
Alneema: FPGA Based Implementation of Convolutional Encoder Viterbi Decoder

70

FPGA Based Implementation of Convolutional Encoder- Viterbi
Decoder Using Multiple Booting Technique

Dr. Dhafir A. Alneema(1)

Lecturer
Yahya Taher Qassim(2)

Assistant Lecturer
Computer Engineering Dept. University of Mosul, Mosul, Iraq

(1)E-Mail: dhafiraln@yahoo.com (2)E-Mail: yahyataherqassim@yahoo.com
Abstract

 Convolutional encoding is considered one of the forward error correction
schemes. It is an essential component of wireless communication systems such as the
third generation (3G) mobile systems, which utilize some formulation of Convolutional
encoding usually decoded via Viterbi decoders. There are different structures of
Convolutional encoding which impart different requirements on the decoder. The
Viterbi decoder segments with slight modifications can be used on systems with
different constraint lengths, frame size and code rates. In this research, the design and
implementation of Convolutional encoder with constraint length 3 and rate 1/2, and
Viterbi decoder on Spartan 3E FPGA Starter kit (supported with XC3S500E) using
multiple booting technique has been presented. VHDL language is used as a design
entry. In the starter kit mentioned above, two designs are implemented on the flash
memory using the multiple booting technique: the Convolutional encoder and the
Viterbi decoder. The FPGA is configured with the specified design depending on the
loaded program from the Intel flash memory. With this way of configuration, the FPGA
itself can operate as a Convolutional encoder or Viterbi decoder that gain benefit
through the reuse of the same hardware.
 Key words : Convolutional encoder, Viterbi decoder, multiple booting technique and
FPGA.

-
FPGA

 .)()(
 / /

.

 .
 .

.3
2/1

Spartan 3E)XC3S500E(.VHDL
 .

 .

 .
 .

Received : 21 – 4 – 2009 Excepted : 14 – 1 - 2010

mailto:dhafiraln:@yahoo.com
mailto:yahyataherqassim:@yahoo.com

Al-Rafidain Engineering Vol.18 No.6 December 2010

71

1. Introduction

Generally, there are two schemes of channel coding: one of them is the block coding
that does not require memory, and the second is Convolutional coding that requires memory.
Convolutional coding is used for the channel coding in digital communication systems,
because it facilitates a better error correction compared with the block coding although it
requires an extensive memory in decoding [1]. Viterbi algorithm is one of the Convolutional
coding algorithms that has been widely applied to decode and estimate the information in
communications and signal processing units[2].

In previous works [3][4][5], numerous methods have been introduced for reducing
complexity and power consumption employing trellis based decoders and increasing the
speed for Viterbi decoder in 3GPP, DUB and wireless communications. These methods used
techniques to simplify the receiver trellis in a fixed manner for a given complexity or modify
trellis searching in some way based on the specific received values. Some of the researchers
compared between the use of FPGA, ASIC and DSP to find which one is suitable for the
application. Other researchers studied the different methods for back trace unit to find the
correct path and other tried to work with high frequency by using parallel operations of
decoder units. The complexity of these decoders increased with the increasing of the
constraint length.

This research presents the design and implementation of Convolutional encoder and
Viterbi decoder on Spartan 3E FPGA using multiple booting technique [6][7]. This technique
allows reusing the same hardware for implementing the Convolutional encoder and the
Viterbi decoder.

This paper is organized as follows: Section 2 reviews the background theory of
Convolutional encoder and Viterbi decoder. Section 3 describes the multiple booting
technique. The simulation and implementation of this design is demonstrated in Section 4.
Finally, section 5 gives the conclusions.

2. Background Theory

2.1 Convolutional Encoder

 Convolutional encoder consists of linear shift register and XOR gates; and is
generally characterized in (n, k, m+1) format, where: n represents the number of outputs of
the encoder; k is the number of inputs of the encoder, m is the number of memory elements
(Flip- Flops) and m+1 represents the constraint length. The rate of this encoder can be
represented as k/n. Figure (1) shows the Convolutional encoder with (2, 1, 3) format and the
generating polynomials:

G0(D) = 1 + D + D2

G1(D) = 1 + D2

Where D represents the delay element. Polynomial selection is important because
each polynomial has different correction properties. Selecting polynomials that provide the
highest degree of orthogonality maximizes the probability of finding the correct sequence [8].

