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ABSTRACT

The speed of formaldehyde decomposition has been studied using catalysts (vanadium
nanoparticles, nano vanadium oxide with nano hydroxyapatite and vanadium oxide). The
catalysts have been made with three different concentrations (100, 500 and 1000) ppm
and at three different temperatures (25, 50 and 75) ° C. X-ray diffraction (XRD) and
transmission electron microscope (TEM) images were used to study the structural and
engineering properties of the prepared catalysts, which were nanostructured materials.
The increase in the concentration of the catalysts and the temperature led to increasing
the chemical reactions rate. However, it decreased the activation energy, which was
calculated using the Arrhenius equation. The catalyst NV20s showed a better reaction
rate compared to other prepared catalysts 100.1x 1073 and 112.5x 1073 ) for the
catalysts such as nano vanadium oxide and nano vanadium oxide with nano
hydroxyapatite, respectively.

Copyright©Authors, 2020, College of
Sciences, University of Anbar. This is an
open-access article under the CC BY 4.0
license (http://creativecommons.org/licens

es/by/4.0/).

1. INTRODUCTION

Over the recent years, the catalysts achieved a
noteworthy development through many new applications. It
is considered the main basis in the success and
development of many new processes employed in several
industrial fields, as it works to reduce waste and emissions
in cars and fuel stations. Moreover, it is used in many of
the most important interactions such as alkylation,
pasteurization and oxidation reactions[1,2]. Nanomaterials
have been used in several applications, including the
medicine. Hydroxyapatite (HAP) is considered a form of
apatite, which is a chemical material that similar to the
acidic material in organisms in terms of chemical
composition and phase. The pure hydroxyapatite is usually
brittle; hence, its applications in research are limited.
Several efforts have been made to improve its properties by
controlling the particle size by making it within the
nanoscale. Hydroxyapatite nanostructure is a biological
substance used with the solid tissues of the body[3], water
treatment and other applications[4].
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Formaldehyde is a colourless, extremely flammable
gas at room temperature with a molecular formula CH-0,
which can be commercially obtained as a water solution of
(20-50%) that is known as formalin. The formaldehyde
oxidizes in the air under the light in carbon dioxide and it
also reacts very quickly to hydroxyl to produce formic acid
according to environmental conditions[5].

Nano-vanadium oxide has attracted considerable
attention due to its chemical and physical properties and its
great potential in the application of chemical catalyses such
as electromechanical devices, sensors, electrochemistry,
and photocatalytic activities. Vanadium oxide (V20s) is
one of the most stable compounds of vanadium oxides
because its crystal structure consists of two-dimensional
layers. Nano vanadium oxide can be used to convert
energy such as chemical energy (fuel cells) and solar
energy (photovoltaics) as well as thermal energy (thermal
energy generation)[6,7]. It also showed excellent results
when mixed with the molybdenum to improve the
performance of negative lithium-ion batteries[8]. Many
studies have been conducted to prepare catalysts via several
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methods and through using theirs in different applications.
Danilevich et al.[9] studied the effect of the supporting of
vanadia by (SiO2, AL2Os3, ZrO2, and TiO2) by fertilization
method on the oxidation of formaldehyde to formic acid
and characterized the catalyst using X-ray diffraction
(XRD), X-ray spectroscopy (XPS), Raman spectroscopy,
UV-Vis spectroscopy and temperature-programmed
reduction (TPR). They reported that the activity of
formaldehyde oxidation to formic acid depends on the
vanadia structure. They have concluded that TiO: is the
most suitable support for the formation of monolayer
vanadium, which is the most effective in oxidizing
formaldehyde to formic acid at 120°C. Kaichev et al.[10]
used the active compounds of the supported vanadium as
an aid to methanol oxidation, the structural and the
catalytic properties of the supported catalyst (vanadium
oxide) with different oxides such as SiOa, vy -AOs, ZrOy,
and TiO2 were examined at temperatures ranging between
(200-100)°C. They concluded that the nature of the support
determines the shape of the vanadium structure. The
addition of SiO2 and y-Al20; led to the formation of the
best crystals of vanadium oxide. It also demonstrated that
the vanadium oxide crystals are less active in the selective
oxidation of methanol, and the polymeric forms are more
active than monomer. Dwivedi et al. [11] examined the
vanadium oxide loaded on alumina properties as a catalyst
to oxidation of 2-Chlorotoluen(2-CLT) to  2-
hlorobenzonitrile (2-CLBN). They concluded that the
maximum productivity of (2-CLBN) reaches 76% at a
temperature of 425°C, and that the X-ray spectroscopy of
the pure and consuming catalyst shows that the catalyst has
decreased during the oxidation process.

