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 In restricted linear regression model, more methods proposed to address the 

Multicollinearity problem and the high variance. For example, shrinkage biased estimation 

and optimization (Lagrange function). In this paper, we propose new biased estimator based 

on philosophy of Jackknife with the restricted least squares estimator. A new estimator 

called Restricted Shrinkage Jackknife estimator (RSJ). Also, we show that the statistical 

properties of new estimator with some theorems to compare the performance of new 

estimator with some restricted estimators and we make simulation study of these estimators. 

Finally, a real data has been taken into consideration to demonstrate how well the estimators 

perform. 
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1. Introduction: 

The multiple linear regression model is given by 

the following equation: 

                                                                         (1) 

where v is a (     ) vector of the unknown parameters, 

  is the number of explanatory variables,    is an 

       vector of the responses,   is an        matrix 

of the explanatory  variables,   is the number of the 

explanatory variables, and    is an       vector of the 

random errors with        and             . In 

some cases, the linear limitation is satisfied as follows: 

                                                                               (2) 

where r is a vector       and R is a nonzero     

matrix with rank(R)=     

Because it reduces variance, the restricted least square 

estimator (RLS) is regarded as one of the more 

significant unbiased estimators to handle the 

Multicollinearity problem and high variance see [ ]. The 

following formula provides the (RLS) estimator: 
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    ̂     ̂                      ̂  ,        (3) 

where  ̂           and                

Multicollinearity is a problem that researchers 

frequently deal against. In other words, because of the 

linear relationship between the Regressors of the B 

matrix, B'B is always ill-conditioned. Therefore, RLS's 

estimation of the unknown coefficient. In order to solve 

this issue, the researcher employed restricted biased 

estimating. The shrinkage restricted estimator (RRR) 

was first presented by [ ] to address the 

Multicollinearity issue. Using the ORR philosophy, the 

RRR estimator modified the RLS estimator. This is how 

the RRR estimator is provided: 

 ̂       ̂   ,                                                            (4) 

where              .     [ ] introduced the 

restricted two parameter estimator (RTPE) as the 

follows:  

     ̂              
                                               (5)  

where         
      

    (    
    )

  
   
      , 

   
                     , and    .  

 [ ] introduced the restricted (k – d) class estimator in 

linear regression model as follows: 
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   ̂                                

           ̂   ,                                                           (6) 

[ ] proposed restricted almost unbiased ridge regression 

estimator (RAURE) based on the RRR estimator. 

    ̂         (      
  ) ̂                                    (7) 

Based on the RTPE estimator, [ ] suggested the 

restricted almost unbiased two-parameter estimator 

(RAUTPE) as 

 ̂            [          ]
  ̂.                         (8)  

Mohammed and Alheety presented the following 

shrinkage restricted ridge regression estimator in 2023: 

[ ] 

  ̂          ̂   ,                                                     (9) 

where   (     
  ).  

Authors in [ ] introduced a new two parameter estimator 

to control the Multicollinearity using the first parameter 

k in two parameter estimator, which is the ridge 

estimator's biasing parameter, by treating k as a 

Lagrangian multiplier. However, Batah proposed a 

mathematical formula which it is quicker than the ridge 

regression estimator, depends on reducing the variance, 

[ ] and the Jackknifed ridge estimator depends on 

minimizing the bias, in order to construct the above 

estimators quickly based on the least squares estimator 

[  ]. Numerous researchers focused on linear regression 

estimation have chosen the restricted least squares and 

ridge estimators due to their attractive ability to decrease 

Multicollinearity. Each estimator was created by 

focusing on a specific biasing parameter. As a result, the 

SRRE estimator violates the linear restrictions.  

Now, we believe that defining a new restricted 

estimator with jackknifed technique employing both the 

two biasing parameters of the ridge and Liu estimators 

will be a good idea. One of our goals in constructing our 

suggested estimator is to control Multicollinearity by 

handling k and d in the jackknife technique, which uses 

the two parameters k, the biasing parameter of the ridge 

estimator, and d, the shrinkage parameter in the Liu 

estimator. Because the RLS and jackknife of parameter 

estimation are based on different methodologies, we 

propose a new restricted biased estimator called the 

restricted shrinkage jackknife estimator (RSJ). We 

demonstrate the statistical characteristics of the (RSJ) 

estimator in Section 2. In section 3, just several theorems 

of that RSJ comparisons. We simulate a study of the RSJ 

using a few restricted biased estimators in section 4. A 

numerical example was taken into consideration to 

demonstrate how well the estimators performed in 

section 5. Finally, section 6 concludes with some final 

thoughts. 

