Pseudo-Weakly-N-Quasi- Injective Modules

Haibat K. Mohammadali

Department of Mathematics, College of Education, University of Tikrit, Tikrit, Iraq

Abstract

Let R be a commutative ring with unity and M be a unitary R-module. An R-module M is said to be N-injective where N is an R-module if $f(N) \subseteq M$ for each $f \in Hom(N, E(M))$, where E(M) is the injective hull of M. And M is called weakly-N-injective if for each $f \in Hom(N, E(M))$ there exists a submodule X of E(M) such that $f(N) \subseteq X \cong M$. In this paper we give generalizations for the concepts N-injective and weakly-N-injective modules we call them pseudo-N-quasi-injective and pseudo-weakly-N-quasi-injective modules respectively. We call an R-module M pseudo-N-quasi-injective modules if $f(N) \subseteq M$ for each monomorphism $f: N \to \overline{M}$ where \overline{M} is quasi injective hull of M. And we call M is Pseudo-weakly-N-quasi-injective module if for each monomorphism $f: N \to \overline{M}$, there exists a submodule X of \overline{M} such that $f(N) \subseteq X \cong M$. Our main goal in this work is to study the basic properties of these concepts, and give examples, characterizations of pseudo-weakly-N-quasi-injective and study the relation of these concepts with other modules.

Introduction

Let R be a commutative ring with identity and M, N be two R-modules. M is said be N-injective if $f(N) \subseteq M$ for each $f \in Hom(N, E(M))$, where E(M) is the injective hull of M. This concept was introduced first by Azumaya [3]. Weakly-N-injective module was introduced originally by [10] as a generalization of Ninjective module. Since then the study of this concept has been extensively in[9],[11]. We introduce in this paper generalizations of both N-injective module and weakly-N-injective module. We call an R-module M pseudo-Nquasi-injective modules if $f(N) \subseteq M$ for each monomorphism $f: N \to \overline{M}$ where \overline{M} is quasi injective hull of M .And we call An R-module M is Pseudoweakly-N-quasi-injective module if for each monomorphism $f: N \to \overline{M}$, there exists a submodule X of \overline{M} such that $f(N) \subseteq X \cong M$.

Also we introduce a new concept named pseudoinvertible submodule to prove that if M is a torsion free R-module and N is pseudo-invertible submodule of M such that M is pseudo-weakly-M/N-quasi-injective. Then N is pseudo-invertible submodule of \overline{M} .

1- Pseudo-N-quasi-injective modules

In this section we introduce the definition of pseudo-Nquasi-injective module as a generalization of N-injective module and gives some basic properties, examples of this concept.

Definition 1.1

Let M and N be two R-modules. M is called pseudo-N-quasi-injective modules if $f(N) \subseteq M$ for each monomorphism $f: N \to \overline{M}$, where \overline{M} is a quasiinjective hull of M

Examples and remarks 1.2

1. Every N-injective module is pseudo-N-quasi-injective module, but the converse is not true, as the following example shows: Z_3 as a Z- module is pseudo-N-quasi-injective module, but not Z-

injective, for if $f: Z \to E(Z_3) = Z_{3^{\infty}}$ defined by $f(n) = \frac{n}{3^3} + Z$ for all $n \in Z$. It is clear that $f(Z) = Z_9$ which is not embeds in Z_3 .

- 2. Z_n as a Z-module is pseudo-Z-quasi-injective module.
- 3. Every injective module is pseudo-N-quasi-injective modules for any R-module N.
- 4. Every quasi-injective module is pseudo-N-quasiinjective module for any R-module N.
- 5. Every pseudo-injective module is pseudo-*N*-quasiinjective module for any R-module N.
- 6. Every semi-simple R-module is pseudo-N-quasiinjective module for any R-module N.
- 7. M is pseudo-injective if and only if M is pseudo- \overline{M} quasi-injective module.
- 8. Z as a Z-module is pseudo-Z-quasi-injective module.
- If M is pseudo-N-quasi-injective module and L is a submodule of N, it not necessary that M is pseudo-L-quasi-injective module, as the following example shows:

From(8) Z as a Z-module is pseudo-Z-quasi-injective module . but Z is not pseudo-3Z-quasi-injective module, for if $g: 3Z \rightarrow \overline{Z} = Q$ is monomorphism define by

g(3n) = 3n/7 for all n in Z, but g(3Z) is not embeds in Z. Before we give the next proposition, we need to recall the following definitions.

