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Abstract  
The symmetrical condensed node (SCN) transmission line modeling (TLM) method is applied to dielectric waveguides 

structures (i.e. two identical strip dielectric waveguides and two identical insulanted image waveguide, respectively) for 

the determination of the propagation TE and TM – like modes. The properties of the even and odd modes are also 

presented .In this paper; the calculated numerical results are verified by results available from other methods. 

 

Introduction 

The application of dielectric waveguides (DW) in 

millimeter wave integrated circuits depnde critically on 

the propagation characteristics of these waveguides. For 

this reason, there has been enduring interest in methods 

of determining these characteristics for paractical 

dielectric waveguide (DW) structures [1] . 

 Several methods for the analysis of dielectic waveguides 

(i.e. two identicat strip dielectric and two identical image 

waveguides, respectively) in Fig. 1 have been the subject 

of many papers[2-11]. Among them, the Effective 

Dielectric Constant (EDC) method [2] , the Transverse 

Resonance Method (TRM)[3], and Mode- Matching 

Techniques (MMT) [4]which can
'
t provide complete 

information on the field distributions. The Vectorical 

Finite Method (VFM) formulation interims of 

longitudinal electic  zE  and magnetic ZH(  fields 

components enable one to compute accurately the mode 

spectrum of a  waveguide with arbitrary cross section, is 

widely used [5] .  

 

 
 
 

The more general developed another (VFM) method 

interme of all three components of the electric and / or 

magnetic fields can be found in the literature[6]. In this 

procedure, spurious solution don
'
t appear, but needless 

zero eigen values are produced. The kernel of the domain 

integral equation (DIE) method is the Green
'
s function of 

an electric line source (i.e. the DIE method has been 

developed to compute both propagation constant and 

corresponding  

electromagnetic field distribution of guided waves in 

integral optical guides ). For the derivation of the Green
'
s 

function, the method presented by [7,8] has been 

modified and extended , thus loading to a numerically 

stable calculation scheme . Cut off conditions for all 

modes in three-layer cylindrical dielectric waveguides 

with arbitrarily discrete refractive index profiles have 

been derived by [9] The Finite Element Method 

(FEM)and the Finite Difference Method (FDM) [10],[11] 

have been also to solve for the dispersion characteristics 

of the DW . However, the leakage effect was not 

investigated. 

 In this paper , it will be demonstrated how the model 

methed is powerful approach for the analysis of (DW) 

structures (the characterization of the effective refractive 

index and the imaginary part (log ( 0/ ki )) of 

propagation constant of the TE-and –TM-like modes (i.e. 

E
X

11 , E
X

12 , and E
z

11 - modes) see in Fig . 1. 
 

TLM Method Analysis 

The transmission-line modeling (TLM) method has been 

successfully applied during the last twenty years for the 

solution of electromagnetic-wave-

propagation(EMWP)problems. Details, application and 

advantages of the method are readily availabke in the 

literature [12],[13],[14] . As in any numerical method 

which is based on space segmentation by point grid and 

time segmentation by a discrete sampling , an 

unavoidable inconvenience of TLM method is the 

resulting numerical dispersion,  which makes the phase 

and group velocities depending on the frequency even in 

cases where the numerical method attempts to simulate 

non-dispersive media as shown in Fig.2  

 
The general dispersion relation for TLM nodes is given 

as[15].  

det ( PS-e
djK 0

 I) = 0 …… (1) 

where k 0  is the propagation constant along the 

transmission lines . d is the node spacing . S is the 



scattering matrix. and I is identity matrix (i.e. the fact 

that energy is conserved is that the scattering matrix is 

unitary ,  TS   S = I,  this condition was fundamental 

to John
'
s original derivation [16] ) , while P is a 

connection matrix .  

