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In this paper we give an elementary method to study an inverse scattering problem for a pair of Hamiltonians (H(h),
Ho(h)) on L%(IR"), where Ho(h) = - h* A, H(h) = Ho(h) + V, and V is a short-range potential. We show that, in dimension

N >3, the scattering operators S(h);h & (0, h,]which are localized near a fixed energy A >0 determine the
asymptotic of the potential V at infinity. This approach can be used to solve an inverse scattering problem for isotropic

external metrics.

V. Introduction:

In this paper we study an inverse scattering problem for a
pair (H(h), Ho(h)) on L(IR"), N > 2 where the free
operator

Ho(h) =—h®A; h € (0,h,] is the semi-classical
parameter with hy small enough and

H(h) = Ho(h) +V, 1

where V € C”(IR") and satisfies Vo € IN",
ajV(x)‘ <C, <X >l o>l (@

under the hypothesis (a) the wave operators:

W + (H (h), Ho (h)) =3 _tl_iglo eitH(h)e—itHo(h)’ (2)
exist and complete, i.e. Ran

W= (H (h),H,(h)) = H,_ (H) =subspace of absolute

continuity of H(h) [8]. Let S(h) be the scattering operator
defined by

S(h) = W™ (H(h), Ho()W (H(h), Ho(h)) @)

In order to localize the scattering operator near a fixed
energy A >0 , we introduce a cut-off function
X € Cy (0,+0), X =1 inaneighborhood of A >0.

The goal of this note is to obtain some information on the
potential from S(h)x(Ho(h)), in the semi-classical limit

h — 0. We show that for n > 3. the operators S(h) x
(Ho(h)), h € (0,hy], determine the asymptotic of the
potential at infinity, by studying the asymptotic of :

F(h) =<S(h)x(H,(h)®,,,. ‘¥, > )
where < , > is the usual scalar product in L*(IR"), and
@, .Y, aresuitable test functions .

2. Semi-classical asymptotics for the localized

cattering operator and application:
2.1 Definition of the test functions:

The dilation operator U (h?),d >0, on L¥(IR") can be

defined as follows [2]:
no

U (h?)D(x) = h 2 d(h’x). )
we also need an energy cut-off X, € C;”(IR") such
that X, (&) =1 if |§] <L X, (£) =0 if|g>2.

For we S"*, we write X € IR" as

h,w?

X=Yy+1tw, Yy eIl = orthogonal hyperplane to w and
we consider:

X, ={x=y+twelR"|y|>1}. (6)

Now, can define for @ eC;(X,) and suitable
o,e>0,

l\/EX.W 5
D, =" U(h")x(h"D), )
where D =—iV, (¥, , is defined in the same way with

W eCy(X,).
2.2 Semi-classical asymptotics for the scattering
operator:

In this section we prove the following theorem:

Theorem 2.2.1:

< (S -DX(Hy (D, ¥y, > = —

<[ V(h X +tw)dtd, ¥ > +o(h*),
— <[V ) (h*)

2iv2h
(8)
where g =6(p—-1)-1>0.
Remark:

Using (a), it is easy to see that the first term of the (R.H.S)
isequal to O(h*) since @, ¥ have their support in X,,.

Proof:

Step1:

Let begin by an elementary lemma [8]

Lemma 2.2.1:

VvV e<l1l+6,vVh e (0, hy], we have :

X(Ho(h))q)h,w = th,w ©)

we easily obtain:

FIX(Ho ()@, 1) =h 2x((h&)*)x, (h* (hé — V) Fb(h** (h& ~aw)),
(10)

where F is the usual Fourier transform then, on Supp X, ,
we have ‘hﬁ —A/ lw‘ <2h*7=,

so, for e<1+6 and hg
x((hg)*) =1.

Then by Lemma 2.2.1, we obtain

F(h) =<W"(H(h),H, (), ,, W (H(h), H, ()Y, >,
(11)

and calculation gives

F(h) =<Q" (h,w)x,, (h“D)®, Q" (h,w), X, (h"D)¥ >,

(12)

where

small enough, we have



Qi (h, W) =5— I|m ei'[H(h,W) e—itHO(h,W)

t—to
(13)
with
H,(h,w) = (D+~+4 h™®™w)?  (14)
and

H (h,w) = H, (h,w) + h 249V (h?x). (15)

so by (12) we have to find the asymptotic of
Q* (h,w)x, (h“D)®d. We follow the same strategy as
in [6], [7] and we only treat the case (+).