A non-zero submodule K of an R-module M is said to be an essential submodule of M if $L \cap K \neq 0$ for every nonzero submodule L of M. And we said that M is an essential extension of K [8].

A non-zero R-module M is called a rational extension of an R-submodule N of M, if for all $m_1, m_2 \in M, m_2 \neq 0$ there exists an element $r \in R$ such that $r \ m_1 \in N, rm_2 \neq 0$ [6].

Proposition 1.3

If M is pseudo-N-quasi-injective module, then every essential extension of M is pseudo-N-quasi-injective module.

Proof

Let H be essential extension R-module of M, and let $f: N \to \overline{H}$ be a monomorphism. Since M is an essential submodule of H, then $\overline{M} = \overline{H}$, and hence $f: N \to \overline{M}$ is a monomorphism. But M is pseudo-N-quasi-injective module, hence $f(N) \subseteq M$. Therefore $f(N) \subseteq H$. The following corollary is immediate consequence of Proposition 1.3.

Corollary 1.4

If M is pseudo-N-quasi-injective module, then \overline{M} is pseudo-N-quasi-injective module. Since every rational extension is an essential extension [7], we have the following corollary

Corollary 1.5

If M is pseudo-N-quasi-injective module, then every rational extension of M is pseudo-N-quasi-injective module.

Proposition 1.6

Let M, N and H be an R-modules. If M is pseudo-Nquasi-injective module and M is pseudo-H-quasiinjective module, then M is pseudo- $N \oplus H$ -quasiinjective module.

Proof

Let $f: \mathbb{N} \oplus H \to \overline{M}$ be a monomorphism and let $j_1: \mathbb{N} \to \mathbb{N} \oplus H, j_2: H \to \mathbb{N} \oplus H$ be the injection homomorphism, then $f \circ j_1: \mathbb{N} \to \overline{M}$ and $f \circ j_2: H \to \overline{M}$ are monomorphisms. But M is both pseudo-N-quasi-injective and pseudo-H-quasi-injective module. Therefore $f \circ j_1(\mathbb{N}) \subseteq M$ and $f \circ j_2(H) \subseteq M \cdot So \ f(\mathbb{N} \oplus 0) \subseteq M$ and $f(0 \oplus H) \subseteq M$. Therefore $f(\mathbb{N} \oplus 0) + f(0 \oplus H) \subseteq M$. But $f(\mathbb{N} \oplus H) \subseteq f(\mathbb{N} \oplus 0) + f(0 \oplus H) \subseteq M$. Therefore M is pseudo- $\mathbb{N} \oplus H$ -quasi-injective module.

Corollary 1.7

If M is an R-module and $N_1, N_2, ..., N_n$ be an R-modules, such that M is pseudo- N_i -quasi-injective module for each i=1,2,...,n. then M is pseudo- $\bigoplus_{i=1}^n N_i$ -quasi-injective module.

Note:

Let M be an R-module, and N is a submodule of M, then it is not necessary that M is pseudo-N-quasi-injective module as it shown in the following example.

Example1.8

The Z-module Z is pseudo-Z-quasi-injective. Let N=3Z be a submodule of the Z-module Z. We claim that Z is not pseudo-3Z-quasi-injective module. For if $f: 3Z \rightarrow \overline{Z} = Q$, defined by f(3n) = 3n/5 for each $n \in Z$, f is a monomorphism, $f(3Z) \subseteq Q$, but $f(3Z) \notin Z$. Therefore Z is not pseudo-3Z-quasi-injective module. However under certain condition on a submodule of M,

However under certain condition on a submodule of M, we could treat the above case. First we need to recall the following definitions. A submodule K of an R-module M is called pseudo-stable submodule if $f(K) \subseteq K$ for each monomorphism $f: K \to M$. M is called a fully pseudo stable if each submodule of M is pseudo stable [1].

Proposition 1.9

Let M be an R-module, and N is a submodule of M. If N is pseudo-stable submodule of \overline{M} , then M is pseudo-N-quasi-injective.

Proof

Let $g: N \to \overline{M}$ be a monomorphism. Since N is pseudostable submodule of \overline{M} , then $g(N) \subseteq N$. Therefore $g(N) \subseteq M$, and hence M is pseudo-N-quasi-injective. Θ

Corollary 1.10

Let N be a submodule of an R-module M. If \overline{M} , is fullypseudo stable R-module, then M is pseudo-N-quasiinjective. In particular M is pseudo-M-quasi-injective.

