

Wasit Journal for Pure Science

Journal Homepage: <u>https://wjps.uowasit.edu.iq/index.php/wjps/index</u> e-ISSN: 2790-5241 p-ISSN: 2790-5233

On Graph T-topology

Saad Mahdi Jaber¹[®], Marwah Yasir Mohsin²

¹Department of mathematics, College of Education for Pure Science, University of Wasit, IRAQ

²Department of Mathematics, Directorate-General of Education of Wasit, IRAQ

*Corresponding Author: Saad Mahdi Jaber

DOI: https://doi.org/10.31185/wjps.567

Received 10 October 2024; Accepted 24 November 2024; Available online 30 December 2024

ABSTRACT: In this work, a new type of topology called T-topology is generated based on graph G = (V(G), X(G)), and specific types of graphs are discussed for this purpose. The way to generate this type of topology was the open neighborhood $N_{\omega} = \{ \omega \in (V(G): \omega \omega \in X(G) \}$, which is a subbase of topology.

Keywords: t-set, graph topology, T-topological space.

1. INTRODUCTION

Topology has been related to several branches of mathematics including graph theory. The method of relate was through constructing a topological space based on a specific graph. Thus, it is a method for generating a topology from the elements of the graph. The matter may be the opposite, i.e. inducing a graph by a topological space. Among the first to present a method for generating a topological space by a graph were Diesto and Gervacio [1], where they used a topological rule based on the closed neighborhood of the set of vertices of the graph. Al-khafaji generated topology on graphs and topology on subgraph [2], after that KA Abdo introduced the concept of compatible and incompatible edge topologies [3]. On the other hand, the concepts of T-closed set and T-open set was introduced by Saad [4]. In this paper only finite undirected graphs are dealt with. Important definitions and preliminaries of topological space can be viewed through the source [5].

Definition 1.1[6]: A graph is a pair (*V*, *X*), where *V* is the set of vertices and X is the set of edges.

Definition 1.1[6]: A graph *G* in which contains a list of vertices $\omega_1, \omega_2, ..., \omega_p$ of *G* such that for $1 \le i \le p - 1$, there is an edge $\omega_i \omega_{i+1}$ in *G* is called path graph and denoted by P_n with n vertices.

Definition 1.2[6]: A graph G in which form by joining the two end-vertices of a path graph is called cycle graph and denoted by C_n with n vertices.

Definition 1.3[6]: A star graph is a graph in which n - 1 vertices have degree 1 and a single vertex have degree n - 1 and denoted by S_n with n vertices.

Definition 1.4[6]: A graph in which form by a cycle graph C_{n-1} with a star graph S_n by joining an edge from a center vertex of a star graph S_n to each vertex of C_{n-1} is called wheel graph and denoted by W_n with n vertices.

Definition 1.5[6]: A complete graph is a graph G which have each pair of distinct vertices are adjacent, and denoted by K_n with n vertices.

Definition1 1.6[3]: Given a graph G = (V(G), X(G)) with $\omega \in V(G)$, the neighborhood set $N_{\omega} = \{ \omega \in V(G) : \omega \omega \in X(G) \}$.

Definition 1.7 [3]: Given a graph G = (V(G), X(G)), then a topology T_A which has a subbase open neighborhood $S_N = \{N_{\omega} : \omega \in V(G)\}$ is called graph adjacency topology.

Remark: A pair $(V(G), T_A)$ is called a graph adjacency topological space, denoted by GATS.

2. GRAPH T-TOPOLOGY (GATTS)

Definition 2.1: Let $(V(G), T_A)$ be GATS and *H* be a vertex form subgraph of *G*. Thus:

1- The closure of V(H), defined by: $Cl(V(H)) = V(H) \cup \{\omega \in V(G) : N_{\omega} \cap V(H) \neq \emptyset\}$.

2- The interior of V(H), defined by: $Int(V(H)) = \{\omega \in V(G): N_{\omega} \subseteq V(H)\}$.

Definition 2.2: Let $(V(G), T_A)$ be GATS and *H* be a vertex induced subgraph of G. Then V(H) is called t-set if Int(V(H)) = Int(Cl(V(H))).