 

2. The proposed estimator (RSJ) and its statistical 

properties  

By integrating the jackknife approach with the 

RLS estimator, we introduce a new jackknife biased 

estimator restricted linear regression model termed 

restricted shrinkage jackknife estimator (RSJ) in this 

section as: 

 ̂             ̂   .                                     (10) 

Where     [                ][  

             ]. The RJS and its statistical 

properties (the mean, the variance, and the mean squared 

error), respectively are given by : 

     ( ̂        )                    

                                                                               (11) 

Where              
  and            

             . The variance is  

   ( ̂        )          .                                 (12) 

Where                
 ,          and  

                          .    

The mean squares error of RJS is 

    ( ̂        )                    

                  

[                 ] ,                                         (13) 

Thus, the scalar mean square error (SMSE) of the 

RSJ is given by as follows: 

          ( ̂        )               

                              

 [                 ] .                                        (14)  

The proposed estimate's goal is to tackle the 

Multicollinearity problem and large variance by 

combining the jackknife approach and the RLS 

estimator. 

 

3. The RSJ's Performance in Comparison to Other 

Restricted Estimators. 
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We need some lemmas to demonstrate the 

performance of the RSJ estimator in comparison to some 

restricted biased estimators. We employ the following 

lemmas for comparing the underlying estimators: 

Lemma1: See[  ] suppose that   ̂ 
              be 

two linear homogeneous estimators of    such that 

      
      

   is positive definite (p.d). If     

  
          then   is p.d . 

Lemma 2: See [  ] Let   is a positive definite matrix 

(p.d.) and   is a nonnegative definite matrix (n.n.d.). 

Then               
       

Lemma 3: See [  ] Suppose that    a positive definite 

matrix and   a nonnegative matrix and   

    (  
    )  is the diagonal matrix of the Eigen 

values of   in the matrix  . There exists a singuler 

matrix   such that       and         

 

3.1 A comparison of the RSJ and RLS estimators. 

 The different MSE between of the RSJ and the 

RLS estimators is given by as follows: 

      ̂            ( ̂        )    [  

      ]      
   

where     
                       

        [                 ]  

We can now express the following theorem. 

Theorem 1:  If             , the RSJ estimator 

outperforms the RLS estimator using the MSE if and 

only if      ̂            ( ̂        )   , 

indicating that [        ]  positive definite. 

Proof: This provides the variance difference between the 

RSJ and RLS estimators:  

     ̂        ( ̂        )    [        ]  

      ̂        ( ̂        )        {
        

 

  
  

          
                        

 

(  
      )

 }
   

 

 

       
        

 

  
 { 

 
          

                

        
}
   

 

  

where       (   
    )                 

   .Therefore    [        ]  is (p.d) if and only if  

  
          

                

        
   

So that by Lemma (1 – 3), we get          is 

positive definite. Now, the theorem is established. 

 

3.2 A comparison of the RSJ and RRR estimators. 

We compare the RSJ and RRR estimators using 

the MSE in the following way: 

   ( ̂    )     ( ̂        )

   [           ]       

     
  

where     
        

    the bias of RRR estimator. The 

following theorem can be stated. 

Theorem 2: The RSJ estimator is superior to the RRR 

estimator if and only if  

    ( ̂    )     ( ̂        )    that means, the 

SRJ estimator has minimum MSE.  

Proof : This provides the variance difference between 

the RSJ and RRR estimators:  

                ( ̂    )     ( ̂        )  

   [         ]  

 

   ( ̂    )     ( ̂        )  

      
        

 

  
 ,

  
 

       
 

          
                

        
-
   

 

. 

Therefore, the    [         ]    is positive 

definite if and only if  

   ,
  
 

       
 

          
                

        
-    if 

  
                           

          

         

       [  
        

           
            

    ]     

So that by Lemma (1 – 3), we get     [    

     ]     then the proof is established. 

 

3.3 A comparison of the RSJ and SRRE estimators. 

To determine the performance of the RSJ 

estimator in comparing to the SRRE estimator, we 
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compare the RSJ and SRRE estimators using the MSE 

criteria as follows: 

   ( ̂       )     ( ̂        )

    [         ]           
  

 Where          
       

  . Therefore, the 

theorem is established.  