Corollary 1.11

Let M be fully pseudo-stable module over Notherian ring, and N is submodule of M then M is pseudo-N-quasi-injective.

Proof

Since M is fully pseudo stable R-module over Notherian ring, then E(M) is fully pseudo stable injective envelop of M by [1.Th.2.15 ch.2]. Since \overline{M} , is a submodule of

E(M), then \overline{M} , is a pseudo- stable R-module [1]. Hence the proof followed by corollary 1.10.

Recall that an R-module M is terse if every distinct submodules of it are not isomorphic [12].

It is well known that terse module and fully pseudostable module are equivalent [1.Prop.2.11 ch2], we have another consequence of Prop.1.9.

Corollary 1.12

Let N be a submodule of an R-module M. if \overline{M} is terse module, then M is pseudo-N-quasi-injective R-module. In particular M is pseudo-M-quasi-injective R-module. Recall that an R-module M is Q-module if every submodule of M is quasi-injective [2].

Corollary 1.13

Let M be uniform Q-module over Notherian ring. If N is a submodule of M, then M is pseudo-N-quasi-injective module.

Proof

Since M is uniform Q-module, then M is fully pseudo stable R-module by [1.Th1.4 ch3]. Now M is fully pseudo-stable submodule over Notherian ring. Hence the proof followed by cor.1.12.

Note

The class of pseudo-N-quasi-injective modules is not closed under submodules. For example Q as Z-module is pseudo-Q-quasi-injective, and Z is not pseudo-Q-quasi-injective submodule.

But it turns out that the class of pseudo-N-quasi-injective modules is closed under direct summands. The following proposition shows the case.

Proposition 1.14

A direct summand of pseudo-N-quasi-injective module is also pseudo-N-quasi-injective for any R-module N.

Proof

Suppose that $M = K \oplus H$ be pseudo-N-quasi-injective Rmodule. Let $f: N \to \overline{K}$ and $g: N \to \overline{H}$ be monomorphisms. Define $h: N \to \overline{K} \oplus \overline{H}$ by h(n) = (f(n), g(n)) for all n in N. Clearly, h is well- defined monomorphism. Let $i: \overline{K} \oplus \overline{H} \to \overline{M}$ be the inclusion monomorphism, then $i \circ h: N \to \overline{M}$ is a monomorphism. Since M is pseudo-Nquasi-injective, then $i \circ h(N) = h(N) \subseteq M$. but h(N) = (f(N) = (M))

h(N) = (f(N), g(N))

Therefore $h(N) = (f(N), g(N)) \subseteq M = K \oplus H$, which implies that $f(N) \subseteq Kand g(N) \subseteq H$. Hence each of K and H are pseudo-N-quasi-injective.

2- Pseudo-Weakly-N-Quasi-injective modules

In this section we introduce the concept of Pseudo-Weakly-N-Quasi-injective module as a generalization of the concept of weakly-N-injective module, and study the basic properties and give examples, characterizations of this concept, and study the relations of Pseudo-Weakly-N-quasiinjective modules with other know modules.

Definition 2.1

Let M and N be two R-modules. M is called Pseudoweakly-N-quasi-injective module if for each monomorphism $f: N \to \overline{M}$, there exists a submodule X

of \overline{M} such that $f(N) \subseteq X \cong M$.

Examples and Remarks2.2

1. Every weakly-N-injective R-module is pseudo-weakly-N-quasi-injective module, but the converse is not true as the following example shows:

 Z_2 as a Z-module is pseudo- weakly-Z-quasi-injective module; however Z_2 is not weakly-Z- injective. For if $f: Z \to E(Z_2) = Z_{2^{\infty}}$ defined by $f(n) = n/2^3 + Z$ is a homomorphism for all $n \in Z$. it is clear that $f(Z) = Z_8$ which is not embedded in Z_2

- 2. Every quasi-injective R-Module is pseudo-weakly-Nquasi-injective module for each R-module N.
- 3. Every pseudo-injective R-module is pseudo-weakly-Nquasi-injective module for each R-module N.
- 4. Z as a Z-module is not pseudo-weakly-Q-quasiinjective module.
- Every pseudo-N-quasi-injective R-module is pseudoweakly-N-quasi-injective R-module. But the converse is not true.