Alneema: FPGA Based Implementation of Convolutional Encoder Viterbi Decoder

72

2.2 Viterbi Decoder

The Viterbi decoding algorithm is a decoding process for Convolutional codes. This
algorithm is based on maximum likelihood algorithm. When the received signal is sampled
and quantized into two levels, either zero or one, the hard decision decoding will be used. In
such decoding, the path through the trellis diagram is determined using hamming distance
measure. Where the trellis represents the extension of the state diagram that explicitly
demonstrates the state diagram with the time. The hamming distance is defined as a number
of bits that are different between the observed symbol at the decoder and the sent symbol
from the encoder [8].

The length of the trellis is equal to the length of the input sequence, which consists of
the information bits followed by the reset sequence. The reset sequence forces the trellis into
the initial state, so the trace back can be started at the initial state.

Figure (2) shows the simplified Viterbi decoder block diagram. The Viterbi decoding
process consists of the following main tasks: branch metric computation, state metric update,
survivor path recording and output decision generation. The branch metric computation
compares the received code symbol with the expected code symbol using bit wise XOR and
counts the number of different bits. Figure (3a) shows the implementation of the branch
metric and figure (3b) shows the VHDL program steps that compute the branch metric.

Figure (1) Non-Recursive, Non Systematic Convolutional Encoder (2, 1, 3)

D-FFD-FF
M
U
X

 Output
2K bit/sec

 Input
1K bit/sec

Clock 1
Clock 2

Figure (2) Simplified Viterbi Decoder Block Diagram

Branch Metric
Unit

Add-Compare-Select

State Metric Memory

Trace Back
Unit

Encoded
data

Decoded
 data

Al-Rafidain Engineering Vol.18 No.6 December 2010

73

State metric update is achieved by computing the partial path metrics through
accumulating the new values of branch metric to the previous values of state metric. There
are two values of state metric due to the two branches enter each node in the trellis. So, the
updated value of state metric at each node will take the minimum value. This can be done by
using Add Compare Unit as shown in figure (4).

Figure (4) The Add Compare Unit

Adder

Adder

Selector
(Minimum)

New Value
of

 State Metric

Previous value of state metric (path 1)

Previous value of state metric (path 2)

New value of branch metric (path 1)

New value of branch metric (path 2)

Figure (3) : (a) Branch Metric Computation Block (b) The VHDL Program for
(b)

Received Code Symbol

Expected Code Symbol

Count the
Number
of Ones

Branch
Metric

XOR

(a)

Alneema: FPGA Based Implementation of Convolutional Encoder Viterbi Decoder

74

After updating the state metric for each node in the trellis, the survivor path can be
identified by passing through the minimum value of state metric. Then, the partial path
metrics will be updated and survivor information will be stored.

The survivor management unit is responsible for keeping track of the information bits
associated with the surviving paths. The trace back approach records the survivor branch of
each state. A flip-flop is assigned to each state to record '0' or '1' according to survivor path.
Concatenating the decoded output bits in reversed order of time, the decoded output sequence
will be formed [8].

3. Multiple Booting Technique

The Spartan-3E Starter Kit board [9] supports a variety of FPGA configuration
options. One of these options is programming the on-board 128Mbit Intel Strata Flash
(parallel NOR Flash PROM), then configuring the FPGA from the image stored in this Flash
PROM using BPI Up or BPI Down configuration modes. Moreover, an FPGA can be
dynamically loaded with two different FPGA configurations using the Spartan-3E FPGA’s
Multi Boot mode. Figure (5) demonstrates the Multiple Booting Technique for two different
applications.

The multiple booting requires some steps that are different from those in the case of a
single design implementation. In brevity, these steps require building more than one VHDL
designs that include an additional selector input bits in the entity of each VHDL design
program. The additional input bits are constrained for some of the slide switches in the
Spartan 3E FPGA kit through the user constraint file (UCF). This gives the advantage for
selecting the design configuration on the FPGA; for example: if n is the number of selection
inputs, then 2n will be the number of the total different designs that can be configured on the
FPGA through the Intel Strata Flash.

In this research, two different designs were considered on the mentioned flash and
then applied on the FPGA separately to be either Convolutional encoder or Viterbi decoder,

Platform Flash
PROM

REV 0
General

Application

REV 1
Diagnostic
Application

Platform Flash
PROM

REV 0
General

Application

REV 1
Diagnostic
Application

Multiple-Boot
Triggered

Revision 1
Selection

Revision 0
Selection

Figure (5) the Multiple Booting Technique

Al-Rafidain Engineering Vol.18 No.6 December 2010

75

so one input bit is needed for the switching between these two configurations. This type of
configuration is different from the traditional method in the programming file type and the
steps of programming. The PROM is retained with the design after power- off, then the
FPGA will load the design from the PROM after power- on by pressing the programming
pulse switch on the kit.