Example 2.3: Since, $S_N = \{\{\omega_2, \omega_3, \omega_5\}, \{\omega_1, \omega_3\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_3, \omega_5\}, \{\omega_1, \omega_4\}\}$, then a basis $\beta = \{\emptyset, \{\omega_2, \omega_3, \omega_5\}, \{\omega_1, \omega_3\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_3, \omega_5\}, \{\omega_1, \omega_4\}, \{\omega_1\}, \{\omega_2\}, \{\omega_3\}\}$ And $T_A = \{\emptyset, V(G), \{\omega_2, \omega_3, \omega_5\}, \{\omega_1, \omega_3\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_3, \omega_5\}, \{\omega_1, \omega_4\}, \{\omega_1\}, \{\omega_2\}, \{\omega_3\}, \{\omega_1, \omega_2, \omega_3, \omega_5\}, \{\omega_1, \omega_3, \omega_4\}, \{\omega_1, \omega_3, \omega_5\}, \{\omega_1, \omega_3, \omega_4\}, \{\omega_2, \omega_3, \omega_4, \{\omega_1, \omega_3, \omega_5\}, \{\omega_1, \omega_2, \omega_3\}, \{\omega_1, \omega_3, \omega_4, \omega_5\}, \{\omega_2, \omega_3, \omega_4, \omega_5\}, \{\omega_2, \omega_3, \omega_4, \omega_5\}, \{\omega_1, \omega_2, \omega_5\}\}.$ Take $V(H) = \{\omega_2, \omega_4, \omega_5\}$, then Cl(V(H)) = V(H)So, $Int(V(H)) = Int(Cl(V(H))) = \{\omega_2\}$ Thus, V(H) is t-set. See FIGURE .1

Remarks 2.4: Let $(V(G), T_A)$ be GATS with a vertex H which form subgraph of G. Then:

- i- If V(H) is a closed set, then it is t-set.
- ii- V(H) is called regular open set if V(H) = Int(Cl(V(H))).
- iii- If V(H) is regular open set, then it is t-set.
- iv- If V(H) is a clopen set, then it is t-set.

Definition 2.5: A topological space $(V(G), T_A)$ is called GT_1 -space if for any two different vertices from V(G), there are two open sets in T_A each of which contains one but not the other.

Definition 2.6: A topological space $(V(G), T_A)$ is called definitely disconnected if every open set in it is clopen.

Definition 2.7: Let $(V(G), T_A)$ be GATS and *H* be a vertex form subgraph of $G. \omega \in V(G)$ is said to be T-cluster vertex of *H* if $U \cap H \neq \emptyset$, for any t-set *U* contain *v*.

The set of all T-cluster vertexes of H (denoted by TCl(H)) is called T-closure of H.

Definition 2.8: Let $(V(G), T_A)$ be GATS with a vertex *H* which form subgraph of *G*, then *H* is called T-closed set if H = TCl(H). The complement of T-closed set is called T-open, a family of T-open sets denoted by TO(V).

Definition 2.9: Let $(V(G), T_A)$ be GATS. Then a family TO(V) forms a topology on V(G) denoted by TT_A and the pair $(V(G), TT_A)$ is called a graph adjacency topological space, dented by GATTS.

Proposition 2.10: Let $(V(G), T_A)$ be GATS, then:

- (i) Every discrete GATS is GATTS.
- (ii) Every GT_1 -space is GATTS.
- (iii) Every definitely disconnected GATS is GATTS.

Proof: (i) and (iii) are obvious.

(ii) Let $(V(G), T_A)$ be GATS such that it is GT_1 -space and $V(H) \subseteq V(G)$ is open set. Thus, For any $\omega \in V(H)$, $\{\omega\}$ is a closed set and so, $\{\omega\}$ is a T-open, but $V(H) = \bigcup_{v \in H} \{\omega\}$, hence V(H) is T-open.

Proposition 2.11: Every complete graph $K_{n\geq 3}$ is GATTS.

