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1. INTRODUCTION 

          The dynamics of interaction between predator and their prey has been modeled by mathematician author [1-4]. 

Predators, functional response are the most important element prey-predator models, to represent the dynamics 

relationship between predators and their prey, and defined as the average number of eaten prey per predator per unit time 

[5]. There are many types of functions response; bilinear, prey dependent and predator dependent functional responses, 

Holling type II functional response is the most useful functional response and use by many authors [5], this type of 

functional response is characterized by decelerating intake rate of predation one prey species. In nature, many predator 

species consume more than one species of prey. For example, lions usually predate a number of large land-based animals, 

such as antelopes, buffaloes, crocodiles, giraffes, pigs, zebra, wild dogs and wildebeest. There are some works modeling 

one predator and multiple preys [2, 5, 6], Saiwan et al [5] extended Holling type II functional response is to more than 

one prey species [5]. 

Population dynamics may be affected by many factors like; fear, infectious illness, stage structure, delay, harvesting, 

cannibalism, anti-predator skills, refuge, and other population-affecting elements of the natural environment [8-11]. 

The reproduction of prey population may be reduced due to predation fears [12]. Wang et al [13] studied a predator–prey 

model with fear effect on prey reproduction, they noticed that the fear has no impact on the stability of the model when 

the system incorporate bilinear functional response, but the system become stable under fear effect, if it incorporate the 

Holling type II functional response, based on their system Pal et al[14] Studied the stability and  bifurcation of a prey -

predator that incorporate fear effect and harvesting cooperation.  Zhang et al [15] showed that fear effect and prey refuge 

can stabilize an ecological model. For more results about fear effect, see [16-21]. 

ABSTRACT: This paper with the studding and modeling the dynamical interaction between two prey where one of 

the prey species behave stronger than other, and one predator species, The influence of fear is integrated into the 

development rate of vulnerable prey species owing to predation, with the spread of a SI illness among robust prey 

species. Here it is considered that predator both preys according to Holling type II functional response for two prey 

species. Then the formulation of the model is described and the boundness of solution of the system is discussed. The 

local stability as well as global stability for each model steady states is analyzed. Finally, with the help of MATLAB 

program, it is performed numerical simulations to support the evidence of our analytical results. Finally, a brief 

conclusion on the total work is given. 

 

 

Keywords: Fear, disease, Functional response, local stability, Global stability.              

       

mailto:arkan.mustafa@univsul.edu.iq
https://wjps.uowasit.edu.iq/index.php/wjps/index
https://doi.org/10.31185/wjps.595
https://orcid.org/signin
https://orcid.org/0000-0001-9586-3826
https://creativecommons.org/licenses/by/4.0/


Arkan et al., Wasit Journal for Puer Science Vol. 3 No. 4 (2024) p. 38-49 

 

 

 39 

The parasite may change behavior of the prey so that infected prey is more vulnerable to predation. During the last four 

decades, many authors have been proposed and studied the infectious disease coupled with prey-predator interaction 

model [22-24].  

Inspired by the aforementioned works, the aim of the current work is to consider an ecological model one predator species 

and two prey species, one of the prey species behave stronger than other. The effect of fear is incorporated in the growth 

rate of weak prey species due to the predator, and an SI disease spread among the strong prey. In next section, all 

assumption for proposing the model is given.  In the third section, the existence conditions of all feasible equilibrium 

points are found. In section four and five, stability analysis (local as well as globally) of the model is studied. In section 

six, the model numerically solved. Finally in section seven, a brief conclusion on the total work is given. 

 

 

2. THE MATHEMATICAL MODEL AND ITS SOLUTION PROPERTIES  

 

Suppose a predator consume two species of prey namely; Strong prey and Weak prey. To represent the dynamic 

interaction between the species we derive a mathematical model based on the following assumptions: 

 

i. At the instant time t, the weak prey individual numbers denote by 𝑋(𝑡). There is an SI disease among 

strong prey species that divided them in two classes, namely Susceptible strong prey and Infected strong 

prey and their individual numbers at instant time t, are denoted by S(t) and I(t). respectivley  

ii. The weak prey and susceptible prey grows logistically wile the infected strong prey cannot reproduce. 

iii. The effect of fear is incorporated in the growth rate of weak prey species due to the predator. The 

reproduction of weak prey species decreased by multiplied them by 
1

1+𝐿𝑃
. where 𝐿 is  Level of fear due 

to weak prey response to anti-predators. 

iv. The disease transmitted from Infected strong prey to Susceptible strong prey according to bilinear 

incidence rate 𝜆𝑆𝐼, where 𝜆 is infectious rate. 

v. The predator individuals number at instant timet, represent byY(t) and they can predate both. 

vi. Weak prey and infected strong prey according to extended  Holling type II functional 

response   
𝛼1𝑋𝑃

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
 𝑎𝑛𝑑 

𝛼2𝐼𝑃

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
 ,respectively. Where 𝛼1, 𝛼2   are the predator’s search 

efficiency for Weak prey and infected strong prey, respectively.  

𝑇1 , 𝑇2 are the predator’s average handling time of Weak prey and infected strong prey, respectively. 

vii. The biomass of Weak prey and infected strong prey convers ate to biomass of predator with rate  𝑒1  

and 𝑒1, respectively. 

 

 

Then, such interaction dynamics can be modeled mathematically through the following system of differential 

equations  

 

𝑑𝑋

𝑑𝑡
=

𝑏𝑋

1 + 𝑙𝑌
− 𝑑1𝑋 − 𝑐𝑋

2 −
𝛼1𝑋𝑌

1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝐼
= 𝑓(𝑋, 𝑆, 𝐼, 𝑌)

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝐾
) − 𝜆𝐼𝑆 =  𝑔(𝑋, 𝑆, 𝐼, 𝑌)                                             

𝑑𝐼

𝑑𝑡
= 𝜆𝐼𝑆 −  

𝛼2𝐼𝑌

1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝐼
− (𝑑2 + 𝛾)𝐼 =   ℎ(𝑋, 𝑆, 𝐼, 𝑌)    

𝑑𝑌

𝑑𝑡
=
𝑒1𝛼1𝑋𝑌 + 𝑒2𝛼2𝐼𝑌

1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝐼
− 𝑑3𝑌 = 𝑍(𝑋, 𝑆, 𝐼, 𝑌)                               

                                                              (1) 

Where the 𝑋(0) > 0 , 𝑆(0) > 0 , 𝐼(0) > 0  ,  𝑌(0) > 0  and the pareameters 𝑏  is reproduction rate of  weak prey;   

𝑑1, 𝑑2𝑎𝑛𝑑 𝑑3 are Natural death rate of weak prey, infected strong prey and predators, respectively;𝑐 is Intraspecific  

competition rates of weak prey; 𝑟 is intrinsic growth rate of susceptible strong prey;𝐾 is carrying capacity  for strong 

prey. 

