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1. INTRODUCTION 

Topology has been related to several branches of mathematics including graph theory. The method of relate was 

through constructing a topological space based on a specific graph. Thus, it is a method for generating a topology from 

the elements of the graph. The matter may be the opposite, i.e. inducing a graph by a topological space. Among the first 

to present a method for generating a topological space by a graph were Diesto and Gervacio [1], where they used a 

topological rule based on the closed neighborhood of the set of vertices of the graph. Al-khafaji generated topology on 

graphs and topology on subgraph [2], after that KA Abdo introduced the concept of compatible and incompatible edge 

topologies [3]. On the other hand, the concepts of T-closed set and T-open set was introduced by Saad [4]. In this paper 

only finite undirected graphs are dealt with. Important definitions and preliminaries of topological space can be viewed 

through the source [5].   

 

Definition 1.1[6]: A graph is a pair (𝑉, 𝑋), where 𝑉is the set of vertices and X is the set of edges. 

Definition 1.1[6]: A graph 𝐺 in which contains a list of vertices 𝜔1,𝜔2,…,𝜔𝑝 of 𝐺 such that for 1 ≤ 𝑖 ≤ 𝑝 − 1,there is 

an edge 𝜔𝑖𝜔𝑖+1 in 𝐺 is called path graph and denoted by P𝑛 with n vertices.  

 

Definition 1.2[6]: A graph 𝐺 in which form by joining the two end-vertices of a path graph is called cycle graph and 

denoted by 𝐶𝑛with n vertices. 

 

Definition 1.3[6]: A star graph is a graph in which 𝑛 − 1 vertices have degree 1 and a single vertex have degree 𝑛 − 1 

and denoted by 𝑆𝑛with n vertices. 

 

Definition 1.4[6]: A graph in which form by a cycle graph 𝐶𝑛−1 with a star graph 𝑆𝑛 by joining an edge from a center 

vertex of a star graph 𝑆𝑛 to each vertex of 𝐶𝑛−1is called wheel graph and denoted by 𝑊𝑛 with n vertices. 

 

ABSTRACT: In this work, a new type of topology called T-topology is generated based on graph 𝐺 =
(𝑉(𝐺), 𝑋(𝐺)), and specific types of graphs are discussed for this purpose. The way to generate this type of topology 

was the open neighborhood 𝑁𝜔 = {�́� ∈ (𝑉(𝐺): 𝜔�́� ∈ 𝑋(𝐺)}, which is a subbase of topology. 
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Definition 1.5[6]: A complete graph is a graph G which have each pair of distinct vertices are adjacent, and denoted by 

𝐾𝑛 with n vertics. 

Definition  1 1.6[3]: Given a graph 𝐺 = (𝑉(𝐺), 𝑋(𝐺)) with 𝜔 ∈ 𝑉(𝐺), the neighborhood set 𝑁𝜔 = {�́� ∈ 𝑉(𝐺): 𝜔�́� ∈

𝑋(𝐺)}.  

Definition 1.7 [3]: Given a graph 𝐺 = (𝑉(𝐺), 𝑋(𝐺)), then a topology 𝑇𝐴 which has a subbase open neighborhood 𝑆𝑁 =
{𝑁𝜔: 𝜔 ∈ 𝑉(𝐺)} is called graph adjacency topology. 

Remark:  A pair (𝑉(𝐺), 𝑇𝐴) is called a graph adjacency topological space, denoted by GATS.  

2.  GRAPH T-TOPOLOGY (GATTS) 

 

Definition 2.1: Let (𝑉(𝐺), 𝑇𝐴) be GATS and 𝐻 be a vertex form subgraph of 𝐺. Thus: 

1- The closure of 𝑉(𝐻), defined by: 𝐶𝑙(𝑉(𝐻)) = 𝑉(𝐻) ∪ {𝜔 ∈ 𝑉(𝐺): 𝑁𝜔 ∩ 𝑉(𝐻) ≠ ∅}.  