Theorem 3: if           the RSJ estimator is the 

best comparison with SRRE estimator if and only if  

   ( ̂       )     ( ̂        )     

Proof : These are the formulas for the difference 

variance between the RSJ and RRR estimators:  

                ( ̂       )     ( ̂        )  

   [         ]  

   ( ̂       )     ( ̂        )

       
        

 

  
 {

 

       

 
          

                

        
}
   

 

  

Therefore    [         ] is positive definite if 

and only if  

 

       
 

          
                

        

    

                          
            

       

                                {              

    
                }    . 

So that by Lemma (1 – 3), we have     [    

     ]     The proof is established. 

 

4.  Simulation Study 

To compare the performance of the proposed 

estimator with other jackknife biased estimators by 

MATLAB software in order to demonstrate how well it 

performs. The goal of this study is to compare the 

performance of the MJE estimator with a few other 

constrained estimators already in use. When the 

Regressors are highly correlated, this simulation is 

intended to assess how well the estimators RLS, RRR, 

SRRE, and RSJ perform. The following equation was 

used to generate the matrix B, according to [  ] [  ]: 

                               

                                                               (15) 

where   stands for any two variables' correlation 

with one another and     independent standard normal 

pseudo-random numbers. The standardized nature of 

these variables allows for the correlation form of B'B. 

Moreover,     while   are chosen as the explanatory 

values (1, 5, 10). The correlation coefficient   will be set 

at (0.85, 0.95, and 0.99) with the sample size is ( n = 50, 

100, 150). According to the condition  '  = 1 that the 

matrix's largest eigenvalue must be greater than one, the 

coefficients  1,  2, …,  p are chosen as the eigenvectors 

corresponding to that value. Thus, sets of B`s are created 

for all            and  . By creating new error terms, the 

experiment was repeated 5000 times. Here is how to 

calculate estimated mean square error (EMSE): 

          
 

    
∑                    

   , 

Hence,     any estimators would be  (RLS, RRR, SRRE 

or RSJ).  

Table1: Calculated MSE under the conditions of n=50, 

=0.85, and p=5. 
                     

1 

    0.10685 0.246982 0.247002 0.244241 

        0.10685 0.246651 0.247326 0.219607 

     0.10685 0.246984 0.247 0.244645 

     0.10685 0.246935 0.247049 0.23404 

     0.10685 0.246968 0.247016 0.240765 

     0.10685 0.243766 0.249737 0.319041 

     0.10685 0.243556 0.249889 0.322946 

5 

    0.512474 0.19412 0.194198 0.176972 

        0.512474 0.193712 0.195012 0.134945 

     0.512474 0.194147 0.19417 0.188039 

     0.512474 0.194065 0.194261 0.158858 

     0.512474 0.193709 0.195027 0.135155 

     0.512474 0.194694 0.197724 0.177558 

     0.512474 0.198112 0.200337 0.208239 

10 

    0.355371 0.300073 0.300317 0.298853 

        0.355371 0.28978 0.308 0.327589 

     0.355371 0.300143 0.300248 0.299567 

     0.355371 0.300068 0.300322 0.298811 

     0.355371 0.297138 0.302979 0.29958 

     0.355371 0.299599 0.30078 0.295502 

     0.355371 0.292757 0.306199 0.317773 
 

Table2: Calculated MSE under the conditions of   

                       

                     

1 

    0.181346 0.15362 0.153748 0.147698 

        0.181346 0.152208 0.155245 0.110728 

     0.181346 0.153657 0.15371 0.150525 

     0.181346 0.153517 0.153851 0.140627 
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     0.181346 0.153541 0.153827 0.142185 

     0.181346 0.147715 0.165045 0.140508 

     0.181346 0.472331 0.184199 0.20667 

5 

    0.708076 0.328255 0.325002 0.228588 

        0.708076 0.344938 0.311709 0.098866 

     0.708076 0.326769 0.326454 0.310494 

     0.708076 0.328487 0.324779 0.218932 

     0.708076 0.39729 0.289167 0.118734 

     0.708076 0.457936 0.277112 0.137948 

     0.708076 0.744972 0.260376 0.180052 

10 

    0.48228 0.179731 0.180168 0.142381 

        0.48228 0.176858 0.184118 0.110391 

     0.48228 0.179922 0.179973 0.172601 

     0.48228 0.179773 0.180125 0.147777 

     0.48228 0.176186 0.185738 0.117129 

     0.48228 0.215057 0.203739 0.18491 

     0.48228 0.179395 0.194433 0.151649 

 