Step 2:
we construct a modifier J*(h,w) in the form as in [6], [7]
J*(h,w) =1+h"d " (h*x, w), (16)

where v a suitable parameter defined below, we denote :
TH(h,w) = H (h,w)J*(h,w) - J*(h,w)Hq(h,w). oY)
A direct calculation shows that
T+ (h,w) = h 28V (h=x) = 2is2 h2*wvd* (h~ xw) (18)
+h" 24V (h2x)d* (hx,w) —h 27 Ad " (hx,w)
-2h™"vd " (hx,w).V.
thus, we choose v = -1 and we solve the transport equation

w.vd " (xw) = ﬁv (x). (19)

The solution of (19) is given by
i +00
dr(xw)=——[  V(x+tw)dt. (20)
() == [ Vx+tw)

we obtain
oed* (h‘dx,w)‘ <C hw D xSt wxwyert, (21)
where

I ={x 9 IxER[{Raxé2-a|x] [} oe(-1D).

From this, we deduce the following lemma [6].

Lemma 2.2.2:

Q" (h,w)x,(h*D)® = 1Iim e™tW g+ (h, W)e’"H“(h’W)xD (h*D)®.

(22)

Step 3:

Now, we can formulate [8]

Lemma 2.2.3:

For 5.1

p-1

H(gr (h,w) — 3" (h, W)X, (hED)th =o(h®> Dy, (23)

First, we write

Q" (h,w) = 3" (h, W)X, (h"D)d = ijo*“ eMONT * (h, w)e oMWy (h<D)d dt.
(24)

In order to introduce a cut-off, which localizes far from

the origin, let V,, be a neighborhood of w in S™*. We define

O" ={x+tw’;x € Supp®,t >0,w eV }. (25)

If V,, is rather small, it is clear that O" < IR" \ B

where B is the unit ball. Let X" e C”(IR"\B)be a

cut-off function such that x" = 1 in a conical neighborhood
of O*. Now, we have the following estimation which is
obtained by using a standard non stationary phase
argument

Ve<5+1L YN >1, (x* —1e " ™x (h“D)d =0(<t >™ h"),
(26)

In the sense of the L>-norm [7].

So, we deduce

and e<1+6, p#1, we have

H(Q* (h,w) —J*(h,w))xo(hED)cDH <[”
(27)

Modulo O(h™). Since Supp X" < IR" \ B, we obtain
using (21) and (27) as in [7]

@ (hw) = 37 (h, w))x, (h“D)®] = O(h"“)[O(**) + O],
(28)

and the last term is equal to o(h?*" ™) if &>

x*T* (h, w) e—itHa(h,w)Xo(hs D)<DHdt,

p#l

Step 4:

Using the following estimation on L*(IR"): VN >1,
(X,(h°D)-1)® =O(h"),n>1 (29)

and Lemma 2.2.3, we obtain that

+ e _ 1 b -0 5(p-1)-1 O
Q" (h,w)x,(h“D)D = (1+ 2\/Ed (hx,w)+o(h ).
(30)

2.3 An application to an inverse scattering

problem in semi-classical asymptotics :
We use equation (8) in the particular case where V is an
asymptotic homogeneous function. Let V;, j = 1, 2 be two

potentials satisfying when | X |— +o0,

V(%) = x| f (ﬁ) +o(x| ), p>1 (3D

X
where fi e C*(S"™),S"" being the unit sphere of IR".
we denote Sj(h) the scattering operator associated with the
pair (Ho(h)+Vj, Ho(h)). We have the following result
Corollary 2.3.1:

For n>3, assumethat h e (0,h,],S,(M)x(H, () = S, (N)x(H, (h)).

then f,=1,.
Proof:
We have for 5 1

and e<1+5, by Theorem2.2.1

<(S; (N -Dx(H, ()@, ¥, >= % < j” Vy , (X +tw)dtd, ¥ > +o(h*).

(32)

where e X
V,,; = x| f{| XJ.