2- The interior of 𝑉(𝐻), defined by: 𝐼𝑛𝑡(𝑉(𝐻)) = {𝜔 ∈ 𝑉(𝐺): 𝑁𝜔 ⊆ 𝑉(𝐻)}. 

 

Definition 2.2: Let (𝑉(𝐺), 𝑇𝐴) be GATS and 𝐻 be a vertex induced subgraph of G. Then 𝑉(𝐻) is called t-set if 

𝐼𝑛𝑡(𝑉(𝐻)) = 𝐼𝑛𝑡(𝐶𝑙(𝑉(𝐻))). 

 

Example 2.3: Since, 𝑆𝑁 = {{𝜔2, 𝜔3, 𝜔5}, {𝜔1, 𝜔3}, {𝜔1, 𝜔2, 𝜔4}, {𝜔3, 𝜔5}, {𝜔1, 𝜔4}}, then a basis 𝛽 =
{∅, {𝜔2, 𝜔3, 𝜔5}, {𝜔1, 𝜔3}, {𝜔1, 𝜔2, 𝜔4}, {𝜔3, 𝜔5}, {𝜔1, 𝜔4}, {𝜔1}, {𝜔2}, {𝜔3}} 

And 𝑇𝐴 = {∅, 𝑉(𝐺), {𝜔2, 𝜔3, 𝜔5}, {𝜔1, 𝜔3}, {𝜔1, 𝜔2, 𝜔4}, {𝜔3, 𝜔5}, {𝜔1, 𝜔4}, {𝜔1}, {𝜔2}, {𝜔3} 

, {𝜔1, 𝜔2, 𝜔3, 𝜔5}, {𝜔1, 𝜔2, 𝜔3, 𝜔4}, {𝜔1, 𝜔3, 𝜔5}, {𝜔1, 𝜔3, 𝜔4}, {𝜔1, 𝜔2, 𝜔3}, {𝜔1, 𝜔3, 𝜔4, 𝜔5} 

{{𝜔2, 𝜔3}}, {𝜔2, 𝜔3, 𝜔4}, {{𝜔2, 𝜔3, 𝜔4, 𝜔5}}, {𝜔1, 𝜔2, 𝜔5}}. 

Take 𝑉(𝐻)={𝜔2, 𝜔4, 𝜔5}, then 𝐶𝑙(𝑉(𝐻)) =  𝑉(𝐻)  

So, 𝐼𝑛𝑡(𝑉(𝐻)) = 𝐼𝑛𝑡 (𝐶𝑙(𝑉(𝐻))) = {𝜔2}  

Thus, 𝑉(𝐻) is t-set. See FIGURE .1 

Remarks 2.4: Let (𝑉(𝐺), 𝑇𝐴) be GATS with a vertex 𝐻 which form subgraph of 𝐺. Then: 

i- If 𝑉(𝐻) is a closed set, then it is t-set.  

ii- 𝑉(𝐻) is called regular open set if 𝑉(𝐻) = 𝐼𝑛𝑡(𝐶𝑙(𝑉(𝐻))). 

iii- If 𝑉(𝐻) is regular open set, then it is t-set.  

iv- If 𝑉(𝐻) is a clopen set, then it is t-set.    

Definition 2.5: A topological space (𝑉(𝐺), 𝑇𝐴) is called 𝐺𝑇1-space if for any two different vertices from 𝑉(𝐺) , there 

are two open sets in 𝑇𝐴each of which contains one but not the other.  

Definition 2.6: A topological space (𝑉(𝐺), 𝑇𝐴) is called definitely disconnected if every open set in it is clopen. 

Definition 2.7: Let (𝑉(𝐺), 𝑇𝐴) be GATS and 𝐻 be a vertex form subgraph of 𝐺. 𝜔 ∈ 𝑉(𝐺) is said to be T-cluster vertex 

of 𝐻 if 𝑈 ∩ 𝐻 ≠ ∅, for any t-set 𝑈 contain 𝑣. 

The set of all T-cluster vertexes of 𝐻 (denoted by 𝑇𝐶𝑙(𝐻)) is called T-closure of 𝐻.  