Proof: Take n=3, $V(G) = \{\omega_1, \omega_2, \omega_3\}$, so $S_N = \{\{\omega_2, \omega_3\}, \{\omega_1, \omega_3\}, \{\omega_1, \omega_2\}\}$ and $\beta = \{\{\omega_2, \omega_3\}, \{\omega_1, \omega_3\}, \{\omega_1, \omega_2\}, \{\omega_3\}, \{\omega_1\}, \{\omega_2\}\}$. Thus, T_A is a discrete topology. Hence, K_3 is GATTS by Proposition 2.10(i). See FIGURE .3 Take $n \ge 3$, $V(G) = \{\omega_1, \omega_2, \omega_3, \omega_4, ..., \omega_n\}$, then $S_N = \{V(G) \setminus \{\omega_1\}, V(G) \setminus \{\omega_2\}, V(G) \setminus \{\omega_3\}, ..., V(G) \setminus \{\omega_n\}\}$ and so, $\beta = \{V(G) \setminus \{\omega_1\}, V(G) \setminus \{\omega_2\}, V(G) \setminus \{\omega_3\}, ..., V(G) \setminus \{\omega_n\}\} \cup \{V(G) \setminus \{\omega_1, \omega_2\}, V(G) \setminus \{\omega_1, \omega_n\}\} \cup V(G) \setminus \{\omega_1, \omega_n\} \cup V(G) \setminus \{\omega_i, \omega_k\}, ..., V(G) \setminus \{\omega_j, \omega_k\}$. For any $\omega_i, \omega_j \in V(G)$, there exist $\{V(G) \setminus \{\omega_i, \omega_k\}, V(G) \setminus \{\omega_j, \omega_k\}, e \beta$, for some $\omega_k \in V(G)$ such that $\omega_i \in V(G) \setminus \{\omega_i, \omega_k\}$ and $\omega_j \notin V(G) \setminus \{\omega_j, \omega_k\}$, also $\omega_j \in V(G) \setminus \{\omega_i, \omega_k\}$ and $\omega_i \notin V(G) \setminus \{\omega_i, \omega_k\}$. Therefore, T_A is GT_1 -space, hence $K_{n \ge 4}$ is GATTS from Proposition 2.10(ii). See FIGURE .2

Example 2.12: The complete graph K_4 is GATTS.

Since $S_N = \{\{\omega_3, \omega_2, \omega_4\}, \{\omega_4, \omega_1, \omega_3\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_2, \omega_3, \omega_1\}\}$, then a basis $\beta = \{\{\omega_3, \omega_2, \omega_4\}, \{\omega_4, \omega_1, \omega_3\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_2, \omega_3, \omega_1\}, \{\omega_3, \omega_4\}, \{\omega_2, \omega_4\}, \{\omega_2, \omega_3\}, \{\omega_1, \omega_4\}, \{\omega_1, \omega_3\}, \{\omega_1, \omega_2\}\}$ Note that the topological space generated by basis β will be GT_1 -space, from Proposition 2.10(ii).

 K_4 is GATTS.

Remark 2.13: The complete graph K_3 is cycle graph.

Proposition 2.14: Every cycle graph C_n is GATTS.

Proof: If n=3 or n=4, then C_n is GATTS, from Example 2.12 and Example 2.14. If $n \ge 5$, then $S_N = \{\{\omega_2, \omega_n\}, \{\omega_1, \omega_3\}, \{\omega_2, \omega_4\}, \{\omega_3, \omega_5\}, \dots, \{\omega_1, \omega_{n-1}\}\}$, so $\beta = \{\emptyset, \{\omega_2, \omega_n\}, \{\omega_1, \omega_3\}, \{\omega_2, \omega_4\}, \{\omega_3, \omega_5\}, \dots, \{\omega_1, \omega_{n-1}\}, \{\omega_2\}, \{\omega_3\}, \dots, \{\omega_{n-1}\}, \{\omega_n\}, \{\omega_1\}\}$ Now, we have basis that includes all singleton set of a space. Thus, T_A will be a discrete topology. Hence, C_n is GATTS. Look at FIGURE .4

Example 2.15: C_4 is GATTS.

 $S_N = \{\{\omega_2, \omega_4\}, \{\omega_1, \omega_3\}\}.$ $\beta = \{\emptyset, \{\omega_2, \omega_4\}, \{\omega_1, \omega_3\}\}$ $T_A = \{\emptyset, V(G), \{\omega_2, \omega_4\}, \{\omega_1, \omega_3\}\}$ Clear that every open in T_A is T-open set, so C_A is GATTS. Look at FIGURE .5

Proposition 2.16: Every star graph S_n is GATTS.

Proof: $S_N = \{\{\omega_2, \omega_3, \omega_4, ..., \omega_n\}, \{\omega_1\}\}.$ $\beta = \{\emptyset, \{\omega_2, \omega_3, \omega_4, ..., \omega_n\}, \{\omega_1\}\}.$ $T_A = \{\emptyset, V(G), \{\omega_2, \omega_3, \omega_4, ..., \omega_n\}, \{\omega_1\}\}$ Clear, $(V(G), T_A)$ is definitely disconnected space, so by Proposition 2.10(iii). S_n is GATTS. Look at FIGURE .6