So, if

S (h)x(Hy(h) = S, (h)x(H,y(h)), vh e (O,h,],  we

deduce

vYwe S" VX e XW,J:W V, (X +tw)dt =0,

(33)

where Vg = Vg 1-Vo,. SO, using the support theorem for the

Radon transform [3], [6] we obtain Vo(X) =0, [x|=1. [

Remark:

In a non semi-classical context (h = 1), let us mention the

reference [5] where the inverse scattering problem at a

fixed energy is treated. They showed that if

V,,V, € SC_,2 (IR™),n > 3and if the associated matrices

at some non-zero fixed energy are equal up to smooth

termsthen V, =V, € S™”(IR").

3. An inverse scattering problem in the case of
isotropic external metrics:
3.1 Notations:



We show that the previous approach can be used to solve
an inverse scattering problem for perturbation of order 2

of the free Laplacian H, = —A.

Let us consider the following Hamiltonian on
L*(IR"),n>2:
H :Z D,g" (X)Dy (34)

1]
where G(x) = (g'(x)) is a C™ definite positive metric
satisfying
Va e IN",[07 (G(x) - 1d)|<C, <X >l 551, (b)
so, we can define the wave operators [1]
W* =s— lime™e ™™o, (35)

t—>to0
and the scattering operator S = W"™W'.
In order to study the asymptotic at high energies
of the scattering operator, we consider the following test
function

) o
®,, ="y [/I 2 Jxo[;t 2 DJ@, (36)

where

®eCy(X,) (¥, is defined inthe same way with ¥ eCy(X,)) -
In [2] Enss and Weder also used such test functions with
0 =0,e=0 . The uniqueness of inverse potential

scattering problems is given in [6] and [7]. We have the
following result where (,) is the scalar product in IR" and
H(x) = G(x)-1d :

Theorem 3.1.1:

For 5>il and e<1+6,p#1we have, when 1 — +oo,

<(5-)D,,,¥,,> = g < [T (H(,{%x +tw)w, wydtd, ¥ > +o(/1'§
(37)

where u=6(p-1)-1>0.

Proof:

As in section 2, we define
F(A)=<W"®,  W"Y¥,  >.Weseethat
F(2) =< Q" (h,w)x, (h*D)D,Q* (h,w)x, (h“D)¥ >, (38)
1
where Q* (h, W) is defined by (29) with h = 4 2 and

H(hw) =Y (D, +h™w)g" (hx)(D, +h *w,). (39)
ij
S0, everything done section 2 also works in this situation.

).

3.2 An application to an inverse scattering

problem of isotropic external metrics:
We consider isotropic homogeneous metrics G;,j =1, 2

satisfying (b) and when |X| —> 400
G, ()~ Id = x| fj(ﬁ)m +o(x[*),p>1  (40)
X

where f, eC”(S"™"). Let S be the associated

scattering operator. As in section 3, we have:
Corollary 3.2.1:
In dimension n >3 we have

S,=S,=>f, =1, @@

Proof:
Wehavefor 55 1 a4 cc14s, by Theorem1
p-1
<(S, () =DX(Ho () D, ¥, >=2_h7#ﬂ <[ Gy (x+tw)dtd, ¥ > +o(h*).
i >
(42)
_ X

where Go,j = x|™” fi(li'
So, if

Si(Mx(H, () =S, (Mx(H,y (), vhe (O,h ], we

deduce VYweS"', Vxe Xw,fw G, (x +tw)dt =0,

(43).
So, using the support theorem for the Radon transform [3],
[6] we obtain

Go(x) =0, |x|=>1.00

4. Discussion:

The present work deals with the inverse scattering
problem of a pair of Hamiltonians (H(h), He(h)) on
L*(IR"). Section 2 discussed the approximately semi
classical technique for the localized scattering operators
through finding the wave operator, in addition to
formulate the scattering operator equation in dimension
Nn>3 which centered near bounded energy A >0.

From the scattering operator equation we determine the
approximated potential at infinity, in addition to some
applications and this is clear from corollary 2.3.1.
Section 3 discussed the inverse scattering operators for
isotropic external metrics, in addition to finding the wave
operators which lead us to finding the scattering operator
in dimension N > 3, also we mention some applications

on this case which is clear from corollary 3.2.1.
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