ON SOME SEPARATION AXIOMS OF SUPRATOPOLOGICAL SPACES

¹ Taha H. Jassim, ² Rana B. Yasseen & ³ Nabeel E. Arif

^{1, 3} Dept. of Mathematics, College of Computer Sciences & Mathematics, University of Tikrit, Tikrit, Iraq

² Dept. of Mathematics, College of Education For Women, University of Tikrit, Tikrit, Iraq

Abstract

In this paper, we introduce a some new separation axioms **supra-** T_0 **-space**, **supra-** T_1 **-space** and **supra-** T_2 **-space** (S^* - T_0 , S^* - T_1 , S^* - T_2 for short), and study the supra-hereditary (S^* -hereditary for short) and supratopological property (S^* -topological property for short) on them.

1- Introduction:

Let X,Y be any topological spaces on which separation axioms (T_{\circ},T_{1},T_{2}) are assumed unless explicitly stated [3]. A sub class $\tau^{*} \subseteq p(x)$ is called supratopology on X if $X \in \tau^{*}$ and τ^{*} is closed under arbitrary union. (X,τ^{*}) is called a supratopological space.

The members of τ^* are called supra open sets [1]. Let (X,τ) be a topological space and τ^* be a supratopology on X, we called τ^* asupratopology associated with τ if $\tau \subseteq \tau^*$, let E be a subset of X. The supra closure (resp. supra interior) of E well be denoted by $S^*CL(E)(resp.S^*\operatorname{int}(E))$. Let $(X,\tau_x^*)and(Y,\gamma_y^*)$ be supratopological spaces . A function $f:X\to Y$ is an

 S^* -continuous function if the inverse image of each supra open set in Y is a supra open set in X.[1] . we say that f is a supra open function if and only if the image of any supra open set $E \subset X$ is a supra open set $f(E) \subset Y$ and we say that f is a supra homoeomorphism (S^* -home for short) if and only if f is bijective, f is supra open function and f is S^* -continuous [4].

The product of supratopology is

$$\gamma_{XXY}^* = \left\{ \bigcup_{i,j} u_i^* \times \nu_j^*, u_i^* \in \gamma_X^*, \nu_j^* \in \gamma_Y^* \right\} [2].$$

For example let $X = \{a,b,c,d\}, Y = \{1,2\}, \ \tau_X^* = \{X,\{a\},\{b\},\{a,b\}\}, \ \gamma_Y^* = \{Y,\{1\},\{2\}\}$ then $\tau_{X\times Y}^* = \{X\times Y, X\times \{1\}, X\times \{2\},\{a\}\times Y,\{a\}\times \{1\},\{a\}\times \{2\},\{b\}\times Y,\{b\}\times \{1\},\{b\}\times \{2\},\{a,b\}\times Y,\{a,b\}\times \{1\},\{a,b\}\times \{2\}\}\}$ = $\{X\times Y,\{(a,1),(b,1),(c,1),(d,1)\},\{(a,2),(b,2),(c,2),(d,2)\},\{(a,1),(a,2)\},\{(a,1),(b,2)\},\{(a,1),(b,2)\},\{(b,1),\{b,2\}\},\{(a,1),(a,2),(b,1),(b,2)\},\{(a,1),(b,1)\},\{(a,2),(b,2)\}\}$

2- $S^* - T_{\circ}$ - space induced by supratopology .

Definition 2.1.

A supratopological space (X, τ^*) is called supra T_\circ -space and denoted by $(S^* - T_\circ)$ if for any distinct pair of points x, y of X there exists one supra open set u^* in τ^* such that $x \in u^*$ but $y \notin u^*$ or $x \notin u^*$ but $y \in u^*$.

Example 2.2.

Let $X = \{a,b,c,d\}$ and $\tau^* = \{X,\{b\},\{a,b\},\{b,d\},\{a,b,d\}\}$ it is clearly (X,τ^*) is $S^* - T$ -space.

Theorem 2.3.

A supratopological space (X, τ^*) is $S^* - T$ if and only if for each pair of distinct points X, Y of X,

 $S^*cl(\{x\}) \neq S^*cl(\{y\}) .$

Proof:

Sufficiency. suppose that for each pair of distinct points $x, y \in X$, $S^*cl(\{x\}) \neq S^*cl(\{y\})$. Let $w \in X$ such that $w \in S^*cl(\{x\})$ but $w \notin S^*cl(\{y\})$.