The row and columns of the SCN scattering matrix gives 

[17]: 
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For the now agreement of node ports, matrix P can be 

written in the form  
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where p
*

1  stands for the Hermitian transpose of p 1  and 

k x , k Y , k Z  are the components of mesh propagation 

vectors , (i.e. the propagation vector k  = (k
2

X + K
2

Y  + 

K
2

Z )
2/1

). 

Equation (1) can be solved as an eigen value problem , 

because the left-hand side of Eq.(1) represents the 

characteristics polynomial of the matrix PS in terms of 

  = e
jKod

 . By obtaining the coefficient C i , i = 1,2,…, 

N of this Nth order polynomial , we can get as 

        p
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where N is equal to the number of node ports . 

The dispersion relation for propagation modes (i.e. the 

dispersion relation for the SCN) can be get in form                      
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The dispersion in eq. (7) is an implicit function of 

zyx kkk ,,  and 0k  which have solve numerically.  
 

Results and Discussion 

In this section we apply TLM method to study the 

propagation constant for the (DW) structures . The wave 

modes of DW are hybrid modes by nature. In our 

notation , they are called E
x

pq  modes (TE-like) when the 

TE Z  portion is larger than the TM Z  portion and are 

called 
z

pqE  modes (TM-like) when ZTE portion is less 

than the ZTM  portion as was observed in [7] .This mean 

, when the TE – TM coupling at the sides of the dielectric 

waveguide is taken into account, the hybrid modes now 

become more complex, possessing six field components 

instead of five . Although these modes can no longer be 

characterized according to whether they possess ,in the 

vertical direction, only a magnetic field component, or 

only an electric field component,  the amount of the other 

vertical field component is usually small because the TE-

TM coupling itself is usually small . It becomes 

convenient then to characterize these hybrid modes as 

TE-like or TM - like , depending on which surface wave 

that bounces back and forth between the sides has the 

predominant field energy[18].  

The new physical effects which result from TE-TM 

coupling at the sides of the guiding structures are 

leakage, which changes a guided mode into a leaky 

mode, and a resonance or cancellation effect, which 

prevents leakage at specific parameter values and which 

may also influence the value of     of the guiding 

mode [18] . 

The guiding structures consists of three different 

dielectric media , for convenience , the media are  the 

designated as : the dielectric air of dielectric constant 

 0a
 , the guiding strip of dielectric constant  

g  , 

the dielectric film of the dielectric constant  
f  located 

on the ground plane , and  

W: the width of the guiding strip (i.e. the guiding strip 

placed on the dielectric film). 

The first proposal structure test is that of two identical 

strip dielectric guide, usually f > 3..Figg  represents 

the effective refraction index n eff (n eff /r k 0  , where 

r is the real part of the propagation constant  ; and 0k  

is a wave number in free space) for the 
ZE11  modes (i.e. 

the 
ZE11 - mode consists of the even and odd-modes) as a 

function of separation S with fixed f=38.67 GHz, 

.55.2,6.2 00  gf and The guide  

parameters     are    

.,56.0,5.0,32.0 021  aandcmWcmtcmt   



 

 In the above figure , the effn  for the 
ZE11  modes shows 

a growing tendency toward being degenerated whenever 

the separation S become great (i.e. the even and odd 

modes tend to be degenerate when the separation S is 

increased . The 
ZE11  modes are no leakage mode (the 

electric fields decay away from the center region) as the 

corresponding
zE11  on the single insulated image guide) . 

