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1.   INTRODUCTION 

Pawlak [1] [2] introduced rough set theory as a solution to issues of detail and ambiguity in information systems. It 

has proven successful in many areas, and the basic concepts are difficult. Rough sets are defined as functions of a 

generically. A pair (𝑀, 𝛿) is called approximation space, 𝑀 is called the universe and 𝛿 is known as the equivalency 

relation on M.This principle supports both upper and lower approximations for subsets of 𝑀. Both are based on the 

equivalence relation on 𝑀. The Pawlak approximation group has been generalized in several ways by converting the 

equivalence relation to any binary relation. Many authors have investigated the relationship between approximate sets 

and topological space [3  ،4  ،5]. The closure and interior operators of the topology were shown to be represented by 

the upper and lower approximation operators, which were derived using a transitive and reflexive relationship[6, 7]. 
Lingyun et al [8].Introduced investigated the topological characteristics of approximation sets and introduced 

approximate spaces that were generalized using topological techniques. To demonstrate the novel method for 

regaining missing values for information systems, he provided an example. In this research, we examine the 

topological characteristics of topological approximate spaces in generic contexts where 𝛿 is a equivalence relation on 

𝑀 and 𝑀 may be infinite. Additionally, we will examine the traditional axioms of connectedness, separation, and 

compactness in topological approximation spaces before applying them to topological approximate spaces. 

 

 2. Preliminaries  

 Let (𝑀, 𝜏𝛿) be  a topological approximation space .The relation 𝛿𝐶 is called complement relation of 𝑀. 

For 𝑛 ∈ 𝑀 .the sets 𝛿𝑁(𝑛) = {𝑚 ∈ 𝑀|𝑛𝛿𝑚} is called right neighborhood [9].  (𝑖) For 𝑛 ∈ 𝑀, (𝑛, 𝑛) ∈ 𝛿  is called 

reflexive,  (𝑖𝑖)  For all 𝑛, 𝑚 ∈ 𝑀, 𝑛𝛿𝑚 ∧ 𝑚𝛿𝑛   is called symmetric, (𝑖𝑖𝑖)  For all 𝑛, 𝑚, 𝑧 ∈ 𝑀 , 𝑛𝛿𝑚  ∧   𝑚𝛿𝑧 then 

𝑛𝛿𝑧   is called transitive, (𝑖), (𝑖𝑖)  and   (𝑖𝑖𝑖)  is called equivalence relation  [10]. 𝛽 is called base for 𝜏 . 

𝐼𝛿  is called Indiscrete approximation space.  𝐷𝛿   is called discrete approximation space. 

 

 

 

 

 

Definition 2.1: [2] Let (𝑀, 𝛿)  is called approximation space.For 𝑌 ⊆ 𝑀.Then, 
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𝛿(𝑌) = {𝑥 ∈ 𝑀|𝛿𝑁(𝑥) ⊆ 𝑌} 

𝛿(𝑌) = {𝑥 ∈ 𝑀|𝛿𝑁(𝑥) ∩ 𝑌 ≠ 𝜙} 

The operators 𝛿 , 𝛿 are respectively called the lower and Upper approximation operators 

 

Propostion 2.2 : [2] [11] Let  (𝑀, 𝛿)  be an approximation space.Then: 

(𝑖)𝛿(𝑌) ⊂ 𝑌 ⊂ 𝛿(𝑌) 

(𝑖𝑖)𝛿(𝑀) = 𝛿(𝑀) = 𝑀. 𝛿(𝜙) = 𝜙 

(𝑖𝑖𝑖)𝐼𝑓 𝐸 ⊆ 𝑀 ,then 𝛿(𝐸) = [𝛿(𝐸𝐶)]𝐶  and 𝛿(𝐸) = [𝛿(𝐸𝐶]𝐶 

(𝑖𝑣)   𝐼𝑓 𝐸, 𝑁 ∈ 𝑀 , 𝐸 ⊆ 𝑁 then 𝛿(𝐸) ⊆ 𝛿(𝑁) 𝑎𝑛𝑑  𝛿(𝐸) ⊆ 𝛿(𝑁)   

 

Propostion 2.3 𝜏𝛿 = {𝑌 ⊆ 𝑀: 𝛿(𝑌) = 𝑌} ∪ 𝜙 is a topology on 𝑀 if 𝛿 is reflexive. 

