Some properties on cyclic composition operators

Laith k. shaakir

Department of Mathematics, College of Computer sciences and mathematics, University of Tikrit, Tikrit, Iraq

Abstracts

In this work, we study the cyclicity of the composition operator C_{ϕ} induced by an automorphism mapping ϕ on $U = \{ z \in | z \in A \}$

|z|<1 },and give some conditions that are necessary and (or) sufficient for the operator $C_{\alpha_p} \circ C_{\alpha_q}$ to be cyclic, where α_p

and $\, \alpha_{q} \,$ are the special automorphisim of the unit ball ${\bf U}$.

Introduction:

Let H(U) be the set of all holomorphic functions on the unit ball U of the complex plane . If f belongs to H(U) then by Taylor theorem one can expand the function f about the origin as follows :

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$$
 , $(z \in U)$ If the sequence of the

coefficients $\{\hat{f}(n)\}$ is a square - summable sequence, i.e. $\sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty$, then we say that the function f

belongs to
$$H^2$$
 or $H^2(U)$. Therefore $H^2 = \left\{ f \in H(U) : \sum_{n=0}^{\infty} \left| \hat{f}(n) \right|^2 < \infty \right\}$. H^2 is called the Hardy

space[1],[7].The Littlewood's principle theorem [7] shows that if ϕ is a self map of U (i.e. $\phi(U) \underline{\subseteq} U$) that belongs to H(U),then the composition operator C_{φ} defined by :

 $C_{\varphi}f=f\,o\varphi$ (f holomorphic on U) takes the Hardy space ${\rm H^2}$ into itself . Littlewood's principle also shows that C_{φ} is a bounded operator on ${\rm H^2}$.

Recall that an operator T on a Hilbert space H is said to be cyclic if there is a vector x in H (called a cyclic vector for T) whose orbit , orb(T,x) = $\{T^n x : n = 0,1,2,...\}$ has dense linear span in H . The operator T is supercyclic if there is a vector x in H (called a supercyclic vector for T) such that the set $\{\lambda_n T^n x : \lambda_n \in | , n=0,1,...\}$ is dense in H . It may happen that orbit , orb(T,x) is dense in H , in this case T is called haypercyclic and x is a hypercyclic vector [2],[3],[4].

In this work we prove that if $p \in U$ then C_{α_p} and

 ${\color{blue}C^*_{\alpha_p}}$ are not cyclic operators where ${\color{blue}C^*_{\alpha_p}}$ is the adjoint

of
$$C_{\alpha_p}$$
 and $\alpha_p(z) = \frac{p-z}{1-\overline{p}z}$. We give some

conditions that are necessary and (or) sufficient for the operator $C_{\alpha_p} \circ C_{\alpha_q}$ to be cyclic . Also we prove that

$$C_{lpha_p} \circ C_{lpha_q}$$
 is cyclic if and only if $C_{lpha_q} \circ C_{lpha_p}$ is

cyclic

Notations And Preliminary:

In this section we give some basic definitions and properties that we shall use in the next section.

Definition (2.1) [7]: A linear fractional transformation is a mapping φ defined on the complex plane | by $\varphi(z) = \frac{az+b}{cz+d}$ where a,b,c,d are complex numbers.

Remarks (2.2) [6]:

- 1. A linear fractional transformation ϕ is constant function if and only if ad-bc=0.
- 2. every non constant linear fractional transformation is one to one and onto transformation. We consider a linear fractional transformation $\varphi(z) = \frac{az+b}{cz+d} \quad \text{with ad-bc} \neq 0 \quad \text{defined on the Riemann}$

sphere
$$\hat{C} = \bigcup \{\infty\}$$
 where $\varphi(\infty) = \frac{a}{c}$ and $\varphi(\frac{-d}{c}) = \infty$.