We claim that $x \notin S^*cl(\{y\})$, for if $x \in S^*cl(\{y\})$ then $S^*cl(\{x\}) \subset S^*cl(\{y\})$, this contradict the fact that $w \notin S^*cl(\{y\})$. Consequently $x \in [S^*cl(\{y\})]^c$ to which y does not belong.

Necessity let (X,τ^*) be an S^*-T -space and $x,y\in X,x\neq y,\exists$ supra open set u^* $\ni x\in u^*$ or $y\in u^*$ then u^{*^c} is an supra closed set which $x\in u^*$ and $y\in u^{*^c}$. Since $S^*cl(\{y\})$ is the smallest supra closed set containing y, $S^*cl(\{y\})\subset u^{*^c}$, and therefore $x\notin S^*cl(\{y\})$. Hence $S^*cl(\{x\})\neq S^*cl(\{y\})$.

Example 2.4.

Let $X = \{a,b,c,d\}, \tau^* = \{X,\{a\},\{b\},\{a,b\},\{b,c\},\{a,c\},\{a,b,c\}\}\}$ and $S^*cl(\{a\}) \neq S^*cl(\{b\})$ then (X,τ^*) is $S^* - T_\circ$ -space.

Definition 2.5.

Let (X, τ_X^*) be a supratopological space, E be a subset of X, then classes τ_E^* of all intersections of E with τ^* -supra open subsets of X belong to τ^* is a topology on E it is called relative supratopology (supra-subspace)

Example 2-6:

Let $X = \{a,b,c,d\}, \tau_X^* = \{X,\{b\},\{a,b\},\{b,d\},\{a,b,d\}\}$ and $E = \{a,b,c\}$ then $\tau_E^* = \{E,\{a,b\},\{b\}\}$ and (E,τ_E^*) is called relative supra subtopological space .

Definition 2.7.

Let (X, τ_X^*) be any supra topological space if p is any property in X, then we called p is S^* – hereditary if every relative supra topological space has property p.

Theorem 2.8.

Let (X, τ^*) be any $S^* - T_\circ - \text{space}$, then every relative supratopological space is $S^* - T_\circ$.

Proof:

Let (E, τ_E^*) be a relative supratopological space. To show (E, τ_E^*) is $S^* - T_\circ$ -space, let $e_1, e_2 \in E$ and $e_1 \neq e_2$, then $e_1, e_2 \in X$. Because (X, τ^*) is $S^* - T_\circ$, there exist a supra open set $u^* \subseteq X$, such that u^* containing one of e_1, e_2 but not both, now if $e_1 \in u^*$, then $e_1 \in E \cap u^* = u^{*^*}$. If $e_2 \in u^*$ then $e_2 \in E \cap u^* = u^{*^*}$ therefore (E, τ_E^*) is $S^* - T_\circ$ – space.

Definition 2.9.

Let $f:(X,\tau_X^*) \to (Y,\gamma_Y^*)$ be any S^* – homeomorphic, let p any property in X we say that p is S^* - topological property if p is appear in Y.

Theorem 2.10.

The property of $S^* - T$ is topological property.

Proof:

Let $(X, \tau_X^*), (Y, \gamma_Y^*)$ be a supratopological spaces and let $f: (X, \tau_X^*) \to (Y, \gamma_Y^*)$ be a S^* - home, suppose $y_1, y_2 \in Y$ such that $y_1 \neq y_2$. Because f is bijective, there exist $x_1, x_2 \in X$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. But (X, τ_X^*) is a $S^* - T_\circ$ -space, so there exist a supra open set u^* such that $x_1 \in u^*$ and $x_2 \notin u^*$ or $x_1 \notin u^*$ and $x_2 \in u^*$. Since f a supra open function, so $f(u^*)$ is a supra open set of Y. By bijectivity of f, we get $y_1 = f(x_1) \in f(u^*)$ and $y_2 = f(x_2) \notin f(u^*)$ or $y_1 = f(x_1) \notin f(u^*)$ and $y_2 = f(x_2) \in f(u^*)$. Therefore, (Y, γ_Y^*) is a $S^* - T_\circ$ -space.

Theorem 2.11.

A two supratopological spaces $(X, \tau_X^*), (Y, \gamma_Y^*)$ are $S^* - T_\circ$ – spaces if and only if $X \times Y$ is a $S^* - T_\circ$ – space.