Clearly the right side of system (1), are continuous and has partial derivatives on the space𝑅4, and hence, system (1) 

satisfies the Lipschitzian condition. Therefore, by uniqueness Theorem, it has unique solution. Further, the time derivative 

of 𝑋, 𝑆, 𝐼 and Z are zero when 𝑋 = 0, 𝑆 = 0, 𝐼 = 0 𝑎𝑛𝑑 𝑌 = 0, respectively. Therefore, if the solution initiates at a non-
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negative point, then the component 𝑋, 𝑆, 𝐼and 𝑌 of the solution points of system (1), cannot cross any coordinates of the 

solution points. Hence components 𝑋, 𝑆, 𝐼and 𝑌 of solution points is always non negative. Further some properties of 

solutions of system (1) are proved in the following lemma and theorems. 
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Lemma 1: In system (1), the following inequalities are hold: 

a. If,  𝑏 ≤ 𝑑1,  then  lim
𝑡→∞

𝑋 = 0.  Otherwise,   lim
𝑡→∞

𝑆𝑢𝑝 𝑋 ≤
𝑏−𝑑1

𝑐
   

b.  lim
𝑡→∞

𝑆 ≤ 𝐾  

c.  lim
𝑡→∞

𝑆𝑢𝑝 (𝑋 + 𝑆 + 𝐼 + 𝑌) ≤ 𝑀  where,  𝑀 =
𝑏|𝑏−𝑑1|

𝑐𝑚
+
𝑟𝐾

𝑚
   with  

                                                                                       𝑚 = 𝑀𝑖𝑛{𝑑1, 𝑟, 𝑑2 + 𝛾, 𝑑3} 

Proof (a) From the first equation of system (1), it gets  

                   
𝑑𝑋

𝑑𝑡
≤ (𝑏 − 𝑑1)𝑋 (1 −

𝑐𝑋

𝑏−𝑑1
)  

 

 So, If,  𝑏 ≤ 𝑑1,  then  lim
𝑡→∞

𝑋 = 0 otherwise,   lim
𝑡→∞

𝑆𝑢𝑝 𝑋 ≤
𝑏−𝑑1

𝑐
   

Proof (b)  From the second equation of system (1), it gets  
𝑑𝑆

𝑑𝑡
≤ 𝑟𝑆 (1 −

𝑆

𝐾
)       

                                                                           So,  lim
𝑡→∞

𝑆𝑢𝑝 𝑆 ≤ 𝐾 

Proof (c)  Applying part (a) and part(b) in system(1), then as 𝑡 → ∞, it gets   

 

𝑑(𝑋 + 𝑆 + 𝐼 + 𝑌)

𝑑𝑡
≤ 𝑏

|𝑏 − 𝑑1|

𝑐
+ 𝑟𝐾 − 𝑑1𝑋 − 𝑟𝑆 − (𝑑2 + 𝛾)𝐼 − 𝑑3𝑌 

Accordingly  

𝑑(𝑋 + 𝑆 + 𝐼 + 𝑌)

𝑑𝑡
≤ 𝑏

|𝑏 − 𝑑1|

𝑐
+ 𝑟𝐾 − 𝑚(𝑋 + 𝑆 + 𝐼 + 𝑌) 

 

And hence lim
𝑡→∞

𝑆𝑢𝑝 (𝑋 + 𝑆 + 𝐼 + 𝑌) ≤ 𝑀 

From above lemma the following theorem can be derived. 

 

Theorem 1: All solutions of system (1) are bounded. 

 

3. STABILITY ANALYSIS 

 

This section including three subsections. In the first subsection, the existence conditions of all feasible and possible steady stat 

points of system 1 are determined and their local and globally stability are investigated in the second and third subsection, 

respectively. 

 

3.1 Existence criteria of steady states  

                     System (1) has at most the following nine steady states.  

i.  The trivial steady state 𝑃0(0,0,0,0) is always exist. 

ii. The axial steady state are   𝑃1 (
𝑏−𝑑1

𝑐
, 0,0,0), and 𝑃2 = (0, 𝐾, 0,0)are   . 

So, 𝑃2  is always exist, While   𝑃1  is exist, if 

                                      𝑏 > 𝑑1                                                                                                        (2)   

iii. The planer steady states are 𝑃3 (
𝑏−𝑑1

𝑐
, 𝐾, 0,0) , 𝑃4 (0,

𝑑2+𝛾

𝜆
,
𝑟(𝜆𝐾−𝑑2−𝛾)

𝐾𝜆2
, 0) and  

 𝑃5(𝑋5, 0,0, 𝑌5) where,   𝑋5 =
𝑑3

𝛼1(𝑒1−𝑇1𝑑3)
   and   

 

                 𝑌5 =

𝑒1𝑋5(−𝑙(𝑑1+𝑐𝑋5)−
𝑑3
𝑒1𝑋4

+√(𝑙(𝑑1+𝑐𝑋4)+
𝑑3
𝑒1𝑋5

)
2
+4

𝑑3𝑙

𝑒1𝑋4
(𝑏−(𝑑1+𝑐𝑋5)))

2𝑑3𝑙
  

 

Therefore, 𝑃3  is exist if condition (2) holds,  𝑃4 and 𝑃5 are exist if the following conditions holds, respectively. 
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                                        𝜆𝐾 > 𝑑2 + 𝛾                                                                                           (3) 

                                                            𝑏 > (𝑑1 + 𝑐𝑋5)                                                                                        (4) 

iv. Weak prey-free steady state is 𝑃6(0, 𝑆6, 𝐼6, 𝑌6) where, 

𝑆6 = 𝐾 −
𝐾𝜆𝑑3

𝑟𝛼2(𝑒2−𝑑3𝑇2)
, 𝐼6 =

𝑑3

𝛼2(𝑒2−𝑑3𝑇2)
 and 𝑌6 =

𝑒2𝜆

𝛼2
𝑆6𝐼6. 