From Fig.4 (a &b) we observed the n eff  and the 

imaginary part (log( /i k 0 ) for the E
x

11 - mode (i.e. .E
x

11 - 

modes contation the even – and- odd modes) as a 

function of s with fixed f=40 GHz , respectively. The 

structure has dimensions a by t 1  =0.32cm, t 2 = 0.5cm, 

W=0.65cm, g = 2.55 ,62.2, 00  f and 

.0a These figures shows that the n eff for the E
x

11 - 

 

 
modes of the odd mode and the even mode shows a 

growing tendency toward being degenerated with 

separation S increase . Nevertheless, when the separation 

S is larger, a small oscillatory behavior is consequently 

viewed . Moreover, the imaginary part of the propagation 

constant of both the even and the odd modes maximum 

and minimum behavior respectively . At cartain 

separation S when the even mode has a maximum 

leakage , it  implies that surface wave modes exited by 

each waveguide add in phase . For the mode at the same 

separation S , these surface wave modes add out of phase 

due to the definition of even and odd modes; hance the 

cancellation effect is observed as a nall in the imaginary 

part of propagation constant and also if the odd mode has 

a maximum leakage at a cantina separation S , the even 

mode shows a cancellation effect [18], Fig.5(a & b), the 

propagation constant of the E
x

12  mode is presented (the 

n ZE11
 and the imaginary part (log( 0/ k ) of both the even 

mode and odd mode , respectively) with fixed f = 38.67 

GHz . As seen in figs., the n eff  for the E
x

12  modes 

minimum and maximum behavior alternatively , but the 

log ( 0/ ki ) for these modes the even mode is 

maximum behavior and the odd mode is minimum 

behavior alternatively  

 

 

 
The second proposal structure test considered is about 

two identical insulated image guide for millimeter- wave 

integrated circuits as shown in Fig. Ib , usually 

g < f (i.e. because the dielectric constant f is 

lower than g , the structure can be designed so that the 

fields decay exponentially in the vertical direction in the 

regin f , and the currents in the ground plane become 

greatly reduced ) . 

In Fig.6 , we show that the n eff for the E
z

11  modes  ZE11  

modes represented the even –and – odd modes   versus 

S for f = 30.23 GHz In this figure, the even – and –odd 

modes  



 
tend to be degenerate when the separation S larger . The 

results of the effn and log  0/ ki  of the 
xE11 - mode 

vesus S with f = 40 GHz is lotted in Fig.7 (a  & b) 

respectively. The guide parameters are the same above 

the first guide dimensions expect the parameters 

.25.262.2 00  fg and  In these graph , the 

effn  for the 
xE11 - modes tend to be degenerate (i.e. the 

odd and even modes tend to be decay ), and the 

imaginary part of the propagation constant displays  

maximum and minimum alternatively . As we can see, 

the numerical results in this work are in good agreement 

with our data [7] . 

 

 
 

Conclusion: 

The effective refractive index effn  and the imaginary 

part of the propagation constant (log  0/ ki ) for the 

TE and TM – like modes proportion of  DW structures 

have been investigated . The numerical analysis was 

preformed using SCN- TLM method. Results for the 

properties of the even – and odd modes have been 

calculated for various dimensions of the structures and 

have been found to be in good agreement with periously 

calculated results. Our results are shown to agree with 

those originally given by demain integral equation 

technique (DIF) [7] . 
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 المنتشرة   TM    &TEحساب الأنماط الزوجية والفردية ذات 
 في تراكيب دليل الموجة العازلة

 

 خالد عبد اللطيف إبراهيم
 ، البصرة، العراق ، جامعة البصرة ، كلية التربية قسم الفيزياء

 

 الخلاصة :
علققت تق ويققي  نيقق   ن  اققك  نليلنققك ج نيقق   ن  اققك  نلققيل      نةقققيطي   (symmetrical condensed node)تطبيققط طقي ققك ةققبويك لطقق ط  نو قق   قق  وقق  

ياققي  لقق  ن  طو ققيط  نوق يققك   نل ايققك نتلقق  (TM & TE)  ن ت ققييلي    نيقق   ن  اققك  نلققيل   نتقق ق   ن ت ققييلي  علققت  نتقق  ن  ن نط ققيي  وتةققيق  و ققيط      
   ب نك  ع طقط ع  يك  لقى .   نتق ويي.  نوتيئج  نل  يك  ن ط  بك ف  ه    نبطث  عطت وتيئج

                             
 