Proof:

Sufficiency . Let X,Y be a S^*-T_\circ – spaces , let $(x_1,y_1),(x_2,y_2)\in X\times Y$ and $(x_1,y_1)\neq (x_2,y_2)$. Thus $x_1\neq x_2$ or $y_1\neq y_2$. Assume that $x_1\neq x_2$. Since X is a S^*-T_\circ – space , there exists a supra open set u^* such that $x_1\in u^*,x_2\not\in u^*$ or $x_1\not\in u^*,x_2\in u^*$. Now the supra open set $u^*\times Y\in X\times Y$, and $(x_1,y_1)\in u^*\times Y$ or $(x_2,y_2)\in u^*\times Y$ then $X\times Y$ is a S^*-T_\circ – space.

Necessity . let $X \times Y$ is a $S^* - T_\circ$ -space . To show that X is $S^* - T_\circ$ -space , take $x_1, x_2 \in X$ such that $x_1 \neq x_2$, \exists two points $(x_1, y), (x_2, y) \in X \times Y$ by definition of product . Since $x_1 \neq x_2$ then $(x_1, y) \neq (x_2, y)$. But $X \times Y$ is $S^* - T_\circ$ -space , so \exists a supra open set $u^* \in X \times Y$ such that $(x_1, y) \in u^*$, and it follow that $(x_2, y) \notin u^*$ or $(x_2, y) \in u^*$, and $(x_1, y) \notin u^*$. There exist two supra open sets u_1^*, u_2^* such that $u_1^* \times u_2^* = u$. Thus $x_1 \in u_1^*$ and $y \in u_2^*$ or $y \in u_1^*$ and $y \in u_2^*$. Because $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \in u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \notin u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \notin u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \notin u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \notin u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \notin u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \notin u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \notin u^*$ and $(x_2, y) \notin u^*$ and $(x_1, y) \notin u^*$ and $(x_2, y) \notin u^*$ and (x_1, y)

3 - $S^* - T_1$ - space induced by supratopology . Definition 3.1.

A supratopological space (X, τ_X^*) is called supra T_1 space and denoted by $(S^* - T_1)$ if for any distinct pair
of points x, y of X there exists two supra open sets u^* , v^* in τ_X^* such that $x \in u^*$, $x \notin v^*$ and $y \in v^*$, $y \notin u^*$.

Remark 3.2.

Every $S^* - T_1$ - spaces is $S^* - T_0$ - spaces but the converse is not true.

Example 3.3.

Let $X = \{a,b,c,d\}, \tau^* = \{X,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$ it is clearly (X,τ^*) is $S^* - T_\circ$ – space but not $S^* - T_1$ – space .

Theorem 3.4.

Let (X, τ^*) be any $S^* - T_1$ -space, then every relative supratopological space (E, τ_E^*) is $S^* - T_1$.

Proof:

A supratopology space (X, τ^*) be a $S^* - T_1$, let $E \subseteq X$ and let $e_1, e_2 \in X$ such that $e_1 \neq e_2$, \exists two supra open sets u^* , v^* such that $e_1 \in u^*$ and $e_1 \in E$ then $e_1 \in E \cap u^* = u^{*^*}$ and $e_2 \in v^*$ and $e_2 \in E$ then $e_2 \in E \cap v^* = v^{*^*}$. Hence (E, τ_E^*) is $S^* - T_1$.

Theorem 3.5.

The property of $S^* - T_1$ - space is topological property.

Proof:

Let (X, τ_X^*) , (Y, γ_Y^*) be a supratopological spaces, $f: (X, \tau_X^*) \to (Y, \gamma_Y^*)$ is S^* – home, to show (Y, γ_Y^*) is $S^* - T_1$.

let $y_1 \neq y_2 \in Y$, since f is onto, $\exists x_1, x_2 \in X$ such that $y_1 = f(x_1), y_2 = f(x_2)$, since f is one-one, $y_1 \neq y_2$ there exists $x_1 \neq x_2$, since (X, τ^*) is $S^* - T_1$, \exists two

supra open sets u^* , v^* such that $x_1 \in u^*, x_2 \notin u^*$ and $x_1 \notin v^*, x_2 \in v^*$.

Now function supra open then $f(x_1) \in f(u^*), \forall x_1 \in f(u^*), x_1 \in u^*$ and $f(x_2) \in f(v^*), \forall x_2 \in f(v^*), x_2 \in v^*$ hence (Y, γ_Y^*) is $S^* - T_1$ -space.