Definition 2.8: Let (𝑉(𝐺), 𝑇𝐴) be GATS with a vertex 𝐻 which form subgraph of 𝐺, then 𝐻 is called T-closed set if 

𝐻 = 𝑇𝐶𝑙(𝐻).The complement of T-closed set is called T-open, a family of T-open sets denoted by 𝑇𝑂(𝑉). 

 

Definition 2.9: Let (𝑉(𝐺), 𝑇𝐴) be GATS. Then a family 𝑇𝑂(𝑉) forms a topology on 𝑉(𝐺) denoted by 𝑇𝑇𝐴 and the pair 

(𝑉(𝐺), 𝑇𝑇𝐴) is called a graph adjacency topological space, dented by GATTS.  

Proposition 2.10: Let (𝑉(𝐺), 𝑇𝐴) be GATS, then: 

(i) Every discrete GATS is GATTS. 

(ii) Every 𝐺𝑇1-space is GATTS. 

(iii) Every definitely disconnected GATS is GATTS. 

Proof: (i) and (iii) are obvious. 
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(ii) Let (𝑉(𝐺), 𝑇𝐴) be GATS such that it is 𝐺𝑇1-space and 𝑉(𝐻) ⊆ 𝑉(𝐺) is open set. Thus, For any 𝜔 ∈ 𝑉(𝐻), {𝜔} is a 

closed set and so, {𝜔} is a T-open, but 𝑉(𝐻) = ⋃ {𝜔}𝑣∈𝐻 , hence 𝑉(𝐻) is T-open. 

Proposition 2.11:  Every complete graph 𝐾𝑛≥3 is GATTS. 

Proof: Take n=3, 𝑉(𝐺) = {𝜔1, 𝜔2, 𝜔3}, so 𝑆𝑁 = {{𝜔2, 𝜔3}, {𝜔1, 𝜔3}, {𝜔1, 𝜔2}} and  𝛽 =
{{𝜔2, 𝜔3}, {𝜔1, 𝜔3}, {𝜔1, 𝜔2}, {𝜔3}, {𝜔1}, {𝜔2}}. 

Thus, 𝑇𝐴 is a discrete topology. Hence, 𝐾3 is GATTS by Proposition 2.10(i). See FIGURE .3 

Take 𝑛 ≥ 3, 𝑉(𝐺) = {𝜔1, 𝜔2, 𝜔3, 𝜔4, … , 𝜔𝑛}, then  𝑆𝑁 = {𝑉(𝐺)\{𝜔1}, 𝑉(𝐺)\{𝜔2}, 𝑉(𝐺)\{𝜔3}, … , 𝑉(𝐺)\{𝜔𝑛}} 

and so, 𝛽 = {𝑉(𝐺)\{𝜔1}, 𝑉(𝐺)\{𝜔2}, 𝑉(𝐺)\{𝜔3}, … , 𝑉(𝐺)\{𝜔𝑛}} ∪ {𝑉(𝐺)\{𝜔1, 𝜔2},  
𝑉(𝐺)\{𝜔1, 𝜔3}, … , 𝑉(𝐺)\{𝜔1, 𝜔𝑛}} ∪ 𝑉(𝐺)\{𝜔2, 𝜔3}, …,  𝑉(𝐺)\{𝜔2, 𝜔𝑛}}.    
For any 𝜔𝑖 , 𝜔𝑗 ∈ 𝑉(𝐺), there exist {𝑉(𝐺)\{𝜔𝑖 , 𝜔𝑘}, 𝑉(𝐺)\{𝜔𝑗 , 𝜔𝑘} ∈ 𝛽, for some 

𝜔𝑘 ∈ 𝑉(𝐺) such that 𝜔𝑖 ∈ 𝑉(𝐺)\{𝜔𝑗 , 𝜔𝑘} and 𝜔𝑗 ∉  𝑉(𝐺)\{𝜔𝑗 , 𝜔𝑘}, also 

𝜔𝑗  ∈ 𝑉(𝐺)\{𝜔𝑖 , 𝜔𝑘} and 𝜔𝑖 ∉  𝑉(𝐺)\{𝜔𝑖 , 𝜔𝑘}.  