Table3: Calculated MSE under the conditions of    

                       

                     

1 

    0.193258 0.44448 0.442355 0.368877 

        0.193258 0.500688 0.410371 0.311636 

     0.193258 0.443504 0.443316 0.421171 

     0.193258 0.443828 0.442994 0.399863 

     0.193258 0.448986 0.438206 0.314888 

     0.193258 1.050575 0.346353 0.335315 

     0.193258 15.97594 0.370501 0.322404 

5 

    1.202945 0.439098 0.413033 0.039219 

        1.202945 0.455415 0.399188 0.02562 

     1.202945 0.425984 0.425468 0.308213 

     1.202945 0.438145 0.413895 0.041755 

     1.202945 0.571273 0.333742 0.018274 

     1.202945 0.637118 0.201988 0.153542 

     1.202945 396.8677 0.145695 0.004939 

10 

    0.847195 0.758035 0.724439 0.316658 

        0.847195 0.88295 0.654594 0.241511 

     0.847195 0.741003 0.740179 0.674506 

     0.847195 0.747104 0.734265 0.45582 

     0.847195 46.91659 0.455496 0.272379 

     0.847195 11.13553 0.433725 0.282068 

     0.847195 160.1004 0.486693 0.262777 

 

Table4: Calculated MSE under the conditions of    

                        

                     

1 

    0.121184 0.346436 0.346421 0.343506 

        0.121184 0.347437 0.345469 0.292956 

     0.121184 0.346434 0.346422 0.343957 

     0.121184 0.34648 0.346377 0.329751 

     0.121184 0.346473 0.346384 0.331859 

     0.121184 0.346868 0.345998 0.287938 

     0.121184 0.352904 0.341554 0.359904 

5 

    0.10337 0.30283 0.302831 0.300446 

        0.10337 0.302811 0.302849 0.253849 

     0.10337 0.30283 0.302831 0.300907 

     0.10337 0.302828 0.302833 0.288531 

     0.10337 0.302829 0.302832 0.294713 

     0.10337 0.302789 0.302871 0.260426 

     0.10337 0.302412 0.303106 0.353834 

10 

    0.381115 0.277322 0.277388 0.277159 

        0.381115 0.272058 0.282228 0.32097 

     0.381115 0.277345 0.277365 0.277278 

     0.381115 0.277335 0.277375 0.277226 

     0.381115 0.273355 0.281108 0.311376 

     0.381115 0.275846 0.278827 0.288286 

     0.381115 0.273667 0.280832 0.308823 
 

Table5: Calculated MSE under the conditions of    

                        

                     

1 

    0.130583 0.290199 0.29019 0.285976 

        0.130583 0.290814 0.289686 0.23746 

     0.130583 0.290197 0.290193 0.287744 

     0.130583 0.290209 0.290181 0.279783 

     0.130583 0.290231 0.290158 0.267187 

     0.130583 0.297449 0.288206 0.305602 

     0.130583 0.301043 0.288044 0.31803 

5 

    0.478876 0.220756 0.220511 0.194917 

        0.478876 0.222461 0.218944 0.099013 

     0.478876 0.22065 0.220616 0.214432 

     0.478876 0.220952 0.220318 0.165949 

     0.478876 0.22179 0.219533 0.110828 

     0.478876 0.243298 0.209496 0.14029 

     0.478876 0.285281 0.204841 0.192147 

10 

    0.470292 0.458185 0.457568 0.4316 

        0.470292 0.464303 0.451909 0.303487 

     0.470292 0.457918 0.457833 0.451867 

     0.470292 0.458438 0.457317 0.41436 

     0.470292 0.466014 0.450463 0.300297 

     0.470292 0.463826 0.452323 0.304999 

     0.470292 0.55745 0.412437 0.33325 
 

Table6:Calculated MSE under the conditions of   

                       

                     