Additionally, before final implementation; two bit files generated from the two
designs must be merged in one MCS file which is downloaded on the parallel NOR flash that
contains the two different designs configurations. The resulting MCS file should be send to
the FPGA kit through the RS232 serial link. The Hyper Terminal program is adequate for this
task and available on most PCs. A new Hyper Terminal session can be started and configured
in some steps, i.e., the communication settings and protocol required by an alternative
terminal utility[6]. The Hyper Terminal file has some commands that help for erasing,
reading and programming the Intel Strata Flash. Figure (6) illustrates a list of these simple
commands and explains the execution of the program command (P), where entering the P
command is followed by sending the MCS file from the transfer menu.

An MCS file contains additional information to define the storage address which
PicoBlaze interprets as well as obtaining the configuration data [7]. The first few lines of the
MCS file defining an FPGA BPI-UP configuration from NOR FLASH will be associated
with address zero (000000) and each line contains 16 data bytes to be stored in sequential
locations.

The final design implementation step on the FPGA is shown in figure (7) which also
shows the programming window that gives an indication about the programming situation.
Generating the required MCS file is done through the ISE (Integrated Software Environment)
tools in some special guided software steps. Figure (8) shows the final step of generating such
file.

Figure (6) The Execution of The P Command in The Hyper Terminal Program

In Hyper Terminal, select the
'Transfer' menu and then select the
'send text file' option

Sending the (Veterbi_Conv.MCS) text
file to the Intel Strata Flash through
the serial link

Enter the 'P' command and a message
prompting you for the MCS file will
appear.

Alneema: FPGA Based Implementation of Convolutional Encoder Viterbi Decoder

76

The advantages of this configuration are lower board cost due to the reduced number
of interface lines needed, faster configuration and no third device required for
reconfiguration [7].

4. Design Simulation and Implementation
Timing Results

This research presents the implementation of Convolutional encoder- Viterbi decoder
architecture on XC3S500E chip [10], using Spartan-3E FPGA Starter Kit, Project Navigator
8.2i Software (for modeling, verification and implementation) and Model Sim XE II/ Starter
5.8c Software which is used for timing simulation.

Figure (7) The Situation of The Programming Window

Figure (8) The Final Step in The Generation of MCS File

Al-Rafidain Engineering Vol.18 No.6 December 2010

77

Each design is simulated separately and then implemented by applying the multi- boot
technique. The generation of MCS file was necessary to combine the two designs. Then this
file has been transferred to the Spartan-3E FPGA kit and stored in the PROM through the
serial link using the Hyper Terminal windows program.

Figures (9,10) illustrate the timing simulation of the two designs. Figure(9)
demonstrates all the signals of Convolutional encoder parts. The input data and the outputs of
each flip- flop, generating polynomials and the encoded data were presented. The encoded
data were produced by picking the polynomial values for each input sample; consequently,
the output frequency is doubled. Figure (10) shows all the main signals of Viterbi decoder
parts. The signals Out_pat0 and Out_pat1 represent the patterns of the state transitions of the
system when the input is zero or one, respectively. The branch metrics (br_met0 and
br_met1) for zero and one, respectively and the accumulated error metric (Acc_err_met) of
each state are also shown in this figure. Bit_cnt, in the same figure, represents the bit counter
whereas State_cnt represents the state counter. In addition to all these signals, the figure
illustrates the origin_data which is Convolutionally encoded producing the transmitted_data.
Then, after passing the channel, the received_data that contains the errors will be passed into
the Viterbi decoder. This decoder detects and removes these errors and retrieve the original
data. All the results of Convolutional encoder and Viterbi decoder were verified with those
produced by Matlab.

4.2 FPGA Synthesis and Test

The utilization summary of Convolutional encoder and Viterbi decoder architectures
are illustrated in table (1). The Viterbi decoder occupied more area than Convolutional
encoder due to the complexity increasing of this design. The maximum operating frequency
(last row in this table) depends on the target technology of the design. In the used Spartan 3E,
the maximum operating frequency is equal to the clock frequency provided by the kit, that is
50 MHz.

Figure (9) Timing Simulation of Convolution Encoder

Alneema: FPGA Based Implementation of Convolutional Encoder Viterbi Decoder

78

After the final implementation process on the FPGA, the bit files of the Convolutional
encoder and Viterbi decoder are merged in one MCS file and downloaded through the serial
link into the Intel Strata Flash memory (TE28F128) that located on the Spartan-3E FPGA kit.