Therefore, 𝑃6 is exist if, 

                      𝑟𝛼2(𝑒2 − 𝑑3𝑇2) > 𝑑3𝜆                                                                                           (5) 

v. Predator-free steady state is 𝑃7 (
𝑏−𝑑1

𝑐
,
𝑑2+𝛾

𝜆
,
𝑟(𝜆𝐾−𝑑2−𝛾)

𝐾𝜆2
, 0) .exist if conditions (2) and (3) 

hold. 

vi. Infected strong prey-free steady state is 𝑃8(𝑋5, 𝐾, 0, 𝑌5). So, 𝑃8 if and only if 𝑃5 is exist. 

vii. Coexistence steady state is 𝑃9(𝑋9, 𝑆9, 𝐼9, 𝑌9) where is a solution to the system 

 

           
𝑏

1+𝑙𝑌
− 𝑐𝑋 −

𝛼1𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
= 𝑑1 

           𝑟 (1 −
𝑆

𝐾
) − 𝜆𝐼 = 0 

           𝜆𝑆 −  
𝛼2𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
= 𝑑2 + 𝛾 

            
𝑒1𝛼1𝑋+𝑒2𝛼2𝐼

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
= 𝑑3                                                 

3.2 Local stability 

 

To study the topological structure (local asympticaly stabile LAS) near an steady state 𝑃 of system (1), the following 

transformation used 

                       

                     𝑉1(𝑡) = 𝑋(𝑡) − 𝑋 , 𝑉1(𝑡) = 𝑆(𝑡) − 𝑆,𝑉3(𝑡) = 𝐼(𝑡) − 𝐼  𝑉4(𝑡) = 𝑌(𝑡) − 𝑌. 

 

Then the following linear system is obtained  

𝑑𝑉(𝑡)

𝑑𝑡
= 𝐽(𝑃)𝑉(𝑡)         

Where, 𝑉(𝑡) =

(

 

𝑉1(𝑡)

𝑉2(𝑡)

𝑉3(𝑡)

𝑉4(𝑡))

      and     𝐽(𝑃) = (

𝑓𝑋 𝑓𝑆
𝑔𝑋 𝑔𝑆

𝑓𝐼 𝑓𝑌
𝑔𝐼 𝑔𝑌

ℎ𝑋 ℎ𝑆
𝑍𝑋 𝑍𝑆

ℎ𝐼 ℎ𝑌
𝑍𝐼 𝑍𝑌

)

𝑃

 

 

Suppose 𝜆𝑖𝑋 ,  𝜆𝑖𝑆,  𝜆𝑖𝐼  and   𝜆𝑖𝑌   represent the eigenvalues of the Variational matrix at 𝑃𝑖 ,  in the X-, S-,I- and Y-directions, 

respectively; 𝑖 = 0,2,3, . . . ,8.  Then,  

 

i. 𝜆0X = 𝑏 − 𝑑1 , 𝜆0S = 𝑟 > 0, 𝜆0I = −(𝑑2 + 𝛾) and 𝜆0Y = −𝑑3 . 

ii. 𝜆1x = 𝑑1 − 𝑏, 𝜆1S = 𝑟 > 0, 𝜆1I = −(𝑑2 + 𝛾) and 𝜆1Y =
𝑒1𝛼1(𝑏−𝑑1 )

𝑐+𝛼1𝑇1(𝑏−𝑑1 )
− 𝑑3 . 

iii. 𝜆2X = 𝑏 − 𝑑1 , 𝜆2S = −𝑟, 𝜆2I = 𝜆𝐾 − (𝑑2 + 𝛾) and 𝜆2X = −𝑑3 . 

iv. 𝜆3X = 𝑑1 − 𝑏, 𝜆3S = −𝑟, 𝜆3I = 𝜆𝐾 − (𝑑2 + 𝛾) and 𝜆3Y =
𝑒1𝛼1(𝑏−𝑑1)

𝐶+𝛼1𝑇1(𝑏−𝑑1)
− 𝑑3 . 

v. 𝜆4X = 𝑏 − 𝑑1 ,  𝜆4S, 𝜆4I=  
 −
𝑟𝑆4 
𝐾
±√(

𝑟𝑆4 
𝐾
)2−4𝜆𝐼4 (𝑑2+𝛾)

2
  and 𝜆4Y =

𝑒2𝛼2𝐼4 

1+𝛼2𝑇2𝐼4 
− 𝑑3 . 

vi.  𝜆5S = r > 0  ,     𝜆5I = −
𝛼2𝑌5

(1+𝛼1𝑇1𝑋5)
− (𝑑2 + 𝛾) and    𝜆5S, 𝜆5Y=  

 −𝐴1±√𝐴1
2−4𝐴1𝐵1

2
   Where, 

                                          𝐴1 = 𝑑1 + 2𝑐𝑋5 +
𝛼1𝑌5

(1+𝛼1𝑇1𝑋5)
2 −

𝑏

1+𝑙𝑌5
   and  𝐵7 =

𝑒1𝛼1𝑌5

(1+𝛼1𝑇1𝑋5)
2 [

𝑋5𝑏𝑙

(1+𝑙𝑌5)
2 +

𝛼1𝑋5

(1+𝛼1𝑇1𝑋5)
]. 

vii. 𝜆6X =
𝑏

1+𝑙𝑌6
− 𝑑1 −

(1+𝛼2𝑇2𝐼6)𝛼1𝑌6

(1+𝛼2𝑇2𝐼6)
2   and   𝜆6𝑆,  𝜆6𝐼 and   𝜆6𝑌 satisfy the equation  𝑉3 + 𝐴2𝑉

2 + 𝐵2𝑉 + 𝐶,   

            where    𝐴2 =
𝑟𝑆6 

𝑘
− 𝜆𝑆6 +

𝛼2𝑌6

(1+𝛼2𝑇2𝐼6)
2 + (𝑑2 + 𝛾),       𝐵2 = −

𝑟𝜆𝑆6
2 

𝑘
+

𝑟𝑆6𝛼2𝑌6

𝑘(1+𝛼2𝑇2𝐼6)
2 +

𝑟𝑆6(𝑑2+𝛾) 