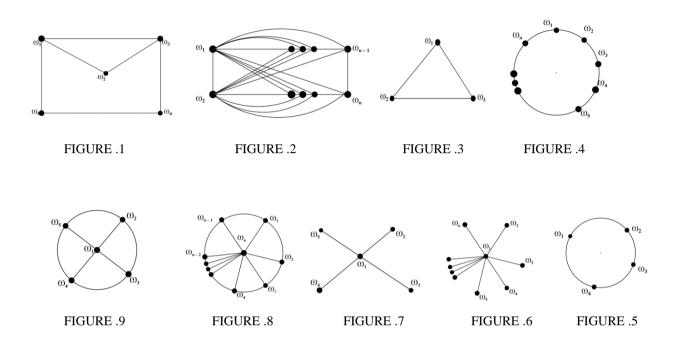
Example 2.17: A star S_5 is GATTS. We have, $S_N = \{\{\omega_2, \omega_3, \omega_4, \omega_5\}, \{\omega_1\}\}$. Then a basis $\beta = \{\emptyset, \{\omega_2, \omega_3, \omega_4, \omega_5\}, \{\omega_1\}\}$ and $T_A = \{\emptyset, V(G), \{\omega_2, \omega_3, \omega_4, \omega_5\}, \{\omega_1\}\}$ Clear that every open in T_A is T-open set, so S_5 is GATTS. Look at FIGURE .7

Proposition 2.18: Every weal graph W_n is GATTS.

Proof: Let $V(G) = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_4, ..., \omega_{n-2}, \omega_{n-1}, \omega_n\}$ and so, $S_N = \{\{\omega_1, \omega_2, \omega_3, \omega_4, \omega_4, ..., \omega_{n-2}, \omega_{n-1}\}, \{\omega_n, \omega_{n-1}, \omega_2\}, \{\omega_n, \omega_1, \omega_3\}, \{\omega_n, \omega_2, \omega_4\}, \{\omega_n, \omega_3, \omega_5\}, ..., \{\omega_n, \omega_1, \omega_{n-2}\}\}$ then we have $\beta = \{\{\omega_1, \omega_2, \omega_3, \omega_4, \omega_4, ..., \omega_{n-2}, \omega_{n-1}\}, \{\omega_n, \omega_{n-1}, \omega_2\}, \{\omega_n, \omega_1, \omega_3\}, \{\omega_n, \omega_2, \omega_4\}, \{\omega_n, \omega_3, \omega_5\}, ..., \{\omega_n, \omega_1, \omega_{n-2}\}, \{\omega_{n-1}, \omega_2\}, \{\omega_1, \omega_3\}, \{\omega_2, \omega_4\}, \{\omega_3, \omega_5\}, ..., \{\omega_1, \omega_{n-2}\}, \{\omega_n\}, \{\omega_n, \omega_3\}, \{\omega_n, \omega_4\}, ..., \{\omega_n, \omega_{n-2}\}\}$. It is clear from the base that $(V(G), T_A)$ is GT_1 -space, so by Proposition 2.10

Example 2.19: A weal W_5 is GATTS.

Since, $S_N = \{\{\omega_1, \omega_3, \omega_5\}, \{\omega_2, \omega_3, \omega_4, \omega_5\}, \{\omega_1, \omega_2, \omega_4\}$, then we have $\beta = \{\{\omega_1\}, \{\omega_2, \omega_4\}, \{\omega_3, \omega_5\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_2, \omega_3, \omega_4, \omega_5\}, \{\omega_1, \omega_3, \omega_5\}\}$, and $T_A = \{\emptyset, V(G), \{\omega_2, \omega_3, \omega_4, \omega_5\}, \{\omega_1, \omega_3, \omega_5\}, \{\omega_1\}, \{\omega_2, \omega_4\}, \{\omega_3, \omega_5\}, \{\omega_1, \omega_2, \omega_4\}\}$ Clear, $(V(G), T_A)$ is definitely disconnected space, so by Proposition 2.10(iii). W_5 is GATTS. Look at FIGURE .9



Definition 2.20: Let $(V(G), T_A)$ be GATS and $(\acute{V}(H), \acute{E}(H))$ be a subgraph of (V(G), E(G)). Then the class $\beta_H = \{\acute{V}(H) \cap B : B \in \beta, \beta$ is basis of $T_A\}$ is called a basis of a relative topology (denoted by \acute{T}_A) on $\acute{V}(H)$.

Proposition 2.21: Let $(V(G), T_A)$ be GATS such that any element of subbase of T_A is T-open and $(\dot{V}(H), \dot{E}(H))$ is a subgraph of (V(G), E(G)). If $\dot{V}(H)$ is a closed set in V(G), then a pair of a relative topology \dot{T}_A and $\dot{V}(H)$ is GATTS. **Proof:** Since $\dot{V}(H)$ is a closed set in V(G), then $\dot{V}(H)$ is T-open set (Look at FIGURE .10 and FIGURE .11). We have the elements of a basis β are T-open sets, and so, the elements of a basis β_H are T-open sets. But, every element in \dot{T}_A is a union of elements of β_H . Hence, $(\dot{V}(H), \dot{T}_A)$ is GATTS.