Notation (2.3) [7]:

- 1. We denote the set of all linear fractional transformations is subject to the condition ad bc \neq 0 by LFT(\hat{C}) .
- 2. For any $\varphi(z) = \frac{az+b}{cz+d} \in LFT(\hat{C})$, we sometimes

denote it by $\varphi_{\!A}(z)$ where A is the non – singular 2×2

complex matrix,
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Remarks (2.4) [7]:

- 1. it is easily prove that $\varphi_A \circ \varphi_B = \varphi_{AB}$ where O is the composition of maps.
- 2. It is easily to prove that (LFT(\hat{C}), o) is a group where $\varphi_A^{-1} = \varphi_{A^{-1}}$ for all $\varphi_A \in \mathrm{LFT}(\hat{C})$.

Definition (2.5) [7]: A map $\varphi \in LFT(\hat{C})$ is called parabolic if it has a single fixed point in \hat{C} .

Remark (2.6): If $T \in LFT(\hat{C})$ is not parabolic, then T has two fixed points $\alpha, \beta \in \hat{C}$. Let $S \in LFT(\hat{C})$ that takes α to 0 and β to ∞ , then the map $V = S \circ T \circ S^{-1}$

belongs to LFT(\widehat{C}) and fixes both 0 and ∞ , so it must have the form $V(z) = \lambda z$, λ is said to be the multiplier for T [7].

In the following definition we classify the linear fractional transformation according to their multipliers .

Definition (2.7) [7] : Suppose that $T \in LFT(C)$ is neither parabolic nor the identity. Let $\lambda \neq 1$ be the multiplier of T . Then T is called :

- Elliptic if $|\lambda| = 1$.
- Hyperbolic if $\lambda > 0$. and
- Loxodromic if T is neither elliptic nor hyperbolic .

Our interest here is in LFT(U) the subgroup of LFT(\hat{C}) consisting of self maps of the unite ball U (i.e. take U into itself).

Proposition (2.8) [7]: If $\phi \in LFT(U)$ is parabolic then ϕ has its fixed point on ∂U , where ∂U is the boundary of U

Theorem (2.9) [7] : Let $\boldsymbol{\phi}$ be a linear fractional self map of \boldsymbol{U}

1.If φ is hyperbolic , then it has fixed point in U with the other fixed point outside U, where \overline{U} is the closed unit disc.

2. If ϕ is loxodromic or elliptic , then it has a fixed point in U and a fixed point outside $\overline{U}\,$.

Definition (2.10)[8]: Let ϕ be a holomorphic self map of U. If ϕ is one – to – one and onto U then ϕ is said to be a conformal automorphism of U or just automorphism .

Proposition (2.11)[6]: Let ϕ be a linear fractional self map of U then ϕ is elliptic if and only if ϕ is automorphism with interior fixed point in U.

We end this section by the linear fractional transformation $\alpha_p(z) = \frac{p-z}{1-\bar{p}z}$, $p \in U$ which is called

the special automorphism of U . One can prove that α_p is automorphism and self inverse (i.e. $\alpha_p^{-1}=\alpha_p$),[8].

The following theorem shows that every conformal automorphism of U is linear fractional self map of U.

Theorem (2.12) [8]: If φ is a conformal automorphism of U then there exists $p \in U$ and $w \in \partial U$ such that $\varphi(z) = w\alpha_p(z)$ for all $z \in U$.

Main Results:

In this section we show that if $p \in U$ then C_{α_p} and

 $C_{\alpha_p}^*$ are not cyclic operators where $C_{\alpha_p}^*$ is the adjoint of C_{α_p} and we study the cyclicity of C_{α_p} where

 $lpha_p$ and $lpha_q$ are the special automorphism of the unit ball U . Also we give an example of two non cyclic composition operators $C_{m{arphi}}$ and $C_{m{\psi}}$ which is its composition $C_{m{arphi}}C_{m{\psi}}$ is hypercyclic .

We prove the following theorem.

Theorem(3.1): If $p \neq 0$ is interior point $(p \in U)$ then $\alpha_p(z) = \frac{-z+p}{-\overline{p}z+1}$ has interior fixed point

$$\frac{1-\sqrt{1-\left|p\right|^{2}}}{\overline{p}}$$
 and exterior fixed point $\frac{1+\sqrt{1-\left|p\right|^{2}}}{\overline{p}}$.