𝑘
   and  

                                                                                                    𝐶 =
𝑟𝑆6 

𝑘

𝛼2𝐼6𝑒2𝛼2𝑌6

(1+𝛼2𝑇2𝐼6)
3 
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viii.   𝜆7X = 𝑑1 – 𝑏,  𝜆7Y =   
𝑒1𝛼1(𝑏−𝑑1 )

𝑐𝜆𝐾2+𝛼1𝑇1𝜆𝐾
2(𝑏−𝑑1 )+𝛼2𝑇2𝑐𝑟(𝜆𝐾−𝑑2−𝛾)

− 𝑑3 and  𝜆7𝑆 ,  𝜆7𝐼 = 
 −𝐴3±√𝐴3

2−4𝐴3𝐵3

2
  Where,    

                               𝐴3 = 2𝑟
(𝑑2+𝛾)

𝐾𝜆
− 

 𝑟𝜆𝐾2−(𝜆𝐾−𝑑2−𝛾)

𝜆𝐾2
   and   𝐵3 = (𝑑2 + 𝛾)

𝑟(𝜆𝐾−𝑑2−𝛾)

𝐾2
. 

ix.    𝜆8S = −r,  𝜆8I = 𝜆𝐾 −
𝛼2𝑌5

(1+𝛼1𝑇1𝑋5)
− (𝑑2 + 𝛾),   𝜆8𝑋 ,  𝜆8𝑌 = 

 −𝐴4±√𝐴4
2−4𝐴4𝐵4

2
  Where, 

                                   𝐴7 = 𝑑1 + 2𝑐𝑋5 +
𝛼1𝑌5

(1+𝛼1𝑇1𝑋5)
2 −

𝑏

1+𝑙𝑌5
   and   𝐵7 =

𝑒1𝛼1𝑌5

(1+𝛼1𝑇1𝑋5)
2 [

𝑋5𝑏𝑙

(1+𝑙𝑌5)
2 +

𝛼1𝑋5

(1+𝛼1𝑇1𝑋5)
]. 

 

From determining above Eigenvalues, the following theorem can be derived. 

 

 

Theorem 2  

a. The steady states 𝑃0(0,0,0,0), 𝑃1 (
𝑏−𝑑1

𝑐
, 0,0,0) and 𝑃5(𝑋5, 0,0, 𝑌5) are unstable. 

b. 𝑃2(0, 𝐾, 0,0) is LAS if and only if  𝑏 < 𝑑1  𝑎𝑛𝑑  𝜆𝐾 < 𝑑2 + 𝛾. 

c. If 𝑃3 (
𝑏−𝑑1

𝑐
, 𝐾, 0,0) exists, then it is LAS if and only if  𝜆𝐾 < 𝑑2 + 𝛾  𝑎𝑛𝑑    

𝑒1𝛼1𝑋3

1+𝛼1𝑇1𝑋3
< 𝑑3 . 

d. If 𝑃4(0, 𝑆4 , 𝐼4 , 0) exists, then it is LAS if and only if 𝑏 < 𝑑1    𝑎𝑛𝑑   
𝑒2𝛼2𝐼4 

1+𝛼2𝑇2𝐼4 
< 𝑑3 . 

e. If 𝑃6(0, 𝑆6, 𝐼6, 𝑌6) exists, then it is LAS if and only if  
𝑏

1+𝑙𝑌6
< 𝑑1 +

𝛼1𝑌6

(1+𝛼2𝑇2𝐼6)
, 𝐴2 > 0 and 𝐴2𝐵2 > 𝐶. 

f. If 𝑃7 (
𝑏−𝑑1

𝑐
,
𝑑2+𝛾

𝜆
,
𝑟(𝜆𝐾−𝑑2−𝛾)

𝐾𝜆2
, 0) exists, then it is LAS if and only if 𝜆7Y < 0, 𝐴3 > 0and 𝐵3 > 0. 

g. If 𝑃8(𝑋5, 𝐾, 0, 𝑌5) exists, then it is LAS if and only if 𝜆𝐾 <
𝛼2𝑌5

(1+𝛼1𝑇1𝑋5)
+ (𝑑2 + 𝛾) and 𝐴7 > 0. 

 

 

3.3 Global stability 

          Global stability (or globally asymptotically stable GAS) means that any trajectories finally tend to the attractor of the system, 

regardless of initial conditions. Therefore, most of biological systems, especially prey predator system, are needed to be globally 

stable. Since 𝑃0(0,0,0,0), 𝑃1 (
𝑏−𝑑1

𝑐
, 0,0,0) and 𝑃5(𝑋5, 0,0, 𝑌5) are not LAS, so they cannot be GAS. However, GAS for the other 

steady states of system (1) is established the following theorem. 

 If  𝑃0  LAS, then it also become GAS.  

 

Theorem 3. Suppose  𝑃2(0, 𝐾, 0,0) is LAS, then it is also GAS 

 

Proof.  Consider the function  

𝐿1(𝑋, 𝑆, 𝐼, 𝑌) = 𝑋 + 𝑆 − 𝐾 − 𝐾 ln (
𝑋

𝑘
) + 𝐼 + 𝑌 

Then  𝐿1(𝑋, 𝑆, 𝐼, 𝑌) > 0  𝑎𝑛𝑑 𝐿1(𝑋, 𝑆, 𝐼, 𝑌) = 0    if and only if, (𝑋, 𝑆, 𝐼, 𝑌) = (0, 𝑘, 0,0). Further, 

 
𝑑𝐿1
𝑑𝑡

= [
bX

1 + lY
− d1X − cX

2 −
α1XY

1 + α1T1X + α2T2I
] +

(𝑆 − 𝑘)

𝑆
[rS (1 −

S

K
) −   λSI] 

+[λIS −  
α2IY

1 + α1T1X + α2T2I
− (d2 + γ)𝐼 + [

e1α1XY + e2α2IY

1 + α1T1X + α2T2I
− d3𝑌]] 

 

 Since e1 < 1 and e2 < 1  and 𝑃2(0, 𝐾, 0,0) is LAS so Theorem 2(b) u that 𝑏 < 𝑑1  𝑎𝑛𝑑  𝜆𝐾 < 𝑑2 + 𝛾 and hence   
𝑑𝐿1

𝑑𝑡
< 0. 