The Z-module Z is pseudo-weakly-2Z-quasi-injective, since if $f: 2Z \rightarrow \overline{Z} = Q$, defined by f(2n) = 2n/3 for each $n \in Z$ is a monomorphism. We take X = (2/3) the submodule of Q generated by2/3. We get $f(2Z) = (2/3) \cong Z$. However Z is not pseudo-2Z- quasiinjective since $f(2Z) \notin Z$.

The following propositions give some properties of pseudo-weakly-N-quasi-injective modules. Before we give the next proposition we recall the following definition.

An R-submodule H of an R-module M is called fully invariant if $f(H) \subseteq H$ for all $f \in End_{\mathbb{R}}(M)$ [12].

Proposition 2.3

Let N₁ and N₂ be two submodules of an R-module M, such that $N_1 \subseteq N_2$ and N_1 is fully- invariant submodule of \overline{M} . If M is pseudo-weakly- N_2 -quasi-injective R-module, then M is pseudo-weakly- N_1 -quasi-injective module.

Proof

Let $f: N_1 \to \overline{M}$ be a monomorphism, and consider the following diagram

Where g_1, g_2 are the inclusion homomorphisms, since \overline{M} is pseudo-injective R-module, so there exist an R-homomorphism $h: \overline{M} \to \overline{M}$ such that $h \circ g_2 \circ g_1 = f$. But M is pseudo-weakly-N₂-quasi-injective R-module and $g_2: N_2 \to \overline{M}$ is a monomorphism, so there exist a submodule X of \overline{M} such that $g_2(N_2) = N_2 \subseteq X \cong M$. Then $f(N_1) = h \circ g_2 \circ g_1(N_2) = h(N_1) \subseteq N_1$ (since N_1 is a fully-invariant submodule of \overline{M}). Therefore $f(N_1) \subseteq N_2 \subseteq X \cong M$. Therefore M is pseudo-weakly-N₁-quasi-injective R-module. Θ

Corollary 2.4

Let N_1 and N_2 are two submodule of an R-module M such that $N_1 \subseteq N_2$ and N_1 is fully invariant submodule of \overline{M} . If M is pseudo-weakly-N₂-quasi-injective R-module, then M is pseudo-weakly- $N_1 \cap N_2$ -quasi-injective R-module.

Since the intersection of finite collection of fullyinvariant submodules of an R-module M is again fullyinvariant submodule [4] we have the following corollary as a consequence of proposition 2.3.

Corollary 2.5

Let $N_1, N_2, ..., N_n$ be finite family of submodules of an R-module M such that N_i is fully-invariant submodule of \overline{M} for all i=1,2,...,n. If M is pseudo-weakly-N_i-quasi-injective R-module for all i=1,2,...,n, then M is pseudo-weakly- $\bigcap_{i=1}^{n} N_i$ -quasi-injective R-module.

Remark 2.6

A direct summand of pseudo-weakly-N-quasi-injective R-module is not pseudo-weakly-N-quasi-injective R-module for any R-module N, as the following example shows.

Let $M = Z \bigoplus Q$ and N = Q and R = Z we claim that $Z \bigoplus Q$ is pseudo-weakly-Q-quasi-injective:

Let $f: Q \to \overline{Z \oplus Q} = Q \oplus Q$ be a monomorphism. Therefore $f(Q) \cong 0 \oplus K_1$ or $f(Q) \cong K_2 \oplus 0$ where K_1 and K_2 are submodules of Q. Case one: if $f(Q) \cong 0 \oplus K_1$ then $f(Q) \subseteq 0 \oplus Q \subseteq Z \oplus Q \subseteq Q \oplus Q$. Let $X \cong M = Z \oplus Q$. then $f(Q) \subseteq X \cong M = Z \oplus Q$.

Case two: similarly, if $f(Q) \cong K_2 \bigoplus 0$. Therefore $Z \bigoplus Q$ is pseudo-weakly-Q-quasi-injective Z-module. But it is clear that Z is not pseudo-weakly-Q-quasi-injective. Θ

Proposition 2.7

Let M be an R-module, and N be a submodule of \overline{M} . If M is pseudo-weakly-N-quasi-injective R-module, then M is pseudo-weakly-K-quasi-injective R-module for each submodule K of N.