 

proof: We only demonstrate that 𝑉𝑖 ∈ 𝜏𝛿  for every 𝑖 ∈ Λ . imply ∪𝑖 𝑉𝑖 ∈ 𝜏𝛿 . Let 𝑉𝑖 ∈ 𝜏𝛿  for every 𝑖 ∈ Λ and 𝑥 ∈∪𝑖 𝑉𝑖 

. There exists 𝜆 ∈ Λ such that 𝑥 ∈ 𝑉𝑖 = 𝛿(𝑉𝜆) For all 𝑦 such that 𝑥𝛿𝑦, we have 

𝑦 ∈ 𝑉𝑖 ⊆∪𝑖 𝑉𝑖 . 

This means that 

∪𝑖 𝑉𝑖 ⊆ δ(∪𝑖 𝑉𝑖) . 

that is 

∪𝑖 𝑉𝑖 = 𝛿(∪𝑖 𝑉𝑖) . 

Therefore 𝜏𝛿  is the topology on 𝑀.  

  

Example 2.4 : Let 𝑀 = {𝑎, 𝑏, 𝑐} and 𝛿 = {(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐)}. is a reflexive relation on  𝛿.  

Thus 𝛿𝑁({a}) = {𝑎},   𝛿𝑁({b}) = {𝑏},   and    𝛿𝑁({c}) = {𝑐}.then 

𝛿({𝑎}) = {𝑎}   ,  𝛿({𝑏}) = {𝑏}  ,  𝛿({𝑐}) = {𝑐} 

𝛿({𝑎, 𝑏}) = {𝑎, 𝑏}  ,  𝛿({𝑎, 𝑐}) = {𝑎, 𝑐}    , 𝛿({𝑏, 𝑐}) = {𝑏, 𝑐} , 𝛿(𝑀) = 𝑀. 

𝜏𝛿 = {{𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, 𝑀, 𝜙} 

 

Corollary 2.5 : Let (𝑀, 𝜏𝛿)  be a T- approximation space .Its shown that if 𝛿  is reflexive .Then 

 𝜏𝛿 = {𝑌 ⊆ 𝑀: 𝛿(𝑌) = 𝑌} ∪ 𝜙  is topology on  𝑀. Which is called the discrete topology on   

(𝑀, 𝛿). 

 

Remark 2.6 : If  𝛿  is a reflexive relation on  𝑀 .The topology by the Lower and upper 

Approximation operators is the same of the topology by the base. 

 

 

Theorem 2.7: If 𝛿 is transitive and reflexive. Then 𝜏𝛿 = {𝑌 ⊆ 𝑀: 𝛿(𝑌) = 𝑌} ∪ 𝜙 .  

 𝛿 ( 𝛿  are respectively). The closure( interior) operators of   𝜏𝛿  . 

proof: since 𝛿  is transitive and reflexive. 𝛿 (𝛿(𝑌)) = 𝛿(𝑌) for any 𝑌 ⊆ 𝑀. Consequently, 

 {𝑌 ⊆ 𝑀: 𝛿(𝑌) ∪ 𝜙} ⊆ 𝜏𝛿 . 𝜏𝛿 ⊆ {𝑌 ⊆ 𝑀: 𝛿(𝑌)} ∪ 𝜙 is in Significant. 