Consequently 𝑃2(0, 𝐾, 0,0) is GAS.   

 

Theorem 4. Suppose  𝑃3 (
𝑏−𝑑1

𝑐
, 𝑘, 0, 0)  is exist then it is GAS if  

 

                                 𝜆𝐾 < 𝑑2 + 𝛾  𝑎𝑛𝑑  (𝑏 − 𝑑1)(𝑏𝑙 + 𝑒1𝛼1)   < c𝑑3                                                                  (6) 

 

Proof. Consider the function 
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𝐿2(𝑋, 𝑆, 𝐼, 𝑌) = 𝑋 −
𝑏 − 𝑑1
𝑐

−
𝑏 − 𝑑1
𝑐

ln (
𝑐𝑋

𝑏 − 𝑑1
) +  𝑆 − 𝐾 − 𝐾 ln (

𝑋

𝑘
) + 𝐼 + 𝑌 

 Since 𝑃3 (
𝑏−𝑑1

𝑐
, 𝑘, 0, 0)  so 𝑏 > 𝑑1. Therefore.   𝐿2(𝑋, 𝑆, 𝐼, 𝑌) > 0  𝑎𝑛𝑑 𝐿2(𝑋, 𝑆, 𝐼, 𝑌) = 0    if and only if, (𝑋, 𝑆, 𝐼, 𝑌) =

(
𝑏−𝑑1

𝑐
, 𝑘, 0, 0). Further 

Then  

                
𝑑𝐿2

𝑑𝑡
= (𝑋 −

𝑏−𝑑1

𝑐
) [

𝑏

1+𝑙𝑌
− 𝑑1 − 𝑐𝑋 −

𝛼1𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
] + (𝑆 − 𝑘) [𝑟 (1 −

𝑆

𝐾
) −   𝜆𝐼] 

 

+𝜆𝐼𝑆 −  
𝛼2𝐼𝑌

1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝐼
− (𝑑2 + 𝛾)𝐼 +

𝑒1𝛼1𝑋𝑌 + 𝑒2𝛼2𝐼𝑌

1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝐼
− 𝑑3𝑌         

 

≤
−𝑏𝑙𝑋𝑌

1 + 𝑙𝑌
− 𝑐 (𝑋 −

𝑏 − 𝑑1
𝑐

)
2

−
𝑟

 𝑘 
(𝑆 − 𝑘)2    +  (  𝜆𝑘 − (𝑑2 + 𝛾)𝐼 + (

𝑏𝑙(𝑏 − 𝑑1)

𝑐(1 + 𝑙𝑌)
+

𝛼1(𝑏 − 𝑑1) 

𝑐(1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝐼)
− 𝑑3)𝑌   

 

     

So under condition 6    
  𝑑𝐿2

𝑑𝑡
< 0 . Consequently 𝑃3 (

𝑏−𝑑1

𝑐
, 𝑘, 0, 0) is GAS 

 

 

Theorem 5 Suppose𝑃4(0, 𝑆4, 𝐼4, 0) is exists, then 𝑃4(0, 𝑆4, 𝐼4, 0) is GAS    

                                   𝑏 < 𝑑1    𝑎𝑛𝑑   𝑒2 < 𝑑3 𝑇2           

Proof.  Since 𝑃4(0, 𝑆4, 𝐼4, 0) is LAS, so Theorem2 (d) guarantees the following conditions 

                                   . 
From first equation of system (1), we have 

                                      
dX

dt
≤ (𝑏 − 𝑑1)𝑋 

So, under condition 𝑏 < 𝑑1,  it gets   lim
𝑡→∞

 𝑋(𝑡) = 0  

Thus as   𝑡 → ∞ , From fourth equation of system (1), we get  
𝑑𝑌

𝑑𝑡
≤ 𝑌 [

𝑒2𝛼2𝐼

1 + 𝛼2𝑇2𝐼
− 𝑑3] ≤ [

𝑒2
𝑇2
− 𝑑3] 𝑌 

So 
𝑑𝑌

𝑑𝑡
 is negative due to 𝑒2 < 𝑑3 𝑇2, consequently  lim

𝑡→∞
 𝑌(𝑡) = 0. 

Therefore, as time approaches infinity, system 1 reduced to the following subsystem  
𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝐾
) − 𝑟𝐼𝑆 = 𝐹(𝑆, 𝐼)                                

𝑑𝐼

𝑑𝑡
= 𝜆𝐼𝑆 − (𝑑2 + 𝛾)𝐼 = 𝐺(𝑆, 𝐼)                                     

                                                (7) 

Consider now the function 𝐻(𝑆, 𝐼) = 1/𝑆𝐼, clearly 𝐻 is a continuously differentiable function. Further, 

                    
𝜕(𝐻𝐹)

𝜕𝑆
+
𝜕(𝐻𝐺)

𝜕𝐼
= −

𝑟

𝐾𝐼
 

it is clear that 
𝜕(𝐻𝐹)

𝜕𝑋
+
𝜕(𝐻𝐺)

𝜕𝑍
does not change sign and is not identically zero. So, by Bendixson-Dulac criterion, there is no periodic 

curve in of the SI-plane.  Since (𝑆4, 𝐼4) represent unique positive equilibrium point of the subsystem (7), so 

                      lim
𝑡→∞

 𝑆(𝑡) = 𝑆4  and   lim
𝑡→∞

 𝐼(𝑡) = 𝐼4,  This completes the proof. 