Proof: Put $\alpha_p(z) = z$ that is $\frac{-z+p}{-\overline{p}z+1} = z$ therefore

 $\overline{p}z^2 - 2z + p = 0$. Hence α_p have two fixed points $z_1 = \frac{2 + \sqrt{4 - 4|p|^2}}{2\overline{p}} = \frac{1 + \sqrt{1 - |p|^2}}{\overline{p}}$ and $z_1 = \frac{2 + \sqrt{4 - 4|p|^2}}{2\overline{p}} = \frac{1 + \sqrt{1 - |p|^2}}{\overline{p}}$

$$z_2 = \frac{2 - \sqrt{4 - 4|p|^2}}{2\overline{p}} = \frac{1 - \sqrt{1 - |p|^2}}{\overline{p}} \quad \text{Since p is interior}$$
 point then
$$|\overline{p}| < 1 < \left|1 + \sqrt{1 - |p|^2}\right| \quad \text{, therefore}$$

$$|z_1| = \left| \frac{1 + \sqrt{1 - |p|^2}}{\overline{p}} \right| > 1$$
 .Thus z_1 is exterior fixed point

. Now we prove
$$|z_2| = \left| \frac{1 - \sqrt{1 - |p|^2}}{\overline{p}} \right| < 1$$
.

Let $\mathbf{r} = \left| p \right|$, then $0 < \mathbf{r} < 1$. Suppose that $\left| \mathbf{z}_2 \right| \ge 1$, so that $\left| 1 - \sqrt{1 - r^2} \right| \ge r$. Since $1 > \sqrt{1 - r^2}$ then $1 - \sqrt{1 - r^2} = \left| 1 - \sqrt{1 - r^2} \right|,$ therefore $1 - r - \sqrt{1 - r^2} \ge 0.$

This inequality implies that $-1 \le r \le 0$, this is contradict that 0 < r < 1. Thus z_2 is interior fixed point .

Recall that if φ is a holomorphic self map of U that fixes a point $q \in U$ then C_{φ} and C_{φ} are not supercyclic

(hypercyclic)operators [6]. From theorem(3.1) we can get easily the following corollary.

Corollary (3.2): If α_p is a special automorphism of U $(p \in U)$ then C_{α_p} and $C_{\alpha_p}^*$ are not supercyclic

(hypercyclic)operators.

Bourdon and Shapiro in [1] prove the following result:

Theorem (3.3): If φ is elliptic then C_{φ} is cyclic if and only if the argument of λ is irrational multiple of π , where $\lambda = \varphi'(q), q$ is the interior fixed point of φ . We prove the following theorem.

Theorem (3.4) : If $\mathbf{p} \in \mathbf{U}$ then $\ C_{\alpha_p}$ and $\ C_{\alpha_p}^*$ are not

cyclic operators.

Proof: Suppose $p \neq 0$. Since α_p is automorphism [8] and has interior fixed point $\beta = \frac{1 - \sqrt{1 - |p|^2}}{\overline{p}}$ then α_p is elliptic(proposition(2.11)). Since

$$\lambda = \alpha'_{p}(\beta) = \frac{-1 + |p|^{2}}{\left(-\overline{p}\beta + 1\right)^{2}} = \frac{-1 + |p|^{2}}{\left(-\overline{p}\left(\frac{1 - \sqrt{1 - |p|^{2}}}{\overline{p}}\right) + 1\right)^{2}} = -1$$

then from theorem (3.3), C_{α_p} is not cyclic . We see

in [6, theorem(3.1.5)] that if φ is elliptic mapping then C_{φ} is cyclic if and only if C_{φ}^* is cyclic .Thus $C_{\alpha_p}^*$ is not cyclic operator . A trivial case when p=0 then $\alpha_p(z)=-z$ and hence C_{α_p} is not cyclic. Since

 $\alpha_p(z)$ =-z then α_p is automorphism with fixed point z=0 . Thus α_p is also elliptic , so that $C_{\alpha_p}^*$ is not

cyclic operator [6, theorem (3.1.5)].

Before we give the following theorem we need the following proposition .

