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Keywords: method for solving a special class of optimal control problem, named,

the quadratic optimal control problem is proposed using the obtained
Convergence analysis; operational matrices. More precisely, this method is based on a state
modified Chebyshev parameterization scheme, which gives an accurate approximation of the

exact solution by utilizing a small number of unknown coefficients with

polynomial; operation the aid of modified Chebyshev polynomials. In addition, the constraint is

matrix; optimal C?n?‘(ﬂ. reduced to some algebraic equations and the original optimal control
problem; and optimization problem reduces to optimization technique, which can be solved easily,
technique and the approximate value of the performance index is calculated.

Moreover, special attention is presented to discuss the convergence
analysis and an upper bound of the error for the presented approximate
solution is derived. Finally, some important illustrative examples of
obtained results are shown and proved that powerful method in a
simple way to get an optimal control of the considered.

Introduction:

Direct method is one of the techniques for solving the optimal control problems by
reducing the dynamic optimal control problem into on optimization problem (nonlinear
programming problem [1-4]. They are working by either discretization or parameterization
the state variables, the control variables or both the state and control variables [5-9]. The
most logical way to solve optimal control problems is numerical solution because analytical
solutions are not always available. The study of numerical methods had been presented by
many researchers of mathematical sciences using different computational methods and
efficient algorithms to solve optimal control problems [10-12]. Orthogonal functions and
polynomials series and used in dealing with various numerical algorithm for solving optimal
control problem. Examples are the utilize of Boubaker polynomials [13-16], the Chebyshev
polynomials [17], shifted modified Chebyshev polynomials [18], variation problem [19] and
continuous optimal control problem [20]. In this work, new operation matrix of derivative for
modified Chebyshev polynomial is considered for solving quadratic optimal control problem.
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The outline of this paper is organized as follow: Section two concerns the preliminaries of
modified Chebyshev polynomials. Section three presents a new modified Chebyshev
operational matrix of derivative as well as some other important properties. Section four
discusses the convergence analysis of modified Chebyshev functions. Last section illustrates
how the new introduced properties for modified Chebyshev can be utilized to convert the
optimal control problem into nonlinear programming technique. The efficiency and accuracy
of the proposed algorithm is shown by solving two examples.

Modified Chebyshev Polynomials:
Let M, (t) denote the n'" modified Chebyshev polynomials

M, (t) = 2T, G)n eN (1)
where T, (t) is nth chebyshev polynomials of the first kind satisfying the identity
T,(cosB) = cos(nb) (2)

According to Eqg. 1, we have
Mo(X) = 2 , Ml(t) =t

and
Mps2(t) = tMp () —My(t) ,ne€N (3)

From Eq.3 the following explicit formula of modified Chebyshev polynomials can be

. _ 1 k n -k k
obtained M (t) = X2 _ (1) ﬁ(nk )tz

The coefficients of power x for modified Chebyshev polynomials until degree 7 is given in
table 1 which can be obtained from Eq. 4

Table 1: The coefficients of power t for modified Chebyshev polynomials

n/t  t° 1 2 ¢ t* t° t© t’ t8
0 2

1 0 1

2 2 0 1

3 0 3- 0 1

4 2 0 -4 0 1

5 0O 5 0 -5 0 1

6 -2 0 9 0 -6 0 1

7 o 7 0 14 0 -7 0 1

The entries in table 1 can be calculated as

S {mi—l,j—l —Mj_y; for i—jeven,i>j
Y 0 for i—jodd,i<]j

Some New Properties of Modified Chebyshev Polynomials
Modified Chebyshev Operational Matrix of Derivative
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The objective of this subsection is to state and prove new analytical formula expressing
explicit the first derivative of the modified first kind Chebyshev polynomials in terms of their
modified first kind Chebyshev polynomials themselves.

Theorem 1:
Forall n>1

S YA n ever
odd i
“Mo() + X" Mi(® n odd

ever i

M,(t) = n

where My(t) =0
where n is the order of modified Chebyshev polynomials M,, (t).