 

Theorem6. Suppose  𝑃6(0, 𝑆6 , 𝐼6, 𝑌6)    is exist then it is GAS if  

 

                                                    𝑏 < 𝑑1 +
𝑒1𝛼1𝑌6

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
                                                                         (8) 

                                                  𝜆𝑆6 < 𝑑2 +
𝑒2𝛼2𝑌6

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
                                                                        (9) 

 

                                                                       𝛼2𝐼6 < 𝑑3                                                                           (10) 

 

Proof. Let   𝐿3 = 𝑋 − 𝑆 − 𝑆6 − 𝑆6 ln(
𝑆

𝑆6
) + 𝐼 − 𝐼6 − 𝐼6ln (

𝐼

𝐼6
) +  𝑌 − 𝑌6 − 𝑌6ln (

𝑌

𝑌6
) 

 

Clearly 𝐿3(𝑋, 𝑆, 𝐼, 𝑌) > 0  𝑎𝑛𝑑 𝐿3(𝑋, 𝑆, 𝐼, 𝑌) = 0    if and only if, (𝑋, 𝑆, 𝐼, 𝑌) = (0, 𝑆6 , 𝐼6, 𝑌6). Further, 

 
𝑑𝐿3

𝑑𝑡
=  (

b

1+lY
− d1 −

e1α1Y6

1+α1T1X+α2T2I
) 𝑋 −  cX2 +   

α1(e1−1)XY+α2(e2−1)IY

1+α1T1X+α2T2I
 −

r

K
(𝑆 − 𝑆6)

2 
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             +(λ𝑆6 − d2 −
e2α2Y6

1+α1T1X+α2T2I
) 𝐼 + (d2 + 𝛾)𝐼6 + d3𝑌6 − λ𝐼6𝑆 + (

α2𝐼6

1+α1T1X+α2T2I
− d3) 𝑌 

Therefore 
𝑑𝐿3

𝑑𝑡
 is negative under conditions (9-10) and hence 𝑃6(0, 𝑆6 , 𝐼6, 𝑌6) is GAS. 

 

 

Theorem7 Suppose  𝑃7 (
𝑏−𝑑1

𝑐
,
𝑑2+𝛾

𝜆
,
𝑟(𝜆𝐾−𝑑2−𝛾)

𝐾𝜆2
, 0)    is exist then it is GAS if  

 

                                                         𝑏 + 𝑐𝑋7 < 𝑑1                                                                                   (11) 

                                                        λ𝑆7 < d2 + 𝛾                                                                                      (12) 

                                                      α1𝑋7 + α2𝐼7 < d3                                                                                 (13) 

                                                     𝑟 +
r

K
𝑆7 < λ𝐼7                                                                                        (14) 

 

Proof. Consider the function 

   𝑙4(𝑋, 𝑆, 𝐼, 𝑌) = 𝑋 − 𝑋7−𝑋7 ln (
𝑋

𝑋7
) − 𝑆 − 𝑆7 − 𝑆7 ln (

𝑆

𝑆7
) + 𝐼 − 𝐼7 − 𝐼7 ln (

𝐼

𝐼7
) +  𝑌.    Where, 

 

                                                                                                          𝑋7 =
𝑏−𝑑1

𝑐
, 𝑆7 =

𝑑2+𝛾

𝜆
 and 𝐼7 =

𝑟(𝜆𝐾−𝑑2−𝛾)

𝐾𝜆2
. 

 

Since𝑃7(𝑋7, 𝑆7, 𝐼7, 0) exists, so   𝐿4(𝑋, 𝑆, 𝐼, 𝑌) > 0  𝑎𝑛𝑑 𝐿4(𝑋, 𝑆, 𝐼, 𝑌) = 0    if and only if, (𝑋, 𝑆, 𝐼, 𝑌) = (𝑋7 , 𝑆7 , 𝐼7, 0). Further, 

 

 
𝑑𝐿4

𝑑𝑡
 = ( 𝑋 − 𝑋7) (

𝑏

1+𝐿𝑦
 − 𝑑1 − 𝑐𝑥 −

𝛼1𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
) + (𝑆 − 𝑆7) (𝑟 (1 −

𝑆

𝐾
) −   𝜆𝐼) 

         +(𝐼 − 𝐼7) (𝜆𝑆 −
𝛼2𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
− (𝑑2 + 𝛾)) +

𝑒1𝛼1𝑋𝑌+𝑒2𝛼2𝐼𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
− 𝑑3𝑌 

   

      =
𝛼1(𝑒1−1)𝑋𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
+

𝛼2(𝑒2−1)𝐼𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
+ (

𝑏

1+𝐿𝑦
 − 𝑑1 + 𝑐𝑋7) 𝑋 − 𝑐𝑋

2 + (𝜆𝑆7 − 𝑑2 + 𝛾)𝐼 + (𝑟 +
𝑟

𝐾
𝑆7 − 𝜆𝐼7) 𝑆 

       (
𝛼1𝑋7

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
+

𝛼2𝐼7

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
− 𝑑3) 𝑌 −

𝑟

𝐾
𝑆2 −

𝑏𝑋7

1+𝐿𝑦
−  𝑑1𝑋7 − (𝑑2 + 𝛾)𝐼7 − 𝑟𝑆7 

Therefore 
𝑑𝐿4

𝑑𝑡
 is negative under conditions (11-14) and hence 𝑃7(𝑋7, 𝑆7, 𝐼7, 0) is GAS. 

 

Theorem8 Suppose  𝑃8(𝑋8 , 𝑆8 ,0, 𝑌8)    is exist then it is GAS if .  
 