Therefore, 𝑇𝐴 is 𝐺𝑇1-space, hence 𝐾𝑛≥4 is GATTS from Proposition 2.10(ii). See FIGURE .2 

Example 2.12: The complete graph  𝐾4 is GATTS. 

Since 𝑆𝑁 = {{𝜔3, 𝜔2, 𝜔4}, {𝜔4, 𝜔1, 𝜔3}, {𝜔1, 𝜔2, 𝜔4}, {𝜔2, 𝜔3, 𝜔1}}, then a basis 𝛽 =
{{𝜔3, 𝜔2, 𝜔4}, {𝜔4, 𝜔1, 𝜔3}, {𝜔1, 𝜔2, 𝜔4}, {𝜔2, 𝜔3, 𝜔1}, {𝜔3, 𝜔4}, {𝜔2, 𝜔4}, {𝜔2, 𝜔3}, {𝜔1, 𝜔4}, 

 {𝜔1, 𝜔3}, {𝜔1, 𝜔2}} 

Note that the topological space generated by basis 𝛽 will be 𝐺𝑇1-space, from Proposition 2.10(ii). 

 𝐾4 is GATTS.  

 

Remark 2.13: The complete graph 𝐾3 is cycle graph. 

Proposition 2.14:  Every cycle graph 𝐶𝑛 is GATTS.  

Proof: If n=3 or n=4, then 𝐶𝑛 is GATTS, from Example 2.12 and Example 2.14. 

If n ≥ 5, then 𝑆𝑁 = {{𝜔2, 𝜔𝑛}, {𝜔1, 𝜔3}, {𝜔2, 𝜔4}, {𝜔3, 𝜔5}, … {𝜔1, 𝜔𝑛−1} }, so 𝛽 = {∅, {𝜔2, 𝜔𝑛}, {𝜔1, 𝜔3},  

{𝜔2, 𝜔4}, {𝜔3, 𝜔5}, … {𝜔1, 𝜔𝑛−1}, {𝜔2}, {𝜔3}, … , {𝜔𝑛−1}, {𝜔𝑛}, {𝜔1}} 

Now, we have basis that includes all singleton set of a space. Thus, 𝑇𝐴 will be a discrete  

topology. Hence, 𝐶𝑛 is GATTS. Look at FIGURE .4 

Example 2.15: 𝐶4 is GATTS. 

𝑆𝑁 = {{𝜔2, 𝜔4}, {𝜔1, 𝜔3}}. 

𝛽 = {∅, {𝜔2, 𝜔4}, {𝜔1, 𝜔3}} 

𝑇𝐴 = {∅, 𝑉(𝐺), {𝜔2, 𝜔4}, {𝜔1, 𝜔3}} 

Clear that every open in 𝑇𝐴 is T-open set, so 𝐶4 is GATTS. Look at FIGURE .5 

Proposition 2.16:  Every star graph 𝑆𝑛 is GATTS. 

Proof: 𝑆𝑁 = {{𝜔2, 𝜔3, 𝜔4, … , 𝜔𝑛}, {𝜔1}}. 

𝛽 = {∅, {𝜔2, 𝜔3, 𝜔4, … , 𝜔𝑛}, {𝜔1}}. 

𝑇𝐴 = {∅, 𝑉(𝐺), {𝜔2, 𝜔3, 𝜔4, … , 𝜔𝑛}, {𝜔1}} 

Clear, (𝑉(𝐺), 𝑇𝐴) is definitely disconnected space, so by Proposition 2.10(iii). 

𝑆𝑛 is GATTS. Look at FIGURE .6 

Example 2.17: A star 𝑆5 is GATTS. 

We have, 𝑆𝑁 = {{𝜔2, 𝜔3, 𝜔4, 𝜔5}, {𝜔1}}. Then a basis 𝛽 = {∅, {𝜔2, 𝜔3, 𝜔4, 𝜔5}, {𝜔1}} and 

𝑇𝐴 = {∅, 𝑉(𝐺), {𝜔2, 𝜔3, 𝜔4, 𝜔5}, {𝜔1}} 

Clear that every open in 𝑇𝐴 is T-open set, so 𝑆5 is GATTS. Look at FIGURE .7 

Proposition 2.18:  Every weal graph 𝑊𝑛 is GATTS. 