Proof:
Let us denote
Sn(t) = agMo(t) +a; My (t) +a;My(t) + -+ a,Mp () = XiLoa;M;(b) (4)

Consider the recurrence relation given in Eq. 3

My () =tM,(t) =M, _;(t),n=1,2,3 ...

where M, =0 and M; =t
After differentiating the recurrence relation, one can obtain
Mpy1(t) = tMp(6) + Mp(t) — M1 (V)

This can be rewritten as:
Mpi1 () = M;Mu() + Mp(t) — My (D) (5)

The polynomials M, (t) and M,_; (t) can be expressed as

Mn(t) = Z{‘lz_()lbr Mr(t) (6)
Mn—l(t) = Zf}:_g Cer(t) (7)

Substituting Eqns. 6 and 7 into Eq. 5 yields

Mpy1 (© =My T3 by M () + My (D) — 28 oM, (D)
On the other words

Mpy1(®) = by (MyMgy) + by (MM ) + -+ bp_y (MpMp_1) + My () — cgMg — ¢; My — -
_Cn—ZMn—Z

Using the product property M, (t)M,(t) = My (t) + Mp_, (1)
Mn+1 = bo(M1 + Ml ) + b1 (Mz + MO ) + ... +bn_1 (Mn + Mn—l ) + Mn(t) - CoMo(t) -
M (1) — ... —Cch_aMp_5(b)
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Collecting the coefficients of similar modified Chebyshev polynomials, one can get

Mp4+1(0) = (by — co)Mg + (2bg + by —¢; )My + (by + bz — ¢, )M,
+ ...t (bn—l + bn+1 - Cn—Z)Mn—Z + bn—z + 1) Mn(t)
or
Mp_1(® = (by — co)My + X3 (br—q + bryg + ¢ ) My () + (by—y + DM, (V) (8)

Note that Mo (t) =0 and M, () = > Mo

Applying Eq. 8 recursively, the following matrix can be obtained

0 00..0
> 00..0
2
0 2 0..0
3
D = 5 06..0 9)
0 4 0..0
20 n..o0
2
For odd nand the lastrow becomes [0 n 0 n .. 0] foreven n

Results in Eq. 9 can be written in the compact from
Mz = e;M;
M3 = e3; Mg + e33 M,
M4 = €4y M1 +euM,;
Ms = e51Mg + es3sM + essMy
Mg = es;M; + egMs + es6Ms
where
ej = dj inEq.9

From 8 and 9, one can get the following result

M, (t) = nX128 M; for even n
oddi
and
M, (t) = gMO +nY"2 M, forevenn

ever i

This is the result we want to prove.
If a function x(t) can be approximated by a modified Chebyshev series of length n as
follows

x(t) = XioaiMi() (10)
Then the derivative of x(t) with respect to t is given by
x(0) = X5y o Mi(D) (11)

where c,_; = na,
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Ch—2 = (n - 1)an—l
Cr—1 = Cry1 T Gy for r=(m-2),(n-1),....,2
1

C0=E+al

Initial Values

0 n odd
L(0) = 2 n ever, 2= integer
-2 n ever, 2 # integer
and
(—1)ntt otherwise
n(1) (—1)"*2.2 g = integer
Integration Formula
Foreven n,n = 2
an(t) dt = n_ Mp+1() ——M,_1(b)
Forodd n
1 1 n n+1
e M1 () = Mn (D) — 3 (n—1)M0 for ——even
an (t)dt - 1 1 n n+1
M (0~ 5 Maca (0 45 for %+ odd
where

[ Mo(£) dt = 2My(t) , [ My(Ddt =5 (My(t) + Mo)

Convergence Analysis and Error Estimate

Theorem 2:

ol = 0 EEh -1 2 ()
where p is a constant that |f(t)| < p (12)
Proof

The approximate function of f(t) by using modified Chebyshev polynomials is as follows
fn(0) = Xitoci Mi () (13)
where ¢, = (f(6), My(D) = [, (M, (D) dt (14)

Since every continuous function on the closed interval is a bounded function, thus there is a
constant p such that|f(t)| < pvte {—1,1} (15)
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Then, one can conclude that

lcal < [ IM, (] dt
<u£_ =D = () [ de

f_ n/2( 1)1 n (n l)dt
f Zn/z )lﬁ(ni l)dt

Therefore,
[IMa@lde < T3 -1 = ("7
leal < R EO(-1I (M),

Assume that f be a continuous function and f,, be the approximate function of f by using
modified Chebyshev polynomial then the error bound would be obtained as follows

IEIl; = lIf = full, < EZp4q0i)? 8

where
oi = pEE(-1) 2 ().

New Technique for Solving Optimal Control Problem
Consider the linear quadratic optimal control problem

f_ll(xTQx + uTRu)dt (16)
Subject to the linear system of state equation

X(t) = Ax(t) + Bu(t) (17)
x(—1) = x, (18)

where x € R®, u € R™, m < n, the two real valued matrices Aand Barenxn and nxm
respectively while Q is nxn positive semi definite matrix, x' Qx > 0 and R is positive
definite matrix uTRu >0

The idea of the approximate methods using modified Chebyshev polynomials as basis
function to approximate the state variables can be summarized as follows:

Approximate the state variables by a finite length polynomial series
x(0) = Xiloa; Mi(t) j=12,--,n

where ai; are the unknown parameters. The control variables uy(t), k =1,2,3,...m are

ij
determined from the system state equation as a function of the unknown parameters of the

state variables.