                                       𝑏 < 𝑑1 + 𝑐𝑋8 +
𝑒1𝛼1𝑌8

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
                                                                        (15) 

                                       𝜆𝑆8 < (𝑑2 + 𝛾) +
𝑒2𝛼2𝑌8

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
                                                                     (16) 

                                     𝑑3𝑌8 <
𝑏𝑋8

1+𝐿𝑦
+ 𝑑1𝑋8 + 𝑟𝑆8                                                                                (17) 

 

Proof. Consider the function 

 

                            𝐿5(𝑋, 𝑆, 𝐼, 𝑌) = 𝑋 − 𝑋8−𝑋8 ln (
𝑋

𝑋8
)  − 𝑆 − 𝑆8 − 𝑆8 ln (

𝑆

𝑆8
) + 𝐼 + 𝑌 − 𝑌8 − 𝑌8 ln (

𝑌

𝑌8
) 

Clearly, 𝐿5(𝑋, 𝑆, 𝐼, 𝑌) > 0  𝑎𝑛𝑑 𝐿5(𝑋, 𝑆, 𝐼, 𝑌) = 0    if and only if, (𝑋, 𝑆, 𝐼, 𝑌) = (𝑋8 , 𝑆8 ,0, 𝑌8). Further, 

 
𝑑𝐿5

𝑑𝑡
 = ( 𝑋 − 𝑋8) (

𝑏

1+𝐿𝑦
− 𝑑1 − 𝑐𝑋 −

𝛼1𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
  ) + (𝑆 − 𝑆8) (−

1

𝐾
(𝑆 − 𝑆8) −   𝜆𝐼) + 𝜆𝐼𝑆 −  

𝛼2𝐼𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
− (𝑑2 + 𝛾)𝐼 +

(𝑌 − 𝑌8)(
𝑒1𝛼1𝑋+𝑒2𝛼2𝐼

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
− 𝑑3)   

=  
𝛼1(𝑒1−1)𝑋𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
  +  

𝛼2(𝑒2−1)𝐼𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
+ (

𝑏

1+𝐿𝑦
− 𝑑1 − 𝑐𝑋8 −

𝑒1𝛼1𝑌8

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
)𝑋 − 𝑐𝑋2 −

1

𝐾
(𝑆 − 𝑆8)

2 + (𝜆𝑆8 − (𝑑2 + 𝛾) −

𝑒2𝛼2𝑌8

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
) 𝐼−𝑑3𝑌 −

𝑏𝑋8

1+𝐿𝑦
− 𝑑1𝑋8 − 𝑟𝑆8 + 𝑑3𝑌8 

 

Since e1 < 1  ∧  e2 < 1, therefore 
𝑑𝐿5

𝑑𝑡
 is negative under conditions (15-17) and hence 𝑃8(𝑋8 , 𝑆8 ,0, 𝑌8) is GAS. 
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Theorem9 Suppose  𝑃9(𝑋9 , 𝑆9 , 𝐼9, 𝑌9)    is exist then it is GAS if.  
 

                                         𝑏 + 𝑐𝑋9 < 𝑑1 +
𝛼1𝑌9

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
                                                                     (18) 

                                         𝑟 +
𝑟

𝐾
𝑆9 < 𝜆𝐼9                                                                                              (19) 

                                        𝜆𝑆9 < 𝑑2 + 𝛾 +
𝑒2𝛼2𝑌9

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
                                                                        (20) 

                                        𝛼𝐼9 + 𝛼1𝑋9 < 𝑑3                                                                                            (21) 

                                         𝑑1𝑋9 + (𝑑2 + 𝛾)𝐼9 + 𝑑3𝑌9 < 𝑟𝑆9 +
𝑏𝑋9

1+𝐿𝑦
                                                      (22)  

 

Proof. Consider the function 

 

       𝐿6(𝑋, 𝑆, 𝐼, 𝑌) = 𝑋 − 𝑋9−𝑋9 ln (
𝑋

𝑋9
) + 𝑆 − 𝑆9 − 𝑆9 ln (

𝑆

𝑆9
) + 𝐼 − 𝐼9 − 𝐼9 ln (

𝐼

𝐼9
) +  𝑌 − 𝑌9 − 𝑌9 ln (

𝑌

𝑌9
) 

 

Clearly, 𝐿6(𝑋, 𝑆, 𝐼, 𝑌) > 0  𝑎𝑛𝑑 𝐿6(𝑋, 𝑆, 𝐼, 𝑌) = 0    if and only if, (𝑋, 𝑆, 𝐼, 𝑌) = (𝑋9 , 𝑆9 , 𝐼9, 𝑌9). Further, 

 

 
𝑑𝐿6

𝑑𝑡
 =( 𝑋 − 𝑋9) (

𝑏

1+𝐿𝑦
− 𝑑1 − 𝑐𝑋 −

𝛼1𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
  ) + (𝑆 − 𝑆9) (𝑟 (1 −

𝑆

𝐾
) −   𝜆𝐼) + (𝐼 − 𝐼9) (𝜆𝑆 −

𝛼2𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
− (𝑑2 + 𝛾))  +

(𝑌 − 𝑌9)(
𝑒1𝛼1𝑋+𝑒2𝛼2𝐼

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝐼
− 𝑑3)   

= (  
𝑏

1 + 𝐿𝑦
− 𝑑1 + 𝑐𝑋9 −

𝑒1𝛼1𝑌9
1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝐼

 ) 𝑋 − 𝑐𝑋2 +  
𝛼1(𝑒1 − 1)𝑋𝑌 + 𝛼2(𝑒2 − 1)𝐼𝑌

1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝐼
+ (𝑟 +

𝑟

𝐾
𝑆9 − 𝜆𝐼9) 𝑆 −

𝑟

𝐾
𝑆2

+ (𝜆𝑆9 − 𝑑2 − 𝛾 −
𝑒2𝛼2𝑌9

1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝐼
) 𝐼 + 𝑑1𝑋9 + (𝑑2 + 𝛾)𝐼9 + 𝑑3𝑌9−𝑟𝑆9 −

𝑏𝑋9
1 + 𝐿𝑦

 

+ (
𝛼𝐼9 + 𝛼1𝑋9

1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝐼
− 𝑑3) 𝑌 

Since e1 < 1  ∧  e2 < 1,therefore 
𝑑𝐿6

𝑑𝑡
 is negative under conditions (18-22) and hence 𝑃9(𝑋9 , 𝑆9 , 𝐼9, 𝑌9) is GAS. 