Proposition (3.5) [7]: suppose that $w=e^{i\theta_O}$, where $-\pi < \theta_O \le \pi$ and $\mathbf{p} \in \mathbf{U}$ then $w\alpha_p$ is

- 1. Elliptic if and only if $|p| < \cos\left(\frac{\theta_o}{2}\right)$
- 2. Parabolic if and only if $|p| = \cos\left(\frac{\theta_o}{2}\right)$
- 3. Hyperbolic if and only if $|p| > \cos\left(\frac{\theta_o}{2}\right)$

Theorem (3.6): If φ is automorphism of U then φ is elliptic (parabolic ,hyperbolic) if and only if φ^{-1} is elliptic (parabolic ,hyperbolic).

Proof: Since φ is automorphism then from theorem (2.12) , $\varphi(z) = w\alpha_p(z)$ where $w = e^{i\theta_o} \in \partial U$ and $p \in U$. From the notation (2.3) we denote $\varphi(z)$ by $\varphi_A(z)$ where $A = \begin{pmatrix} -w & wp \\ -\overline{p} & 1 \end{pmatrix}$, therefore $\varphi_A^{-1} = \varphi_{A^{-1}} = \frac{1}{w}\alpha_{wp} = e^{-i\theta_o}\alpha_{wp}$

If φ is elliptic then $|p| < \cos\left(\frac{\theta_O}{2}\right)$,(proposition (3.5)),

and hence $|wp| = |p| < \cos\left(\frac{\theta_O}{2}\right) = \cos\left(\frac{-\theta_O}{2}\right)$, that

is φ^{-1} is elliptic (proposition (3.5)) . By the same way we can prove the theorem when φ is parabolic or hyperbolic.

Now we give the following corollary.

Corollary (3.7) :Let ϕ be a holomorphic self map of U . If ϕ is invertible then $C_{\mbox{\it p}}$ is cyclic

(hypercyclic, supercyclic) if and only if C_{arphi}^{-1} is cyclic (hypercyclic, supercyclic) .

Proof : Since φ and φ^{-1} are of the same type (theorem(3.6)),then C_{φ} is cyclic

(hypercyclic, supercyclic) if and only if $C_{\varphi}^{-1} = C_{\varphi}$ –1 is cyclic (hypercyclic, supercyclic).

Bourdon and Shapiro in [1] proves that if φ is a conformal automorphism of U with no fixed point in the interior of U ,then $C_{\mathcal{O}}$ is hypercyclic operator .

Corollary (3.8) : Let $\varphi = w\alpha_p$ where $w = e^{i\theta}, -\pi < \theta \le \pi$ and $p \in U$. If $|p| \ge \cos\left(\frac{\theta}{2}\right)$ then

 $C_{oldsymbol{arphi}}$ and $C_{oldsymbol{arphi}}^{-1}$ are hypercyclic operators .

Proof: Since α_p is automorphism then $\varphi=w\alpha_p$ is automorphism. If φ has fixed point in the interior of U then φ is elliptic(proposition(2.11)). This is contradict proposition (3.5), therefore φ is automorphism with no fixed point in the interior of U, so that C_{φ} is hypercyclic operator [1], and by using corollary(3.7) one can have C_{φ}^{-1} is also hypercyclic operator .

Now we study the cyclicity of ${}_{C_{\alpha_p} \circ C_{\alpha_q}}$ where α_p and

 α_q are the special automorphisim mapping , a trivial case when p = q implies $C_{\alpha_p} \circ C_{\alpha_p}$ is not cyclic since

 $C_{\alpha_p} \circ C_{\alpha_p} = C_{\alpha_p \circ \alpha_p}$ = I, where I is the identity operator.

We prove the following proposition.