1 

    0.171462 0.535428 0.534644 0.502161 

        0.171462 0.556137 0.517044 0.410972 

     0.171462 0.535079 0.534992 0.522411 

     0.171462 0.53541 0.534662 0.503098 

     0.171462 0.537351 0.532762 0.442926 

     0.171462 0.684373 0.467836 0.409346 

     0.171462 1.666934 0.424028 0.407612 

5 

    0.30281 0.544302 0.541856 0.505601 

        0.30281 0.695292 0.481294 0.475919 

     0.30281 0.543101 0.543043 0.535562 

     0.30281 0.543171 0.542973 0.532634 

     0.30281 0.544388 0.541773 0.504572 

     0.30281 2.568749 0.442426 0.460855 

     0.30281 0.596708 0.507707 0.483359 

10 

    0.527251 0.714803 0.708544 0.568994 

        0.527251 0.730627 0.69433 0.514137 

     0.527251 0.711712 0.711585 0.685797 

     0.527251 0.714026 0.709299 0.586036 

     0.527251 0.960609 0.601085 0.499343 

     0.527251 40.4152 0.473358 0.463604 
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     0.527251 26.26582 0.502768 0.47492 
 

Table7: Calculated MSE under the conditions of    

                        

                     

1 

    0.107817 0.331163 0.331158 0.329103 

        0.107817 0.3315 0.330827 0.263883 

     0.107817 0.331162 0.331158 0.329339 

     0.107817 0.331189 0.331132 0.315825 

     0.107817 0.331172 0.331149 0.324101 

     0.107817 0.331623 0.330708 0.263384 

     0.107817 0.341217 0.324438 0.370429 

5 

    0.245266 0.321986 0.32199 0.321294 

        0.245266 0.321701 0.322272 0.33098 

     0.245266 0.321987 0.321988 0.321687 

     0.245266 0.321985 0.32199 0.321041 

     0.245266 0.321959 0.322017 0.315422 

     0.245266 0.321679 0.322293 0.33263 

     0.245266 0.32159 0.32238 0.338809 

10 

    0.335675 0.412843 0.412828 0.412508 

        0.335675 0.413981 0.411754 0.40562 

     0.335675 0.412838 0.412833 0.412705 

     0.335675 0.412844 0.412828 0.412488 

     0.335675 0.413058 0.412616 0.40832 

     0.335675 0.413671 0.412034 0.406178 

     0.335675 0.414417 0.411372 0.404969 
 

Table8: Calculated MSE under the conditions of    

                        

                     

1 

    0.118698 0.275765 0.275769 0.271646 

        0.118698 0.275086 0.276405 0.237175 

     0.118698 0.275767 0.275768 0.273269 

     0.118698 0.275761 0.275774 0.266346 

     0.118698 0.275746 0.275788 0.252432 

     0.118698 0.272679 0.278124 0.291667 

     0.118698 0.270877 0.279046 0.314314 

5 

    0.337373 0.283569 0.283591 0.279914 

        0.337373 0.283306 0.283865 0.262864 

     0.337373 0.283579 0.283581 0.282697 

     0.337373 0.28356 0.2836 0.277586 

     0.337373 0.283315 0.283855 0.262783 

     0.337373 0.283088 0.29041 0.337837 

     0.337373 0.281462 0.28778 0.31686 

10 

    0.414478 0.205668 0.205736 0.200485 

        0.414478 0.20477 0.206632 0.185961 

     0.414478 0.205699 0.205705 0.204519 

     0.414478 0.205658 0.205746 0.199256 

     0.414478 0.20353 0.207861 0.197201 

     0.414478 0.196765 0.214447 0.253159 

     0.414478 0.198761 0.21252 0.238418 
 

Table9:Calculated MSE under the conditions of    

                       

                     

1 

    0.163173 0.504736 0.504445 0.467734 

        0.163173 0.512162 0.497527 0.380918 

     0.163173 0.504603 0.504578 0.485814 

     0.163173 0.504761 0.50442 0.464706 

     0.163173 0.505461 0.503727 0.413275 

     0.163173 0.622647 0.448879 0.383602 

     0.163173 1.092348 0.414373 0.386683 

5 

    0.387535 0.146185 0.146337 0.11604 

        0.387535 0.145109 0.147587 0.10005 

     0.387535 0.146259 0.146262 0.139046 

     0.387535 0.146226 0.146295 0.126503 

     0.387535 0.145306 0.147332 0.099249 

     0.387535 3.24117 0.19304 0.214784 

     0.387535 0.170024 0.167752 0.154983 

10 

    0.501696 0.428543 0.427926 0.366235 

        0.501696 0.438427 0.419963 0.324566 

     0.501696 0.42824 0.428227 0.415885 

     0.501696 0.428299 0.428168 0.403022 

     0.501696 13.7916 0.379008 0.370437 

     0.501696 0.444604 0.416314 0.32651 

     0.501696 0.476074 0.405332 0.333637 

 

Through the simulation study, we show that, the 

performance of the RSJ compared with some restricted 

biased estimators. From Table 1 to 9, we show that the 

performance of new restricted biased estimator for all 

cases of  ,    and  .  