Proof: Let 𝑉(𝐺) = {𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔4, … , 𝜔𝑛−2, 𝜔𝑛−1, 𝜔𝑛} and so, 𝑆𝑁 =
{{𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔4, … , 𝜔𝑛−2, 𝜔𝑛−1}, {𝜔𝑛 , 𝜔𝑛−1, 𝜔2}, {𝜔𝑛 , 𝜔1, 𝜔3}, {𝜔𝑛, 𝜔2, 𝜔4}, {𝜔𝑛, 𝜔3, 𝜔5}, …, {𝜔𝑛, 𝜔1, 𝜔𝑛−2}} then 

we have 𝛽 = {{𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔4, … , 𝜔𝑛−2, 𝜔𝑛−1}, {𝜔𝑛 , 𝜔𝑛−1, 𝜔2}, {𝜔𝑛, 𝜔1, 𝜔3}, {𝜔𝑛 , 𝜔2, 𝜔4}, {𝜔𝑛, 𝜔3, 𝜔5}, …, 
{𝜔𝑛 , 𝜔1, 𝜔𝑛−2}, {𝜔𝑛−1, 𝜔2}, {𝜔1, 𝜔3}, {𝜔2, 𝜔4}, {𝜔3, 𝜔5}, . . . , {𝜔1, 𝜔𝑛−2}, {𝜔𝑛}, {𝜔𝑛 , 𝜔2}, {𝜔𝑛, 𝜔3}, {𝜔𝑛 , 𝜔4}, …,

 {𝜔𝑛, 𝜔𝑛−2}}. 

It is clear from the base that (𝑉(𝐺), 𝑇𝐴) is 𝐺𝑇1-space, so by Proposition 2.10 

𝑊𝑛 is GATTS. Look at FIGURE .8 
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Example 2.19: A weal 𝑊5 is GATTS. 

Since, 𝑆𝑁 = {{𝜔1, 𝜔3, 𝜔5}, {𝜔2, 𝜔3, 𝜔4, 𝜔5}, {𝜔1, 𝜔2, 𝜔4}, then we have 𝛽 =
{{𝜔1}, {𝜔2, 𝜔4}, {𝜔3, 𝜔5}, {𝜔1, 𝜔2, 𝜔4}, {𝜔2, 𝜔3, 𝜔4, 𝜔5}, {𝜔1, 𝜔3, 𝜔5}}, and  𝑇𝐴 =
{∅, 𝑉(𝐺), {𝜔2, 𝜔3, 𝜔4, 𝜔5}, {𝜔1, 𝜔3, 𝜔5}, {𝜔1}, {𝜔2, 𝜔4}, {𝜔3, 𝜔5}, {𝜔1, 𝜔2, 𝜔4}} 

Clear, (𝑉(𝐺), 𝑇𝐴) is definitely disconnected space, so by Proposition 2.10(iii).  

𝑊5 is GATTS. Look at FIGURE .9    
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Definition 2.20: Let (𝑉(𝐺), 𝑇𝐴) be GATS and (�́�(𝐻), �́�(𝐻)) be a subgraph of (𝑉(𝐺), 𝐸(𝐺)). Then the class 𝛽𝐻 =
{�́�(𝐻) ∩ 𝐵: 𝐵 ∈ 𝛽, 𝛽 is basis of 𝑇𝐴} is called a basis of a relative topology (denoted by �́�𝐴) on �́�(𝐻).  

Proposition 2.21: Let (𝑉(𝐺), 𝑇𝐴) be GATS such that any element of subbase of 𝑇𝐴 is T-open and (�́�(𝐻), �́�(𝐻)) is a 

subgraph of (𝑉(𝐺), 𝐸(𝐺)). If �́�(𝐻) is a closed set in 𝑉(𝐺), then a pair of a relative topology �́�𝐴 and �́�(𝐻) is GATTS. 