Proof

Let $f: K \to \overline{M}$ be a monomorphism. Consider the following diagram:

Where $i_1: K \to N$ and $i_2: N \to \overline{M}$ are the inclusion homomorphism.

Since \overline{M} is pseudo-injective R-module, then there exists a homomorphism $g: \overline{M} \to \overline{M}$ such that $g \circ i_2 \circ i_1 = f$, that is g = f so g is a monomorphism also. Let $h = g |_N: N \to \overline{M}$. h is a monomorphism, also, since M is pseudo-weakly-N-quasi-injective R-module so, there exist a submodule X of \overline{M} such that $h(N) \subseteq X \cong M$. But $f(K) \subseteq X \cong M$. Hence M is pseudo-weakly-K-quasi-injective R-module. Θ

Corollary 2.8

Let M be an R-module, and N, L are submodules of \overline{M} . If M is pseudo-weakly-N-quasi-injective R-module, then M is pseudo-weakly- $N \cap L$ -quasi-injective R-module.

In the next proposition we show that the class of pseudoweakly-N-quasi-injective R-module is closed under essential extension.

Proposition 2.9

Let M and N be two R-modules such that K is an essential extension of M. If M is pseudo-weakly-N-quasi-injective R-module, then K is also pseudo-weakly-N-quasi-injective R-module.

Proof

Let $f: N \to \overline{K}$ be a monomorphism. Since K is an essential extension of M Then $\overline{M} = \overline{K}$. Hence $f: N \to \overline{M}$ is a monomorphism. But M is pseudo-weakly-N-quasiinjective, therefore there exists a submodule X of \overline{M} such that $f(N) \subseteq X \cong M$. Let $g: X \to M$ be an isomorphism. Since X is a submodule of $\overline{M} = \overline{K}$, then X is submodule of \overline{K} . That is $f_1: X \to \overline{K}$ is the inclusion homomorphism. Consider the following diagram:

Where $f_2: M \to K$ and $f_3: K \to \overline{K}$ are inclusion homomorphisms.

Since \overline{K} is pseudo-injective R-module, then there exists a homomorphism $h_1:\overline{K} \to \overline{K}$ such that $h_1 \circ f_3 \circ g = f_1$. We claim that $Kerh_1 = \{0\}$. Let $0 \neq k_1 \in \overline{K}$ and $h_1(k_1) = 0$. Since M is an essential in K and K is an essential in \overline{K} then M is an essential in $\overline{K}[5]$. Therefore there exists $0 \neq r \in R$ such that $0 \neq rk_1 \in M$, and since g is an epimorphism, there exists $x \in X$ such that $g(x) = rk_1$.

Now $x = h_1 \circ f_3 \circ f_2 \circ g(x) = h_1(rk_1) = rh_1(k_1) = 0$. Hence $rk_1 = 0$ a contradiction, therefore $k_1 = 0$. and hence h_1 is a monomorphism. Let $h_2 = h_1 | K: K \to \overline{K}$ be a monomorphism. Then $h_2 \circ f_2 \circ g = f_1$ and hence $f_1(X) = X \subseteq h_2(K) \cong K$. Therefore $f(N) \subseteq X \subseteq h_2(K)$ which mean that K is pseudo-weakly-N-quasi-injective. Θ

The next theorem gives an interesting characterization of pseudo-weakly-N-quasi-injective modules.

Theorem2.10

Let M and N be two R-modules. Then M is pseudoweakly-N-quasi-injective if and only if for every monomorphism $f: N \to \overline{M}$ there exists an Rmonomorphism $h: N \to M$ and R- monomorphism $g: M \to \overline{M}$ such that $g \circ h = f$.

Proof

Assume that M is pseudo-weakly-N-quasi-injective module. Let $f: N \to \overline{M}$ be a monomorphism. Then there exists a submodule X of \overline{M} such that $f(N) \subseteq X \cong M$, this implies that $f: N \to X$ is a monomorphism. Let $\alpha: X \to M$ be an isomorphism we take $h = \alpha \circ f$. So $h: N \to M$ is a monomorphism. Let $g = inc \circ \alpha^{-1}$, where $inc: X \to \overline{M}$ is the inclusion homomorphism. Then $g: M \to \overline{M}$ is a monomorphism. Now $g \circ h = (inc \circ \alpha^{-1}) \circ (\alpha \circ f) = inc \circ f = f$. Which prove the only if part.