Theorem 3.6.

Let (X, τ_X^*) , (Y, γ_Y^*) are $S^* - T_1$ -spaces if and only if $X \times Y$ is a $S^* - T_1$ -space.

Proof:

Sufficiency . Let X, Y be a $S^* - T_1$ -spaces, let $(x_1, y_1), (x_2, y_2) \in X \times Y$ and $(x_1, y_1) \neq (x_2, y_2)$. Thus $x_1 \neq x_2$ or $y_1 \neq y_2$. Assume that $x_1 \neq x_2$. Since X is a $S^* - T_1$ -space, there exists two supra open sets u^* , v^* such that $x_1 \in u^*, x_2 \notin u^*$ and $x_1 \notin v^*, x_2 \in v^*$. Now the supra open sets $u^* \times Y, v^* \times Y \in X \times Y$, and $(x_1, y_1) \in u^* \times X$ but $(x_1, y_1) \notin v^* \times Y$ and $(x_2, y_2) \in v^* \times Y$ but $(x_2, y_2) \notin u^* \times X$ then $X \times Y$ is a $S^* - T_1$ - space. Necessity . let $X \times Y$ is a $S^* - T_{\circ}$ - space . To show that X is $S^* - T_1$ -space, take $x_1, x_2 \in X$ such that $x_1 \neq x_2$, \exists two points $(x_1, y), (x_2, y) \in X \times Y$ by definition of product. Since $x_1 \neq x_2$ then $(x_1, y) \neq (x_2, y)$. But $X \times Y$ is $S^* - T_1$ -space, so \exists a two supra open sets $u^*, v^* \in X \times Y$ such that $(x_1, y) \in u^*, (x_2, y) \notin u^*$ and $(x_2, y) \in v^*, (x_1, y) \notin v^*$. Now there exist two supra open sets u_1^*, u_2^* such that $u_1^* \times u_2^* = u$, and $x_1 \in u_1^*, y \in u_2^*$, since $(x_1, y) \in u^*, (x_2, y) \not\in u^*$ and $(x_2, y) \in v^*, (x_1, y) \notin v^* \text{ then } X_1 \in u_1^*, X_2 \notin u_1^* \text{ and}$ $X_2 \in V_1^*, X_1 \notin V_1^*$ then (X, τ_X^*) is $S^* - T_1$ -space .Simarly (Y, γ_Y^*) is $S^* - T_1$ -space.

4- $S^* - T_2$ - space induced by supratopology.

Definition 4.1

A supratopological space (X, τ_X^*) is called supra T_2 -space and denoted by $(S^* - T_2)$ if for any distinct pair of points x, y of X there exists disjoint two supra open sets u^* , v^* in τ^* such that $x \in u^*$ and $y \in v^*$.

Example 4.2.

Let $X = \{a,b,c,d\}$, $u^* \times X, v^* \times Y \in X \times Y$, and $(x_1,y_1) \in u^*$ $\tau^* = \{X,\{a\},\{b\}\{c\},\{a,c\},\{b,a,d\},\{b,d,a\},\{d,a\},\{b,a\},\{d,a,c\},\{b,a\},\{d,a,c\},\{b,a\},\{d,a,c\},\{d,$

Remark 4.3.

Every $S^* - T_2$ -space is $S^* - T_1$ -space but the converse is not true .

Example 4.4.

Let $X = \{a,b,c,d,e\}$, $\tau^* = \{X,\{a,b,c\},\{b,c,d\},\{a,b,c,d\}\}$ it is clearly (X,τ^*) is $S^* - T_1$ -space but not $S^* - T_2$ - space .

Theorem 4.5.:

Let (X, τ_X^*) be any $S^* - T_2$ -space, then every relative supratopological space (E, τ_E^*) is $S^* - T_2$ -space.

Proof:

Let (X, τ_X^*) be a relative supratopological space and let $e_1, e_2 \in E$ such that $e_1 \neq e_2$. Since $E \subseteq X$, so $e_1, e_2 \in X$. But (X, τ_X^*) is $S^* - T_2$ -space, thus there exist two disjoint supraopen sets u^* , v^* in X, such that $e_1 \in u^*$, $e_2 \in v^*$ and $u^* \cap v^* = \Phi$. Thus $e_1 \in E \cap u^* \in \tau_E^*$, $e_2 \in E \cap v^* \in \tau_E^*$, and $(E \cap u^*) \cap (E \cap v^*) = \Phi$. Hence (E, τ_E^*) is $S^* - T_2$ -space.