Note that, two cases can be distinguished when applying the state vector parameterization
Case 1: If the number of the states and the control variables are equal,
Case 2: If the number of the state variables is greater than the number of control variable.
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The following two test examples will illustrate the two cases respectively.

First test example:

Minimize =27 (x3(t) +u(t)dt (19)
Subject to
k(1) =2 u(®) (20)
x(-1) =1 (21)

This example contains state variable x(t) and control variable u(t). Here x(t) is
approximated by modified Chebyshev polynomial of unknown parameters, and then the
control variable can be obtained using Eq. 20, yields

x(0) = iloai Mi(D) = AM(Y) (22)
u(t) = 2ADM(t) = a; M (t) + 4a, M, (t) (23)

The initial condition in Eq. 21 is replaced by equation constraint as follows:
Z?:O aj Mi(O) - X(O) =0

Which represents the equality constraint. By substituting x(t) and u(t) into Eq. 19, an
expression of ] can be found.

| = ; [, (AMMTAT + 4ADMMTDTAT)dt

Now, the quadratic optimal control problem is converted into parameters optimization
problem, which is quadratic in the unknown parameters, and the new problem can be stated
as:

Min J* = ~ a’Ha
subject to
Fa—b=0
The matrix H can be defined by finding Hessian of J*

a2J* .
= ] ,,j=0,1,2,--,nand k = 1,2,.....,n
aaikaa]-k

Finally, from the standard quadratic programming method a* = H™'FT(FH'FT)~1b, the
optimal value of the vector can be obtained as

ap = 0.4589, a; = 0.1758, a, = 0.0937, and ] = 0.7618.

The optimal values of ] is shown in table. 2 versus the orders of modified Chebyshev
series with n = 2,3,4. The graph of optimal value ] using different orders of modified
Chebyshev is illustrated in Fig. 1.
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Table 2: The optimal values of ] for Example 1

N  The optimal Value  Absolute error |]exact — ]app|

2 0.7618 0.0002
3 0.7616 0.0000
4 0.7616 0.0000
U /OLdo +J
0.7618
o
3 0.76175
g
E 0.7617
50.?6165
0.7616 PR S S —
0.76155
0 2 4 6 8 10 1

n (Order of Mdified Chebyshev

Fig. 1: The optimal values of | for Example 1 versus the orders of modified Chebyshev series.

Second test example:

Consider the following quadratic optimal control problem

Minimize ] = > [, (<2 (t) + x3(t) + u?(1) dt (24)
subject to

%1 () = 0.5%,(t) (25)

%, (1) = 0.5(=x,(t) + u(t) (26)

x,(-1) =0, x,(—1) = —1 (27)

This example contains two state variables x;(t) , x,(t) and one control variable u(t). In
this case, there is no need to approximate the two state variables; one of the two state
variables is approximate which will enable us to find the other state variable. The quadratic
optimal control problem in the second test example is reduced to a quadratic programming
problem with fewer unknown parameters then the initial conditions in Eq. 27 are replaced by
equation constraint. The state variable, which are not satisfied yet are added to the initial
conditions to represent equality constraints. Here x;(t) is approximated by modified
Chebyshev polynomials of unknown parameters, then x,(t) can be obtained from Eq. 25 and
u(t) can be obtained from Eq. 26. By substituting x;(t), x,(t) and u(t) into Eq. 24, an
expression of | can be found.
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The optimal values of ] is shown in Table 3 versus the orders of modified Chebyshev
series with n =4,5,6. The graph of optimal value ] using different orders of modified
Chebyshev is illustrated in Fig. 2.

Table 3: The optimal values of | for Example 2

N The optimal Value Absolute error |]exact - ]app|
4 0.091738 -0.022377
5 0.075952 -0.006591
6 0.0696972 -0.000336

<
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=]
g

0.02
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n (Order of Mdified Chebyshev)

Fig. 2: The optimal values of ] for Example 2 versus the orders of modified Chebyshev series

Conclusions
In this paper, we concerned with quadratic optimal control problems associated with

finite time of minimizing a running cost or performance index subject to linear control
dynamics. An approximate method for solving quadratic optimal control problem has been
demonstrated. This is based on combining the obtained important operational matrices with
state parameterization using modified Chebyshev polynomials to convert the original
quadratic optimal control problem into a nonlinear programming problem. The effectiveness
of the suggested method is demonstrated by solving some numerical examples. One of the
advantages of the presented algorithm is using a computational technique with fast

convergence.
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