To prove the if part: let $f: N \to \overline{M}$ be a monomorphism, then by our hypothesis there exists a monomorphism $h: N \to M$ and a monomorphism $g: M \to \overline{M}$ such that $f = g \circ h$. We take X = g(M). Then X is a submodule of \overline{M} and $X \cong M$. Moreover $f(N) = g(h(N)) \subseteq g(M) = X \cong M$.

Therefore M is pseudo-weakly-N-quasi-injective module Θ .

The next proposition explains the behavior of pseudoweakly-N-quasi-injective module under isomorphism.

Proposition 2.11

Let M, N and H be an R-modules . if M is pseudoweakly-N-quasi-injective and $N \cong H$ then M is pseudoweakly-H-quasi-injective module.

Proof

Let $f: H \to \overline{M}$ be a monomorphism and $g: N \to H$ be an isomorphism. Then $f \circ g: N \to \overline{M}$ is a monomorphism. But M is pseudo-weakly-N-quasi-injective, so there exists a submodule X of \overline{M} such that $f \circ g(N) \subseteq X \cong M$. but $f \circ g(N) = f(g(N)) = f(H) \subseteq X \cong M$. Hence $f(H) \subseteq X \cong M$ and so M is pseudo-weakly-H-quasiinjective. Θ

Proposition 2.12

Let M_1 , M_2 and N be R- modules, such that $M_1 \cong M_2$. If M_1 is pseudo-weakly-N-quasi-injective, then M_2 is pseudo-weakly-N-quasi-injective.

Proof

Let $f: N \to \overline{M}_2$ be a monomorphism. Since $M_1 \cong M_2$ then $\overline{M}_1 = \overline{M}_2$. Hence $f: N \to \overline{M}_1$ is a monomorphism. But M_1 is pseudo-weakly-N-quasi-injective R-module, therefore there exists a submodule X of \overline{M}_1 such that $f(H) \subseteq X \cong M$. That is g(X) is a submodule of \overline{M}_2 under an isomorphism $g: \overline{M}_1 \to \overline{M}_2$. So $X \cong g(X)$. Hence $f(N) \subseteq g(X) \cong X \cong M_1 \cong M_2$ that is $f(N) \subseteq g(X) \cong M_2$ which implies that M_2 is pseudoweakly-N-quasi-injective. Θ

Before we give the following proposition, we introduce the following definition.

Definition 2.13

A submodule N of an R-module M is called pseudoinvertible if Hom(M/N, M) = 0 for each monomorphism $f: M/N \to M$.

Recall that an R-module M is torsion free if $T(M) = \{m \in M : rm = 0 \text{ for some } r \in R\} = 0$ [7].

Proposition 2.14

Let M be a torsion free R-module and N be pseudoinvertible submodule of M such that M is pseudoweakly-M/N-quasi-injective. Then N is pseudoinvertible submodule of \overline{M} .

Proof

Assume that N is not pseudo-invertible submodule of \overline{M} . That is there exists a non-zero monomorphism $f:\overline{M}/N \to \overline{M}$. Therefore there exists $\overline{m} = m + N \in \overline{M}/N$ with $m \in \overline{M}$ and $m \notin N$ such that $0 \neq f(m + N) = y$ for some $y \in \overline{M}$. Let $i: M/N \to \overline{M}/N$ be the inclusion homomorphism. Then $f \circ i: M/N \to \overline{M}$ is a monomorphism. But M is pseudoweakly-M/N-quasi-injective, so there exists a submodule X of \overline{M} such that $f \circ i(M/N) \subseteq X \cong M$. Let $g: X \to M$ be an isomorphism, then $g \circ f \circ i: M/N \to M$ is a monomorphism. But since N is pseudo-invertible submodule of M, therefore $g \circ f \circ i = 0$. Thus $f \circ i = 0$ and hence f(M/N) = 0. But $f(m + N) \neq 0$, and M is an essential submodule of \overline{M} , therefore, there exists $0 \neq r \in R$, such that $rm \in M$. Hence $rm + N \in M/N$ and f(rm + N) = 0 = rf(m) + N = ry. But \overline{M} is torsion free, so that r = 0, which is a contradiction. Therefore N is pseudo-invertible submodule of $\overline{M}\Theta$

Proposition2.15

Let M, M' and N be R-modules, such that $\overline{M \bigoplus M'} = \overline{M} \bigoplus \overline{M'}$. If M and M' are pseudo weakly-N-quasi-injective, then $M \bigoplus M'$ is pseudo weakly-N-quasi-injective module.

