap f(v_m) \\ &= f(u_m \cap v_m) = f(\phi) = \phi \text{ .then } (Y, \mu_m) \text{ is } m - T_2 \,. \end{split}$$

A $m-T_2$ is m – compact if each m – open covering has afinite m – sub covering.

Example 4.7.

Let $X = \{a, b, c, e\}, \tau^*$ is supratopology of X with

 $\tau_{m} = \{X, \phi, \{a\}, \{b\} \{c\}, \{a, c\}, \{b, a\}, \{c, a\}, \{e, c\}, \{b, a, c\}, ,\{b, c, e\}, \{e, c, a\}\}\} \mathbf{It}$

is clearly every $m-T_2$ -space is m- compact. hence

Theorem 4.8.

m – compactness is a topological property.

Proof:

Let (X, τ_m) be an m-compact space. since $f:(X,\tau_m)\to (Y,\mu_m)$ be function is m- home. To show that (Y, μ_m) is m-compact space. let $\{\mu_m\}$ be $\tau_{m} = \{X, \phi, \{a\}, \{e\}, \{b, c\}, \{b, a\}, \{a, e\}, \{a, e, c\}, \{a, b, c\}, \{b, e, c\}\} \\ \{a, b, c\}, \{b, e\}, \{a, b, c\}, \{a, b$

> ms - continuous, $f^{-1}(u_m) = v_m$ hence v_m is m open sub set of X . Since X is m- compact and $x \subseteq \bigcup_{i=1}^{n} V_{m_i}$, $y = f(x) \subseteq f\left(\bigcup_{i=1}^{n} V_{m_i}\right) = \bigcup_{i=1}^{n} u_{m_i}$

then (Y, μ_m) is m – compact space.

Theorem 4.9.

Let (X, τ_m) is m – compact space if and only if for each family $\{H_{\alpha} : \alpha \in i\}$ of m - closed sets in X

satisfying $\bigcap_{\alpha \in i} H_{\alpha} = \phi$,there is a finite sub family $H_{\alpha_1},...,H_{\alpha_n}$ with $\bigcap_{\alpha_i = \phi}^n H_{\alpha_i} = \phi$.

Proof:

Suppose (X, τ_m) is m- compact space, let $\forall \{H_\alpha: \alpha \in i\}$ of m- closed sets in X, $\bigcap_\alpha H_\alpha = \phi$ then by De Morgan's low, $X = \bigcup_\alpha H_\alpha^c$, so $\{H_\alpha^c\}$ is m- open cover of X, sines each H_α is m- closed. But X is m- compact, hence $\exists H_{\alpha_1}^c, H_{\alpha_2}^c, \dots, H_{\alpha_n}^c \in \{H_\alpha^c\}$ s.t $X = H_{\alpha_1}^c \cup H_{\alpha_2}^c \cup \dots \cup H_{\alpha_n}^c$ thus by De Morgan's low, $\phi = \bigcap_{i=1}^n H_{\alpha_i}$.

Convestly. Let $\{G_{\alpha}\}$ be an m- open cover of X, $X=\bigcup_{\alpha}G_{\alpha}$ by De Morgan's low $\phi=X^c=(\bigcup_{\alpha}G_{\alpha})^c=\bigcap_{\alpha}G_{\alpha}^c$. Since each G_{α} is m- open, $\{H_{\alpha}^c\}$ is aclass of m- closed set. hence $\exists G_{\alpha_1}^c, \cap ... \cap G_{\alpha_n}^c=\phi$, thus by De Morgan's low, $X=\phi^c=\bigcup_{\alpha}H_{\alpha_i}$.

Proposition 4.10.

Any m – closed subspace of m – compact space is m – compact .

Proposition 4.11.

Every m – compact subset of m – T_2 -space is m – closed.

Proof:

let K be an m- compact subset of $m-T_2$ -space of X, let $x\in X\setminus K$. For each $y\in K$, \exists disjoint m- open u_y and v_x of Y and X respectively. then $\{u_y\}$ is an m- open cover K which to a finite sub covering $\{u_{y_i}\}_{i=1}^n$, say K is m- compact. let v_{x_i} be the m- open of X for i=1,2,...,n then $V=\bigcap_{i=1}^n v_{x_i}$ is m- open

of X and $v \bigcap_{i=1}^{n} u_{y_i} = \phi, \forall i = 1, 2, \dots, n$ implies that $x \in v \subseteq X \setminus K$

this $X \setminus K$ is m – open and K is m – closed.

Proposition 4.12.

The image of any K m- closed subset of m- compact space is m- closed is $m-T_2$ -space under ms- continuous.

Proof

By **Proposition**(4.10) K is m – compact space if $f:(X,\tau_m) \to (X,\tau_m)$ is ms – continuous, then f(K) is m – compact by (4.11) hence m – closed, m – T_2 – space.

Theorem 4.13.[4]

Let (X, τ_m) be an m – compact, Y be $m - T_2$ -space and $f: (X, \tau_m) \to (Y, \mu_m)$ ms — continuous then f is m – closed map.

Proof:

Let $A \subseteq X$ be an m-closed it is m-compact and consequently so is f(A) since Y is $m-T_2$ -space, then f(A) is m-closed in Y.

References

- 1. A.S.Mashhor, A.A.Allam ,F.S.Mahmoud and F.H.Khedr ,on supratopological spaces , Indain J.pure Appl. Math 14(1983),502-510
- 2. J.Dugundji , topology , library of congress catalog card number :66-10940 , printed in the United States of America
- 3. M.Caldas, D.N.Geogiou and S.Jafari, characterizations of low separation axioms via
- α open sets and α -closure operator , Bol. Soc. Paran ,Math(35)v211/2(2003),1-14 .
- 4. S.H. Han, w.K. min, H.S.Chang, on m-sets, Kangweon Kyungki Math. Jour.7 (1999), no 2, PP. 315-320.
- 5. W.K.Min, H.S.chang, on M-continuity, Kangweon Kyungki Math. Jour.6, no 2 (1998), 323 329.

m-4حول الفضاءات التبولوجيه

رنا بهجت ياسين

قسم الرياضيات ، كلية التربية للبنات ،جامعة تكريت ،تكريت ،العراق (تاريخ الاستلام: / / ٢٠٠٧) تاريخ القبول: / / ٢٠٠٧)

الملخص

m-mفي هذا البحث درسنا تراص m-mعلى الفضاءات التبولوجية m-mوقدمنا تعريفا جديدا لبعض بديهيات الفصل m-mعلى الفضاءات التبولوجيه m-mوريفا بان كل بديهيات الفصل m-mتحقق الصفة الوراثية m-mوالصفة التبولوجية m-m0 وبرهنا بان كل بديهيات الفصل m-m