1. From Tables 1 – 3, when (                ), 

the RLS estimator has an EMSE of the minimum 

mean square error. While, the RSJ's performance is 

the best when compared to other estimators 

when                             . 

2. From Tables 4 – 6, when (                ), 

the RLS estimator is superior to of any estimator 

biased estimators. While, the RSJ estimator is better 

than of any restricted biased estimator because has 

minimum EMSE when                 

            . 

3. From Tables 7 – 9, when (                

    the performance the RLS estimator is the best. 

While                  ), when compared to 

other estimators, the RSJ estimator has the lowest 

EMSE. The RSJ estimator is therefore superior to all 

restricted estimators. 

Through the simulation study in this section, it 

becomes evident that, when the sample size increases the 

performance of jackknife-biased estimators becomes the 

best.  

 

5. Numerical Example:  

Numerical examples are provided to demonstrate 

the RSJ estimator's performance utilizing real data. The 
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dataset of acetylene that Bashtain employed is applied 

on a big scale (2011). Finding the performance of the 

RSJ estimator in comparison to the RRR, SRRE, and 

RLS estimators is the purpose of the difference in 

SMSE. The values of R and r are provided for the linear 

constraints in equation (2) as follows: 

  *
  
  

    
    

+                 [                ]  

The RLS, RRR, SRRE, and RSJ estimators are 

compared using the Scalar Mean Square Error (SMSE) 

criteria. 

 

Table 10: The SMSE for different estimators under different 

estimated ridge parameters k and d. 

                   
0.0161 135.7475 950.2154 12.2229 10.8769 

0.0243 135.7475 582.9747 9.5455 7.8207 

0.050 135.7475 395.2216 7.8989 5.4224 

0.020 135.7475 286.1091 6.7818 4.0506 

0.50 135.7475 217.0027 5.9080 3.7911 

     135.7475 170.4333 5.3614 2.5568 

0.15 135.7475 137.5420 4.7867 2.0448 

 

According to the previously discussed statistics. 

Table 10 demonstrates that, for all k values, the RSJ 

estimator has the lowest calculated SMSE, depends on 

two parameter k and d. Particularly, when the ridge 

parameter k lies between (0 – 0.5), the RSJ estimator 

performs better than all estimators under consideration 

this paper. Otherwise, the SRRE performs better with 

fixed (d = 0.01 or 0.1). These results are shown in 

Figures 1, 2, and 3. Moreover, if the parameter d is 

smaller than 0.6 with fixed (k = 0.01 or 0.1), then the 

RSJ estimator performs better than any biased estimator. 

Otherwise, the RRRE performs better, as shown by 

Figures 4 and 5. 

 
Figure 1: scalar mean square  error RLS, RRR, SRRE and RSJ 

estimators for different k where d=0.1. 

 

Figure 2: scalar mean square  error RLS, RRR, SRRE and RSJ 

estimators for different k where d=0.01 
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Figure 3: SMSE of RLS, RRR, SRRE and RSJ estimators for 

different k between 0 and 0.5 where d=0.01 

 

Figure 4: scalar mean square  error RLS, RRR, SRRE and RSJ 

estimators for different d where k=0.01 

 

Figure 5: scalar mean square error RLS, RRR, SRRE and RSJ 

estimators for different d where k=0.1 

 

 

 

5. Conclusion  

We present a new jackknife biased estimator 

restricted linear regression model called the restricted 

shrinkage jackknife estimator (RSJ) by combining the 

jackknife technique and the RLS estimator. The RSJ 

estimator, which is dependent on the two parameters k 

and d, has the lowest computed SMSE. When the ridge 

parameter k is between (0 and 0.5), the RSJ estimator 

outperforms all other estimators considered in this study. 

Otherwise, fixed (d = 0.01 or 0.1) improves the SRRE's 

performance. Furthermore, the RSJ estimator 

outperforms any biased estimator when the parameter d 

is smaller than 0.6 with fixed (k = 0.01 or 0.1). The 

RRRE performs better on the other hand. 
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