Proof

Let $f: N \to \overline{M \oplus M'}$ be a monomorphism , then $f: N \to \overline{M} \bigoplus \overline{M'}$ be a monomorphism. But $f = (f_1, f_2)$ where $f_1: N \to \overline{M}$ and $f_2: N \to \overline{M'}$ are monomorphism. Since M is pseudo weakly-N-quasi-injective, then there exists a submodule X of \overline{M} such that $f_1(N) \subseteq X \cong M$, and since M' is pseudo weakly-N-quasi-injective, then there exist a submodule Y of M' such that $f_2(N) \subseteq Y \cong M'$. on other and hand $f_1(N) = f_1(N) \oplus 0 \subseteq X \oplus Y \cong M \oplus M'$ $f(N) = (f_1(N), f_2(N)) \subseteq X \oplus Y \cong M \oplus M',$ which implies that $M \oplus M'$ is pseudo weakly-N-quasiinjective.

In the following theorem we shall characterize pseudo weakly-*R*-quasi-injective R-module M.

Theorem 2.16

Let M be an R-module. Then M is pseudo weakly-Rquasi-injective if and only if for each element x of \overline{M} with $ann_R(x) = 0$, there exists a submodule X of \overline{M} such that $x \in X \cong M$.

Proof

Assume that M is pseudo weakly-R-quasi-injective Rmodule. Let $x \in \overline{M}$ such that $ann_R(x) = 0$. Define $f: R \to \overline{M}$ by f(r) = rx for all $r \in R$. Clearly f is welldefine monomorphism. But M is pseudo weakly-R-quasiinjective R-module. Thus there exists a submodule X of \overline{M} such that $f(R) \subseteq X \cong M$. But $x = 1 \cdot x \in f(R)$. Hence $x \in X \cong M$.

Conversely:

Suppose that for each element $x \in \overline{M}$ with $ann_R(x) = 0$ there exists $x \in X \cong M$. We have to show that M is pseudo weakly-R-quasi-injective. Let $f: R \to \overline{M}$ be a monomorphism. Since $1 \in R$, then $f(1) \in \overline{M}$, let x = f(1), therefore

 $ann_R(x) = ann_R(f(1)) = f(ann_R(1)) = f(0) = 0.$ Hence there exists a submodule X of \overline{M} such that $x \in X \cong M$. To show that $f(R) \subseteq X$. Let $b \in f(R)$, then b = f(r) for some r in R. Thus

 $b = rf(1) = rx \in X$. Therefore $f(R) \subseteq X$ and hence M is pseudo weakly-R-quasi-injective R-module. Θ

The next theorem gives a characterization of pseudo weakly-R-quasi-injective R-module R.

Theorem2.17

Let R be a ring. Then R is pseudo weakly-R-quasiinjective R-module if and only if each element $a \in \overline{R}$ with $ann_R(a) = 0$, there exists an element $b \in \overline{R}$ such that $a \in Rb$ and $ann_R(b) = 0$

Proof

Suppose that R is pseudo weakly-R-quasi-injective Rmodule. Let $a \in \overline{R}$ such that $ann_R(a) = 0$. Define $f: R \to \overline{R}$ by $f(r) = ra \ for \ all \ r \ in R$. It can be easily shown that f is well-defined R-monomorphism. Since R is pseudo weakly-R-quasi-injective R-module, then there exists a submodule X of \overline{R} such that $f(R) \subseteq X \cong R$. Clearly f(R) = Ra. Thus $Ra \subseteq X$ which implies that

References

- 1. Abbas M.S. "On fully –stable Modules" PhD., thesis, Univ. of Baghdad, (1990).
- Al-Rekaby,H.K."Q-modules" phD., thesis, Univ. of Tikrit(2005).
- Azumaya,G., Mbuntum,F. andVaradarajan,K." On M-projective and M-injective modules" Pasific,J. of maths, (51) 1 (1975)pp 9-16.
- Birkenmeier,G.F.,Muller,J.B.,and Rizvi,T.S. " Modules in which every Fully-inveriant submodule is essential in a direct summand"Comm. Algebra,30 2002pp.1395-1415.
- 5. Goodearl, K. R." Ring theory" Marcel Dekker, New-York, (1972).
- 6. Fath, C. "Algebra II Ring theory" Springer-Verlage, Berlin, Heidelberg, New-york (1976).
- Fath, C." Algebra, Ring, Modules and Categories" Springer-Verlage, Berlin, Heidelberg, New-york (1973).