Proof: Since �́�(𝐻) is a closed set in 𝑉(𝐺), then �́�(𝐻) is T-open set (Look at FIGURE .10 and FIGURE .11). We have 

the elements of a basis 𝛽 are T-open sets, and so, the elements of a basis 𝛽𝐻 are T-open sets. But, every element in �́�𝐴 is 

a union of elements of 𝛽𝐻. Hence, (�́�(𝐻), �́�𝐴) is GATTS.   

 

 

 

                                  FIGURE .10                                                                      FIGURE .12 

Now, 𝑆𝑁 = {{𝜔6, 𝜔5}, {𝜔4, 𝜔5}, {𝜔6, 𝜔4}, {𝜔6, 𝜔2, 𝜔3, 𝜔5}, {𝜔4, 𝜔6, 𝜔2, 𝜔1}, {𝜔4, 𝜔1, 𝜔3, 𝜔5}}, thus 

𝛽 = {{𝜔6, 𝜔5}, {𝜔4, 𝜔5}, {𝜔6, 𝜔4}, {𝜔6, 𝜔2, 𝜔3, 𝜔5}, {𝜔4, 𝜔6, 𝜔2, 𝜔1}, {𝜔4, 𝜔1, 𝜔3, 𝜔5}, {𝜔5},{𝜔6}, 

{𝜔4}, {𝜔6, 𝜔2}, {𝜔3, 𝜔5}, {𝜔1, 𝜔4}}.  

𝑇𝐴 = {∅, 𝑉(𝐺), {𝜔6, 𝜔5}, {𝜔4, 𝜔5}, {𝜔6, 𝜔4}, {𝜔6, 𝜔2}, {𝜔3, 𝜔5}, {𝜔1, 𝜔4}, , {𝜔5},{𝜔6}, {𝜔4}, , ,,, 
{𝜔6, 𝜔3, 𝜔5}, {𝜔6, 𝜔4, 𝜔5}, {𝜔1, 𝜔5, 𝜔4}, {𝜔4, 𝜔5, 𝜔1},{𝜔4, 𝜔2, 𝜔6},{𝜔4, 𝜔6, 𝜔1},

{𝜔4, 𝜔5, 𝜔6}, {𝜔2, 𝜔5, 𝜔6}, {𝜔3, 𝜔5, 𝜔6},{𝜔4, 𝜔5, 𝜔3}, {𝜔4, 𝜔5, 𝜔3}, {𝜔6, 𝜔2, 𝜔3, 𝜔5},

{𝜔4, 𝜔6, 𝜔2, 𝜔1}, {𝜔4, 𝜔1, 𝜔3, 𝜔5} , , {𝜔4, 𝜔6, 𝜔5, 𝜔2}, {𝜔4, 𝜔6, 𝜔5, 𝜔3} ,
{𝜔4, 𝜔2, 𝜔6, 𝜔3, 𝜔5}, {𝜔4, 𝜔2, 𝜔6, 𝜔1, 𝜔5}, {𝜔4, 𝜔1, 𝜔6, 𝜔3, 𝜔5}, , , }   

Let �́�(𝐻) = {𝜔4, 𝜔3, 𝜔6, 𝜔1} 
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𝛽𝐻 = {{𝜔6}, {𝜔3}, {𝜔4}, {𝜔6, 𝜔4}, {𝜔6, 𝜔3}, {𝜔3, 𝜔4}, {𝜔1, 𝜔4}} �́�𝐴 =

{∅, �́�(𝐻), {𝜔6}, {𝜔3}, {𝜔4}, {𝜔6, 𝜔4}, {𝜔6, 𝜔3}, {𝜔3, 𝜔4}, {𝜔1, 𝜔4}, {𝜔6, 𝜔4, 𝜔3} , {𝜔6, 𝜔4, 𝜔1}, {𝜔3, 𝜔4, 𝜔1}}  

Clear that �́�𝐴 is 𝐺𝑇1-space and so, (�́�(𝐻), �́�𝐴) is GATTS.  
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