 Let c and i be The closure( interior) operators of 𝜏𝛿  . since 𝛿(𝑌) is open and 𝛿(𝑌) ⊆ 𝛿 . we have 𝛿(𝑌) ⊆ 𝑖(𝑌). On 

the other hand. For each . 𝑉 ⊆ 𝑌 with 𝛿(𝑉) = 𝑉. We have 

 𝑉 = 𝛿(𝑉) ⊆ 𝛿(𝑈) . hence 𝑖(𝑌) =∪ 𝑉 ⊆ 𝑌: 𝛿(𝑉) = 𝑉 ⊆ 𝛿(𝑌) . by the duality. 𝛿 and 𝛿 are Closure and interior 

operators of 𝜏𝛿 . 

 

Propostion 2.8: 

Let   𝛿  is symmetric on 𝑀 . for all 𝑌 ⊆ 𝑀 . then 𝛿(𝑌) = 𝑌 if δ(𝑌𝐶) = 𝑌𝐶  . 

proof: Assume that 𝛿(𝑌) = 𝑌. It suffices to demonstrate that  𝑌𝐶 ⊆ δ(𝑌𝐶). If z ∉ δ(𝑌𝐶).  

then there exists  𝑤  such that 𝑧𝛿𝑤. but 𝑤 ∉ 𝑌𝐶  .Thus 𝑤 ∈ 𝑌 = 𝛿(𝑌). Since  𝛿  is symmetric.  We have 𝑤𝛿𝑧 . hence 

𝑧 ∈ 𝑌 . that is z ∉ 𝑌𝐶  .we have 𝑌𝐶 ⊆ 𝛿(𝑌𝐶). 
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The contrary can be demonstrated similarly. 

 

Propostion 2.9: [12] 

If 𝛿 is symmetric and a relation on 𝑀, then the topological space (𝑀, 𝜏𝛿) has a property that 

𝑌 is open ⟺ 𝑌 is closed 

proof: since     𝑌  is open   ⟺ 𝑌 ∈ 𝜏𝛿 .  

⟺ 𝛿(𝑌) = 𝑌. 

⟺ 𝛿(𝑌𝐶) = 𝑌𝐶 . 

⟺     𝑌𝐶 ∈ 𝜏𝛿 . 

⟺     𝑌𝐶       is      open. 

⟺     𝑌      𝑖𝑠     closed. 

 

Theorem 2.10: Let (𝑀, 𝜏𝛿)  be a T- approximation space. Then the family  

𝜏𝛿 = {𝑌 ⊆ 𝑀: 𝛿(𝑌) = 𝑌 ∪}𝜙 is a topology on 𝑀. 

 

proof: (1)(𝑖) 𝜙 ∈ 𝜏𝛿  (by definition) 

(ii) Since 𝛿(𝑚) = 𝑚. then 𝑚 ∈ 𝜏𝛿 . 

(2) let 𝑌, 𝐸 ∈ 𝜏𝛿. so 𝛿(𝑌) = 𝑌    and    𝛿(𝐸) = 𝐸. 

Then 𝛿(𝑌) ∩ 𝛿(𝐸) = 𝑌 ∩ 𝐸. 

(3) let 𝑌, 𝐸 ∈ 𝜏𝛿. so 𝛿(𝑌) = 𝑌    and    𝛿(𝐸) = 𝐸. 

Then 𝛿(𝑌) ∪ 𝛿(𝐸) = 𝑌 ∪ 𝐸. 

From (1), (2)    𝑎𝑛𝑑    (3) we get topology on (𝑀, 𝛿). 

 

3- SEPARATION AXIOMS  𝑻𝒊
𝑿(𝒊 = 𝟎, 𝟏, 𝟐) OF APPROXIMATIONS SPACES 

 
Separation axioms are one of the most important branches of topology. The axioms of separation are used in many 

mathematical fields. In this paper, we study and characterize these axioms, then develop and expand them to an 

approximate space.We will also describe an approximation spaces by upper and lower approximations. Furthermore, 

we shall discus separation axioms. 