 

4. NUMERICAL SIMULATION  

             In order to support the analytical finding in this paper, some numerical simulations are performed; all the simulations are 

carried out through runga kutta method of order six method, using MATLAB. First, let choose the set of parameter values. 

 
b =  2.5;  𝑟 = 1.3;  𝑙 = 0.02 ;  𝑐 = 0.01;  𝜆 =  0.01; 𝑘 = 50 ; 𝑑1 =  0.05;  𝑑2  =  0.05;
  𝑑3  =  0.05; 𝛼1 = 0.001; 𝛼2 = 0.001; 𝑇1 =   3; 𝑇2 =  2; 𝑒1 =  0.7;  𝑒2 =  0.7;

                                                   (23)                                                                                                       

 

 

Note the above parameter values satisfy the condition for global stability of the coexistence steady state. Therefore Fig.1 confirm 

analytical result in Theorem 9 
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Figure1: The figure shows that the model trajectory approaches  𝑃9 
 

 

Again let we choose the following set of parameter values. 

 
b =  1.5;  𝑟 = 4.3;  𝑙 = 0.02 ;  𝑐 = 0.01;  𝜆 =  0.01; 𝑘 = 50 ; 𝑑1 =  0.05;  𝑑2  =  0.05;
  𝑑3  =  0.05; 𝛼1 = 0.001; 𝛼2 = 0.001; 𝑇1 =   3; 𝑇2 =  2; 𝑒1 =  0.5;  𝑒2 =  0.5;

                                                   (24)                                                                                                       

 

 

The parameter values in (24) satisfy the condition for global stability of the weak prey-free steady states, and Fig.2 shows that the 

model approaches weak prey Steady state, when the parameter values are as given in (𝟐𝟒), and confirm analytical result in Theorem 

6 

 
Figure 2: The figure shows that the model trajectory approaches  𝑃6 

 

Again let we choose the following set of parameter values. 

 
b =  2.5;  𝑟 = 1.3;  𝑙 = 0.02 ;  𝑐 = 0.01;  𝜆 =  0.01; 𝑘 = 50 ; 𝑑1 =  0.05;  𝑑2  =  0.05;
  𝑑3  =  0.05; 𝛼1 = 0.001; 𝛼2 = 0.001; 𝑇1 =   3; 𝑇2 =  2; 𝑒1 =  0.2;  𝑒2 =  0.2;

                                                   (25)                                                                                                       

 

The parameter values in (25) satisfy the condition for global stability of the predator-free steady states, it shows that the model 

approaches predator Steady state, when the parameter values are as given in (𝟐𝟓), and confirm analytical result in Theorem 7. 

 

 
Figure 3: The figure shows that the model trajectory approaches  𝑃7 

 

Again let we choose the following set of parameter values. 

 
b =  2.5;  𝑟 = 1.3;  𝑙 = 0.02 ;  𝑐 = 0.01;  𝜆 =  0.001; 𝑘 = 50 ; 𝑑1 =  0.05;  𝑑2  =  0.05;

  𝑑3  =  0.05; 𝛼1 = 0.001; 𝛼2 = 0.001; 𝑇1 =   3; 𝑇2 =  2; 𝑒1 =  0.7; 𝑒2 =  0.7;
                                                   (26) 

 

The parameter values in (26)satisfy the condition for global stability of the strong infected prey-free steady states, it shows that the 

model approaches strong infected prey -free Steady state, when the parameter values are as given in (𝟐𝟔), and confirm analytical 

result in Theorem 8 
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Figure 4: The figure shows that the model trajectory approaches  𝑃8 

Again let we choose the following set of parameter values. 

 
b =  0.05;  𝑟 = 1.3;  𝑙 = 0.2 ;  𝑐 = 0.01;  𝜆 =  0.001; 𝑘 = 50 ; 𝑑1 =  0.6;  𝑑2  =  0.05;
  𝑑3  =  0.04; 𝛼1 = 0.001; 𝛼2 = 0.001; 𝑇1 =   7; 𝑇2 =  8; 𝑒1 =  0.5; 𝑒2 =  0.5;

                                                   (27) 

 

Above parameter values satisfy the condition for global stability of the strong infected prey-free steady states, it shows that the 

model approaches strong infected prey -free Steady state, when the parameter values are as given in (𝟐𝟕). and confirm analytical 

result in Theorem 3 

 

 
Figure 5: The figure shows that the model trajectory approaches  𝑃2 

 

Again let we choose the following set of parameter values. 

 

 

 
b =  0.05;  𝑟 = 1.3;  𝑙 = 0.6 ;  𝑐 = 0.9;  𝜆 =  0.9; 𝑘 = 7 ; 𝑑1 =  0.6;  𝑑2  =  0.05;
  𝑑3  =  0.04; 𝛼1 = 0.001; 𝛼2 = 0.001; 𝑇1 =   7; 𝑇2 =  8; 𝑒1 =  0.5; 𝑒2 =  0.5;

                                                   (28) 

 

Above parameter values the condition for global stability of the weak prey and predator free steady states, it shows that the model 

approaches weak prey and predator-free Steady state, when the parameter values are as given in (𝟐𝟖), and confirm analytical result 

in Theorem 5. 

 
 

 

 

 

 

 

 

 

Figure 6: The figure shows that the model trajectory approaches  𝑃4 
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Again let we choose the following set of parameter values  

 
b =  2.5;  𝑟 = 1.3;  𝑙 = 0.02 ;  𝑐 = 0.01;  𝜆 =  0.001; 𝑘 = 10 ; 𝑑1 =  0.05;  𝑑2  =  0.05;

  𝑑3  =  0.05; 𝛼1 = 0.001; 𝛼2 = 0.001; 𝑇1 =   3; 𝑇2 =  2; 𝑒1 =  0.1; 𝑒2 =  0.2;
                                                   (29) 

 

Above parameter values satisfy the condition for global stability of 𝑷𝟑 , Fig.7. shows that the model approaches 𝑷𝟑 , when the 

parameter values are as given in (𝟐𝟖), and confirm analytical result in Theorem 5 

 

 

 
Figure 7:  These parameter values satisfy the condition for global stability of 𝑷𝟑 

 

5. CONCLUSION 

          In this paper, the dynamical interaction between two prey (strong and weak) and one predator species under the 

influence of fear is integrated into the development rate of vulnerable prey species owing to predation, with the spread of 

a SI illness among robust prey species is modeled mathematically through set of differential equations. It has been shown 

that the model is bounded and it has at most ten steady states that three of the them are always unstable, while for the other 

steady states  the criteria for local asymptotically stability are determined in Theorem 2 and globally asymptotically stable 

are determined in Theorems in section 3.3.  Finally with the help of MATLAB program, it is performed numerical 

simulations to support the evidence of analytical results regarding stability to each steady state.  
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