2. EXPERIMENTAL METHOD
2.1. Preparation of a Hydroxyapatite Nanoparticle
(NHAP)

According to [12],
hydroxyapatite was prepared by adding calcium nitrate
tetrahydrate (Ca(NO3)2.4H20) solution 0.65 M in drops to
ammonium dihydrogen phosphate (NH4sH2PO4) 0.5M with
continuous stirring at 80 °C. The pH value was kept within
10 during the preparation. When adding ammonia at a
concentration of 25%, the resulting precipitate is collected,
filtered, washed with hot distilled water, and dried at 80°C
for 24 hours. Then, the precipitate is calcined at 400°C for
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four hours under normal atmospheric pressure.

2.2. Preparation of Nano Vanadium Oxide

Vanadium oxide nanostructure was prepared
according to Nalini and Babu [13,14], by heating
ammonium Meta Vanadate solution 0.01M while stirring.
Then the nitric acid (HNO3) was slowly added with stirring
(stirred for an hour and keep the value of the PH within the
limits of (2 - 3). A precipitate is formed in red color, which
is filtered and dried at 100°C for 24 hours.
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2.3. Preparation of Mix (NV205 and NHAP)

Two grams of NHAP were dissolved in 50 ml of
NV20s solution with continuous stirring at 60 oC for half
an hour, a light yellow precipitate is formed that collects
the precipitate by filtering, dried at 80 °C for 24 hours and
calcification for 4 hours at 400 °C.

3. RESULTS AND DISCUSSION
3.1. Structural Properties

The structural properties of the prepared materials
were studied by analysing X-ray diffraction performed with
the SHIMADZU-6000 (X-ray powder Diffraction). The
crystalline size was calculated wusing scherrer's
equation[15];

kA
b= S Cos6
where A is the wavelength of x-ray, B is half at width full
maximum, and k shape constant which is about 0.9.

Fig.1. represents the X-ray diffraction patterns of
the prepared NV20s powder, the peaks of NV:20s are
located at 26 = 25.04° and 27.73° in the orientation (001)
and (120), respectively, as well as in the phase of (y V20s)
at 20 = 30.759° at (210) of an orientation with a crystalline
size of approximately (27.5 and 4.8) nm as shown in table
1. This corresponds to the cards numbered (98 - 008 -
0594), (00 - 053 - 0538) respectively, the NV20s in both
phases possesses an orthorhombic crystal structure is
found. V205 accounted for approximately 22% of the
amount of powder produced from the reaction, in addition
to the presence of the H3O9V3 phase which has the highest
peak and the HxV20s phase.
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Fig.1 : X-ray diffraction pattern of the prepared NV20s
powder.

The addition of vanadium oxide nanoparticle to
nano-hydroxyapatite only led to 0.3% of the correlation in
the reaction product represented by the appearance of the
phase (Cas (VOs4) OH) at the angle (26 = 22.185°) and
direction (111). The apatite ratio was estimated at about
72% of the reaction result, and additional phases of
(Cas(PO4)OH) and (Ca3(PO4).XH20) are observed As it is
evident in Fig. 2 and table. 2.
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Fig.2: X-ray diffraction pattern of the mixture of vanadium
oxide and prepared nano-hydroxyapatite.

3.2. Morphological Properties

The TEM images of the NV20s compound showed
that there are cluster groups of particles with average size
of 27 nm, as shown in Fig. 3.B, as well as the presence of
plates of irregular shapes whose lengths range about 1.5
um and a width of about of 670 nm as shown in Fig. 3.C.
The apparent difference in the shapes of the prepared
particles is a result of the phases formed in the reaction
output, and this is confirmed by the difference in the
observed peaks of the resulting phases in the X-ray
diffraction model shown in Fig.1.
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Fig.3: TEM images of vanadium oxide nanoparticle and the
associated phases during the preparation.