Proposition (3.9): If p_1 , p_2 are interior points of U such that $p_1 \neq p_2$ then $\alpha_{p_1}o\alpha_{p_2}=w\alpha_p$ where $w=\frac{-1+p_1\overline{p}_2}{1-\overline{p}_1p_2}$ with absolute value is equal to one,

$$p = \frac{p_2 - p_1}{1 - p_1 \overline{p}_2} \in U$$

: The matrix of α_{p_1} and α_{p_2} are $\begin{pmatrix} -1 & p_1 \\ -\overline{p}_1 & 1 \end{pmatrix} and \begin{pmatrix} -1 & p_2 \\ -\overline{p}_2 & 1 \end{pmatrix} \text{ respectively, hence the matrix}$

 $\begin{pmatrix} -1 & p_1 \\ -\overline{p}_1 & 1 \end{pmatrix} \begin{pmatrix} -1 & p_2 \\ -\overline{p}_2 & 1 \end{pmatrix} = \begin{pmatrix} 1 - p_1\overline{p}_2 & p_1 - p_2 \\ \overline{p}_1 - \overline{p}_2 & 1 - \overline{p}_1 p_2 \end{pmatrix}. \text{Ther}$

 $\alpha_{p_1}o\alpha_{p_2} = \frac{(1-p_1\overline{p}_2)z + p_1 - p_2}{(\overline{p}_1 - \overline{p}_2)z + 1 - \overline{p}_1p_2} = \frac{-1+p_1\overline{p}_2}{1-\overline{p}_1p_2} \left(\frac{-z + \frac{p_2 - p_1}{1-p_1\overline{p}_2}}{\frac{\overline{p}_1 - \overline{p}_2}{1-\overline{p}_1p_2}} + \frac{1}{1-p_1\overline{p}_2} \right) (2.2) \right].$ Inwith (2) Inwith (2)

,where $w = \frac{-1 + p_1 \overline{p}_2}{1 - \overline{p}_1 p_2}$, $p = \frac{p_2 - p_1}{1 - p_1 \overline{p}_2}$. It is clear

that |w| = 1. To prove that $p \in U$, we see that $(1-|p_2|^2)(1-|p_1|^2)>0$ since $p_1, p_2 \in U$, hence

 $1 - |p_1|^2 - |p_2|^2 + |p_1|^2 |p_2|^2 > 0$ $|p_2|^2 + |p_1|^2 < 1 + |p_1|^2 |p_2|^2$, this inequality implies that

$$|p|^2 = \left|\frac{p_2 - p_1}{1 - p_1 \overline{p}_2}\right|^2 = \frac{(p_2 - p_1)(\overline{p}_2 - \overline{p}_1)}{(1 - p_1 \overline{p}_2)(1 - \overline{p}_1 p_2)} < 1$$
 Thus

Now we are ready to prove the following result.

Theorem (3.10): Let p, $q \in U$, $p \neq q$ then $\alpha_p o \alpha_q$ is

- 1. elliptic if $|q-p| + \operatorname{Im}(p\overline{q}) < 0$
- 2. parabolic if $|q-p| + \operatorname{Im}(p\overline{q}) = 0$
- 3. hyperbolic if $|q-p| + \operatorname{Im}(p\overline{q}) > 0$

Proof: From proposition (3.9), $\alpha_p o \alpha_q = w \alpha_h$

where $w = \frac{-1 + pq}{1 - \overline{n}a}$,

 $b = \frac{q - p}{1 - p\overline{q}}$. Let $r = 1 - p\overline{q} = me^{i\theta}$, so that

$$w = \frac{-r}{\overline{r}} = \frac{-me^{i\theta}}{me^{-i\theta}} = -e^{i2\theta} = e^{i(2\theta - \pi)}$$

From proposition (3.5), $C_{\alpha_p} \circ C_{\alpha_n}$ is elliptic if

$$|b| < \cos\left(\frac{2\theta - \pi}{2}\right)$$
, that is $\frac{|q - p|}{|r|} < \cos\left(\theta - \frac{\pi}{2}\right) = \sin\left(\theta\right)$,

 $|q-p| < |r|\sin(\theta) = \operatorname{Im}(r) = \operatorname{Im}(1-p\overline{q}) = -\operatorname{Im}(p\overline{q})$. Thus $|q-p|+\operatorname{Im}(p\overline{q})<0$.

By the same way we can prove (2) and (3).

Corollary (3.11): Suppose that p, q are interior points of U, $p \neq q$. If $|q - p| + \text{Im}(p\overline{q}) \ge 0$ then $C_{\alpha_n} \circ C_{\alpha_n}$

is hypercyclic operator.