By changing the multi- boot switch option, the FPGA can be configured
to be as Convolutional encoder or Viterbi decoder as shown in figure (11-a and 11-b)
respectively.

Table (1) The Convolution Encoder and Viterbi Decoder Synthesis Report
Summary

Selected Device
(3S500E FG320-5)

Convolution
Encoder

Viterbi
Decoder

Number of Slices 1 out of 4656 0% 383 out of 4656 8%
Number of Slice Flip Flops 2 out of 9312 0% 181 out of 9312 1%
Number of 4 input LUTs 1 out of 9312 0% 732 out of 9312 7%
Number of IOBs 5 out of 232 2% 19 out of 232 8%
Number of GCLKs 1 out of 24 4% 1 out of 24 4%
Maximum Frequency 654.686MHz 84.600MHz

Figure (10) Timing Simulation of Viterbi Decoder

Al-Rafidain Engineering Vol.18 No.6 December 2010

79

5. Conclusions

Applying the multiple booting technique can be done on any FPGA kit that supports
the use of such technique like Spartan 3E FPGA Starter kit (supported with XC3S500E).

In this research, the architectures of the Convolutional encoder (2, 1, 3) and the Viterbi
decoder were designed and implemented on XC3S500E FPGA chip built in Spartan 3E
FPGA Starter kit using multiple booting technique.

The reuse of the same hardware for different applications is the main benefit of
multiple booting technique which gives an efficient re-configurability to the chip. This
scheme gives the flexibility to change the function of the chip between the Convolutional
encoder and Viterbi decoder which is very useful in modern systems.

Multiple booting technique allows other types of encoders with different parameters
and the corresponding decoders to be added. Consequently, the device can be operated in
various modes as needed.

Figure (11) The Multiple Booting Technique

The Multi- Boot Switch

(a) The Convolutional Encoder

(b) The Viterbi Decoder

Alneema: FPGA Based Implementation of Convolutional Encoder Viterbi Decoder

80

References

[1] I. Kang, A. N. W. Jr, “Low-Power Viterbi Decoder for CDMA Mobile
 Terminals”, IEEE J. Solid-State Circuits, vol. 33, no. 3, Mar. 1998.

[2] B. W. Kim, J. H. Yang, C. M. Kyung, et al., “MDSP: 16-bit DSP with Mobil
 Communication Accelerator”, in Proc. IEEE Custom Integrated Circuits
 Conference, pp. 2.1.1-2.1.4, 1998.

[3] Tuominen J. and Plosila J ., "Asynchronous Viterbi Decoder in Action Systems", TUCS
Technical Report, No. 710, September 2005.

[4] Lin C. C., Shih Y. H., Chang H. C., and Lee C. Y.." A Low Power Turbo/ Viterbi
Decoder for 3GPP2 Applications", IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 14, No. 4, pp. 426-430, April 2006.

[5] Lin Y. Baron N., Lee Y, Mahlke S., and Mudge T., "A Programmable Vector
Coprocessor Architecture for Wireless Applications", Advanced computer architecture
laboratory, University of Michigan, 2004.
http://www.eecs.umich.edu~tnmpaperswasp04.pdf

[6] Ken Chapman, "NOR FLASH Programmer for Spartan-3E Starter Kit", User
 Guide, Xilinx Ltd., March 2006. Available Via Internet at Web Site:
 http://www.xilinx.com/products/boards/s3estarter/
 files/s3esk_picoblaze_nor_flash_programmer.pdf

[7] Jameel Hussein, "Multiple-Boot with Platform Flash PROMs", Application Note on
Spartan-3E FPGA, Xilinx Company, April 2007. Available Via Internet at Web Site:

 http://www.xilinx.com/support/documentation/application_notes/xapp483.pdf
[8] B. Sklar, "Digital Communications Fundamentals and Applications", Prentice

 Hall, Second Edition, 2001.
[9] Xilinx, Inc., "Spartan-3E Starter Kit Board User Guide", UG230 (v1.0) March
 9, 2006. http://www.xilinx.com.
[10] Xilinx, Inc., San Jose Calif., "Spartan-3E Field Programmable Gate Arrays",
 2006. http://www.xilinx.com.

The work was carried out at the college of Engg. University of Mosul

http://www.eecs.umich.edu~tnmpaperswasp04.pdf/
http://www.xilinx.com/products/boards/s3estarter/
http://www.xilinx.com/support/documentation/application_notes/xapp483.pdf
http://www.xilinx.com./
http://www.xilinx.com./