Fig.4 shows the TEM images of the mixture of (NV205
and NHAP), as it shows the control of the petite particles
that appear in the form of rods whose length ranges
between 40 nm and 100 nm with diameters ranging
between 25 nm and 75 nm, in addition to bars with a length
of 0.7 um and a diameter of about 75 nm, and cubic
particles of average size of 10 nm.
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Fig.4: TEM mages of NV205 and NHAP nanoparticles
and their associated phases during the preparation.

3.3. Kinetics of Reaction

The interaction speed varies according to the type of
interaction and the number of molecules involved in it
when the temperature is fixed. For the purpose of
distinguishing between these reactions, the term reaction
order has been used, which can be defined as the sum of
the exponents to which the concentrations of the reactants
are raised in the speed equation. Therefore, the law of
reaction velocity depends on the reaction order [16]. In
first-order reactions, the reaction velocity can be calculated
using Eq. 2

r=k[C] ........(2)

where 7 is the reaction velocity, k is the reaction velocity
constant, and [C] is the concentration. The reaction of all
the prepared catalysts with formaldehyde is of the first
order under all reaction conditions in terms of temperatures
and the used concentrations as shown in Fig.s (5, 6 and 7).
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3.3.1. The Catalytic Agent (vanadium nanoparticle)
(\NV205)

The catalyst (NV20s) was added in concentrations of
(100, 500, 1000) ppm to formaldehyde solution at
temperatures (25, 50, 75)°C. The reaction rate increases
with increasing the temperature and concentration, where
the highest reaction speed rate was (113.67 x 107%) mg
/L.min at the concentration of 1000 ppm and a temperature
of 75° C.

26
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Fig.7: The relationship between (In con.) and time using
the catalyst (NV205 and NHAP) under the influence of
temperatures (25, 50, 75) °C.
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3.3.2.The Vanadium Oxide Catalyst (V205)

The catalyst (V20s5) was added in concentrations of
(100, 500, 1000) ppm to formaldehyde solution at
temperatures (25, 50, 75)°C. The reaction rate increases
with increasing the temperature and concentration, where
the highest rate of reaction speed was (100.1 x 10~) mg /
L.min at the concentration of 1000 ppm and a temperature
of 75 °C. Table.3 shows the values of the reaction rate of
both NV20s and V205 with formaldehyde according to the
concentration and temperatures.

3.3.3.The Catalyst of The Vanadium Oxide Mixture
Nanoparticle with Nanohydroxyapite (NV20s and
NHAP).

The catalyst (NV20s and NHAP) was added in
concentrations (100, 500, and 1000) ppm to formaldehyde
solution at temperatures (25, 50, and 75)°C. The reaction
rate increases with increasing the temperature and
concentration, where the highest rate of reaction speed was
(112.55 x 1073) mg / L.min at the concentration of 1000
ppm and a temperature of 75 °C. Table 4. shows the values
of the reaction speed rate of (NV20s and NHAP) with
formaldehyde according to the concentrations and
temperatures. Increasing the concentration of NV20s and
NHAP, V20s, and NV20s resulted in a noticeable increase
in the reaction speed compared without their presence,
which is due to a decrease in the activation energy. Both
catalyst concentration and temperature are related to the
increase of the reaction speed due to moving the molecules
faster and increasing the effective collisions [17,18].
NV20s demonstrated higher efficacy as a catalyst
compared to the examined catalyst.

3.3.4.Activation Energy

Activation energy E,is a measure of how effective
additional energy is in a reaction to accelerate the reaction
kinetics, representing it using the Arrhenius equation[19]:

where R represents the general constant of gases with value
(R = 8.314]/mol K), K represents the reaction speed
constant, A is the Aarhus constant, and T is the
temperature.

3.3.5.Nano vanadium oxide (NV205)

Fig.8 shows the activation energy behaviour of the
(NV20s, V205, NV20s5 and NHAP) and formaldehyde
solution reaction at different temperatures and
concentrations. The activation energy is decreased for the
reaction with increasing the catalyst concentration. Table. 5
shows the values of the activation energy using the
prepared catalysts. Catalysts (NV20s, V205, NV20s and
NHAP) for the different concentrations used in this
research. The activation energy of the reactions decreased
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NV205 powder.

Table 1: X-ray diffraction parameters of the prepared
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Table 2: X-ray diffraction parameters of the mixture of Table 3: Average reaction speed using catalyst (NV20s)
vanadium oxide and prepared nano-hydroxyapatite. and catalyst (V20s)
al ol al al al al o al @l «al @l « Reaction rate
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