 $a = 1.a \in X$. let $g: R \to X$ be an isomorphism. So there exists an element $c \in R$ such that a = g(c). Hence $a = g(c, 1) = cg(1) = cb \in Rb$.therefore $a \in Rb$. It is left to show that $ann_R(b) = 0$. Let $r \in ann_R(b)$.then r.b=0 and hence 0 = rg(1) = g(r, 1) = g(r), iplise that r=0. Hence $ann_R(b) = 0$.

Let $f: R \to \overline{R}$ be a monomorphism. Then $f(1) \in \overline{R}$. Let a = f(1), then

Conversely:

 $ann(a)_R = ann(f(1))_R = f(ann(1)_R) = f(0) = 0.$ Therefore there exists an elements $b \in \overline{R}$ such that $a \in Rb$ and $ann(b)_R = 0$. We take X=Rb, implies that $X \subseteq \overline{R}$. But $Rb \cong R/ann(b)_R \cong R$. Moreover $f(R) = \{f(r): r \in R\} = \{rf(1): r \in R\} = Ra \subseteq Rb.$

Therefore $f(R) \subseteq X \cong R$. Which proved that R is pseudo weakly-R-quasi-injective R-module Θ

- 8. Kash,F. "Modules and Rings " Academic Press, London, New- York, (1982).
- Jain, S. K., Lopez-permeuth, S. R. and Surjeet, S. " On class of QI-rings" Glasgow Math. J., 34 (1992), pp.75-81.
- Jain, S. K., Lopez-permeuth, S. R. "Rings whose cyclices are essentially embeddable in projective Modules" J. of Algebra, 128 (1990) pp.237-269.
- Jain, S. K., Lopez-permeuth, S. R. "A survey on the theory of weakly-injective Modules" Computational Algebra, Makcel Deker (1994) pp.205-232.
- Weakley, W. D. "Modules whose distinct submodules are not isomorphic" comm. in Algebra 15(1987) pp.1569-1587.

مقاسات شبه اغمارية – N – ضعيفة كاذبة هيبة كريم محمد علي

المستخلص

لتكن R حلقة ابدالية بمحايد و M مقاسا أحاديا على R. يقال أن M مقاس اغماري -N، حيث N مقاس على R إذا كان $M \supseteq (N) f$ لكل $f \in Hom(N, E(M))$ حيث ان E(M) الغلاف الاغماري للمقاس M. ويقال ان M مقاس اغماري -N- ضعيف إذا كان لكل (E(M)) $f \in Hom(N, E(M))$ محيث ان E(M) الغلاف الاغماري للمقاس M. ويقال ان M مقاس اغماري -N- ضعيف إذا كان لكل (E(M)) $N_{equation}$ مقاس جزئي X من (E(M) بحيث ان $M \cong X \supseteq (N) f$. في هذا البحث اعطينا تعميمات لمفاهيم المقاس الاغماري-N و المقاس الاغماري -N ضعيف و اسمينهما بالمقاس شبه الاغماري -N كاذب و المقاس شبه الاغماري-N- ضعيف كاذب على التوالي. يقال ان المقاس M شبه اغماري -ضعيف و اسمينهما بالمقاس شبه الاغماري -N كاذب و المقاس شبه الاغماري-N- ضعيف كاذب على التوالي. يقال ان المقاس M شبه اغماري - N كاذب اذا كان $M \supseteq (N) f$ لكل تشاكل متباين $\overline{M} \to f: N \to \overline{M}$ يوجد مقاس جزئي X من المقاس \overline{M} بحيث ان $f(N) \cong X$ N الاغماري-N- ضعيف كاذب اذا كان لكل تشاكل متباين $\overline{M} \to f: N \to \overline{M}$ يوجد مقاس جزئي X من المقاس \overline{M} بحيث ان $f(N) \cong X \supseteq (N)$

هدفنا الرئيسي في هذا البحث دراسة الخواص الأساسية لهذين المفهومين وإعطاء امثلة ومكافئات لمفهوم ا لمقاس شبه الاغماري-N- ضعيف كاذب و دراسة علاقة هذه المفاهيم بالمقاسات الأخرى.