Now, $S_N = \{\{\omega_6, \omega_5\}, \{\omega_4, \omega_5\}, \{\omega_6, \omega_4\}, \{\omega_6, \omega_2, \omega_3, \omega_5\}, \{\omega_4, \omega_6, \omega_2, \omega_1\}, \{\omega_4, \omega_1, \omega_3, \omega_5\}\}, \text{thus}$ $\beta = \{\{\omega_6, \omega_5\}, \{\omega_4, \omega_5\}, \{\omega_6, \omega_4\}, \{\omega_6, \omega_2, \omega_3, \omega_5\}, \{\omega_4, \omega_6, \omega_2, \omega_1\}, \{\omega_4, \omega_1, \omega_3, \omega_5\}, \{\omega_5\}, \{\omega_6\}, \{\omega_4\}, \{\omega_6, \omega_2\}, \{\omega_3, \omega_5\}, \{\omega_4, \omega_5, \omega_1\}, \{\omega_4, \omega_5, \omega_6\}, \{\omega_4, \omega_5\}, \{\omega_4, \omega_5, \omega_4\}, \{\omega_4, \omega_5, \omega_3\}, \{\omega_4, \omega_5, \omega_3\}, \{\omega_6, \omega_2, \omega_3, \omega_5\}, \{\omega_4, \omega_6, \omega_2, \omega_3, \omega_5\}, \{\omega_4, \omega_6, \omega_5, \omega_2\}, \{\omega_4, \omega_6, \omega_5, \omega_3\}, \{\omega_4, \omega_6, \omega_6, \omega_6, \omega_3, \omega_5\}, \{\omega_4, \omega_6, \omega_6, \omega_6, \omega_6, \omega_6\}, \{\omega_4, \omega_6, \omega_6, \omega_6\}, \{\omega_4, \omega_6, \omega_6, \omega_6, \omega_6\}, \{\omega_4, \omega_6, \omega_6, \omega_6, \omega_6\}, \{\omega_4, \omega_6, \omega_6, \omega_6\}, \{\omega_4, \omega_6, \omega_6, \omega_6, \omega_6\}, \{\omega_4, \omega_6, \omega_6\}, \{\omega_6, \omega_6\},$
$$\begin{split} &\beta_{H} = \{\{\omega_{6}\}, \{\omega_{3}\}, \{\omega_{4}\}, \{\omega_{6}, \omega_{4}\}, \{\omega_{6}, \omega_{3}\}, \{\omega_{3}, \omega_{4}\}, \{\omega_{1}, \omega_{4}\}\} \dot{T}_{A} = \\ &\{\emptyset, \dot{V}(H), \{\omega_{6}\}, \{\omega_{3}\}, \{\omega_{4}\}, \{\omega_{6}, \omega_{4}\}, \{\omega_{6}, \omega_{3}\}, \{\omega_{3}, \omega_{4}\}, \{\omega_{1}, \omega_{4}\}, \{\omega_{6}, \omega_{4}, \omega_{3}\}, \{\omega_{6}, \omega_{4}, \omega_{1}\}, \{\omega_{3}, \omega_{4}, \omega_{1}\}\} \\ &\text{Clear that } \dot{T}_{A} \text{ is } GT_{1} \text{-space and so, } (\dot{V}(H), \dot{T}_{A}) \text{ is } \text{GATTS.} \end{split}$$

REFERENCES

- [1] S. Diesto and S. Gereacio, "Finite Topological Graph" Journal of Research and Deeel-opment, 1(1):76-8, 1983.
- [2] H.A-H.Mahdi, and S.N.F.Al-khafaji,"Construction A topology On Graphs" Journal Al-Qadisiyah for computer science and mathematics 5, no.2.pp:39-46. 2013.
- [3] K. A. Abdo, and A. Kilicman,,"Topologies On The Edge set of directed grapgs" International Journal of mathematical Analysis 12, no.2.pp:71-84. 2018.
- [4] M. J., Saad, "On T-continuous map" Wasit Journal for Pure sciences, Eol. 3 No. 1, pp. 38-41, 2024.
- [5] J. R. Mumkres General Topology, Second Edition, Pearson Education, Inc.2006.
- [6] J. A. Bondy, and U. S. R. Murthy, Graph Theory, Graduate Texts in Mathematics, Springer, Berlin, 2008.