Theorem 4.6.

The property of $S^* - T_2$ -space is topological property.

Proof:

Let $(X, \tau_X^*), (Y, \gamma_Y^*)$ be a supratopological spaces and let $f: (X, \tau_X^*) \to (Y, \gamma_Y^*)$ be a S^* — home, suppose $y_1, y_2 \in Y$ such that $y_1 \neq y_2$. Because f are one-one and onto, then $f^{-1}(y_1) \neq f^{-1}(y_2)$, But (X, τ_X^*) is a $S^* - T_2$ -space, so there exist two supra open sets u^* , v^* on X such that $f^{-1}(y_1) \in u^*$, $f^{-1}(y_2) \in v^*$ and $u^* \cap v^* = \Phi$. We get $y_2 \in f(v^*), y_1 \in f(u^*)$. Since supra open function then $f(u^*)$, $f(v^*)$ are supra open sets. Therefore (Y, γ_Y^*) is $S^* - T_2$ -space.

Theorem 4.7.

A two supratopological space (X, τ_X^*) , (Y, γ_Y^*) are $S^* - T_2$ -spaces if and only if $X \times Y$ is a $S^* - T_2$ -space.

Proof:

Sufficiency . Let X,Y be a S^*-T_2 -spaces , let $(x_1,y_1),(x_2,y_2)\in X\times Y$ and $(x_1,y_1)\neq (x_2,y_2)$. Thus $x_1\neq x_2$ or $y_1\neq y_2$. Assume that $x_1\neq x_2$. Since X is a S^*-T_2 -space , there exists two supra open sets u^* , v^* such that $x_1\in u^*,x_2\not\in u^*$ and $x_1\not\in v^*$, $x_2\in v^*$ and $u^*\cap v^*=\Phi$. Now the supra open sets $u^*\times X,v^*\times Y\in X\times Y$, and $(x_1,y_1)\in u^*\times X$ but $c^*(x_1^b,y_1^*)\in d^*(x_1^b,y_1^*)\in d^*(x_1^b,y_1^*)\in d^*(x_1^b,y_1^*)\in d^*(x_1^b,y_1^*)\in d^*(x_1^b,y_1^*)\in d^*(x_1^b,y_1^*)=\Phi$ then $X\times Y$ is S^*-T_2 -space . Necessity . let $X\times Y$ is a S^*-T_2 - space . To show that X is S^*-T_2 -space , take $x_1,x_2\in X$ such that $x_1\neq x_2$, \exists two points $(x_1,y_1),(x_2,y_1)\in X\times Y$ by

definition of product . Since $x_1 \neq x_2$ then $(x_1,y) \neq (x_2,y)$. But $X \times Y$ is $S^* - T_1$ -space, so \exists a two supra open sets $u^*, v^* \in X \times Y$ such that $(x_1,y) \in u^*$, $(x_2,y) \notin u^*$ and $(x_2,y) \in v^*$, $(x_1,y) \notin v^*$ and $u^* \cap v^* = \Phi$. Now there exist two supra open sets u_1^*, u_2^* such that $u_1^* \times u_2^* = u$, and

$x_1 \in u_1^*, y \in u_2^*$, since $(x_1, y) \in u^*$, $(x_2, y) \notin u^*$ and $(x_2, y) \in v^*$, $(x_1, y) \notin v^*$ such that $v_1^* \times v_2^* = v$ then $x_1 \in u_1^*, x_2 \notin u_1^*$ and $x_2 \in v_1^*, x_1 \notin v_1^*$ then (X, τ_X^*) is $S^* - T_2$ - space .Similarly (Y, γ_Y^*) is $S^* - T_2$ - space .

References

- 1. A.S.Mashhor, A.A.Allam, F.S.Mahmoud and F.H.Khedr, on supratopological spaces, Indain J.pure Appl. Math 14(1983),502-510.
- 2. J.Dugundji , topology , library of congress catalog card number :66-10940 , printed in the United States of America .
- 3. M.Caldas , D.N.Geogiou and S.Jafari ,characterizations of low separation axioms via α open sets and α -closure operator , Bol. Soc. Paran ,Math(35)v211/2(2003),1-14 .
- 4. W.K.Min , H.S.chang , on M-continuity , Kangweon Kyungki Math. Jour.6 , no 2(1998),323-329 .