Proof: Since α_p and α_q are automorphisms then $\alpha_p o \alpha_q$ is automorphism .

From theorem (3.10) we have $\alpha_p o \alpha_q$ is either parabolic or hyperbolic , therefore $\alpha_p o \alpha_q$ does not have fixed $C_{\alpha_q} \circ C_{\alpha_p} = C_{\alpha_p \circ \alpha_q}$ is hypercyclic [1, theorem

composition $C_{\alpha_p} \circ C_{\alpha_a}$ is hypercyclic operator .

Example (3.12): If p, q are two distinct real numbers in the interval (-1,1) then C_{α_q} and C_{α_n} are non cyclic

operators (theorem (3.4)) is hypercyclic operator (corollary (3.11)).

We recall that if H is a Hilbert space and T₁, T₂ are two operators on H , then T1, T2 are similar if there is an invertible operator S such that $T_2 = S^{-1}T_1S$ [7,p.93].

Remark(3.13) [5]:If T_1 and T_2 are similar operators then T_1 is cyclic (supercyclic, hypercyclic) if and only if T_2 is cyclic(supercyclic, hypercyclic).

Now, we are in the position that we can give the following theorem.

Theorem (3.14): Suppose that p, q are interior fixed points then $C_{\alpha_p} \circ C_{\alpha_q}$ is cyclic (supercyclic , hypercyclic

) operator if and only if $C_{\alpha_n} \circ C_{\alpha_n}$

(supercyclic, hypercyclic) operator.

Proof :We see that $C_{\alpha_{\alpha}}$ is invertible operator where

$$C_{\alpha_q}^{-1} = C_{\alpha_q}$$
. Since

 $C_{\alpha_q} \circ C_{\alpha_p} \circ C_{\alpha_q} \circ C_{\alpha_q} = C_{\alpha_q} \circ C_{\alpha_p}$ then $C_{\alpha_p} \circ C_{\alpha_q}$ and $C_{\alpha_q} \circ C_{\alpha_p}$ are similar operators , thus

 $C_{\alpha_p} \circ C_{\alpha_q}$ is cyclic (supercyclic , hypercyclic)

operator if and only if $C_{\alpha_{\alpha}} \circ C_{\alpha_{\alpha}}$ is cyclic (supercyclic

, hypercyclic) operator.

References:

- 1. Bourdon, P.S. and Shapiro, J. H., "Cyclic phenomena for composition operators", Memoirs of the Amer. Math. Soc., Vol.125, No.596,(1997).
- 2. Halmos, P.R., "A Hilbert Space Problem Book", Springer Verlag, New York, 1982.
- 3. Herrero, D.A., "Hypercyclic Operators and Chaos", J. Operator Theory, 28 (1992), 93 103.
- 4. Herrero, D.A., "Limits of Hypercyclic and Supercyclic Operators", J. Functional anal. (1), 99 (1991), 179 190.
- Shaakir, L.K., "Cyclic Operators on Hilbert Spaces", M.Sc. Thesis, College of Science, Univ. of Baghdad, 1999.
- 6. Shaakir, L.K., "Cyclic Phenomena for Composition Operators", Thesis, College of Science, Univ. of Al Nahrain, 2005.
- 7. Shapiro, J.H., "Composition Operators and Classical Function theory", Springer Verlag, New York, 1993.
- 8. Shapiro, J.H., "Unpublished Lectures", Michigan State University,1997.

عنوان البحث بالللغة العربية ليث خليل شاكر

قسم الرياضيات، كلية علوم الحاسبات والرياضيات، جامعة تكريت، تكريت، جمهورية العراق

المخلص:

درسنا في هذا العمل الصفة الدائرية للمؤثر التركيبي C_{ϕ} عندما ϕ دالة متقابلة (شاملة ومتباينة) على U حيث $U = \{z \in | z \in V_{\phi}\}$ عندما U عندما U عندما U عندما U عندما U هي الدوال الخاصة المعرفة على U هي الدوال الخاصة المعرفة على U الشروط الكافية و (أو) الضرورية التي تجعل المؤثر التركيبي $U = \{z \in V_{\phi}\}$ مؤثراً دائرياً دائرياً