 

Definition 3.1: [13] A topological space 𝑀 is said to be a 𝑇0 − space if it satisfy following axiom for any 

𝑛, 𝑚 ∈ 𝑀 , 𝑛 ≠ 𝑚. There exist an open set 𝑌 such that 𝑛 ∈ 𝑌 but 𝑚 ∉ 𝑌. 

Definition 3.2: Let (𝑀, 𝜏𝛿)  be a T- approximation space. Is called 𝑇0
𝑋 ̶  approximation space if for all 

 𝑛, 𝑚 ∈ 𝑀. 𝑛 ≠ 𝑚. There exist an open set 𝑌 ⊂ 𝑀(𝛿(𝑌) = 𝑌) ∈ 𝜏𝛿  such that 

 (𝑛 ∈ 𝑌 ⋀  𝑚 ∉ 𝑌 or 𝑚 ∈ 𝑌  ⋀ 𝑛 ∉ 𝑌) .  

 

Example 3.3: Let 𝑀 = {𝑎, 𝑏, 𝑐} and 𝛿 = {(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐)}. 

Then 𝛿𝑁(𝑎) = {𝑎} , 𝛿𝑁({𝑏}) = {𝑏} , 𝛿𝑁({𝑐}) = {𝑐} . 

𝛽 = {𝑀, 𝜙, {𝑎}, {𝑏}, {𝑐}} . 

𝜏𝛿 = {𝑀, 𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}}. 

𝑎 ≠ 𝑏, ∃  {𝑎} ∈ 𝜏𝛿 such that 𝑎 ∈ {𝑎}     ∧     𝑏 ∉ {𝑎} . 

𝑎 ≠ 𝑐, ∃  {𝑎} ∈ 𝜏𝛿  such that 𝑎 ∈ {𝑎}     ∧     𝑐 ∉ {𝑎} . 

𝑏 ≠ 𝑐, ∃  {𝑏} ∈ 𝜏𝛿  such that 𝑏 ∈ {𝑏}     ∧     𝑐 ∉ {𝑏} . 

Therefore (𝑀, 𝜏𝛿) is 𝑇0
𝑋  ̶ approximation space. 

 

Proposition 3.4: In the Indiscrete approximation space (𝑀, 𝐼𝛿) if 𝑀 is any set containing more than one element,Then 

Indiscrete approximation space (𝑀, 𝐼𝛿) is not 𝑇0
𝑋  ̶ approximation space. Since 𝑀 contains more than one element we 

take 𝑛, 𝑚 ∈ 𝑀 ,𝑛 ≠ 𝑚 and ∃𝑌 ⊂ 𝑀(𝛿(𝑌) = 𝑌) containing 𝑛 but not 𝑚 or an 𝑌 containing 𝑚 but not 𝑛 . 

Therefore Indiscrete approximation space is not 𝑇0
𝑋  ̶ approximation space. 
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Corollary 3.5: The discrete approximation space  (𝑀, 𝐷𝛿) is 𝑇0
𝑋  ̶ approximation space. 

 

proof: Let 𝑛, 𝑚 ∈ 𝑀 , 𝑛 ≠ 𝑚. ∃ 𝑌 ⊂ 𝑀(𝛿 {𝑌} = 𝑌) ∈ 𝐷𝛿  such that 𝑛 ∈ 𝑌 and 𝑚 ∉ 𝑌 . 

Therefore discrete approximation space  (𝑀, 𝐷𝛿) is 𝑇0
𝑋 ̶ approximation space. 

 

Theorem 3.6: Let (𝑀, 𝜏𝛿) be a T- approximation space. Then we have statements are equivalent: 

(𝑖)  (𝑀, 𝜏𝛿) is  𝑇0
𝑋-space . 

(𝑖𝑖) For all 𝑛, 𝑚 ∈ 𝑀 . 𝑛 ≠ 𝑚 implies δ(𝑛) ≠ δ(𝑚) 

 

proof: (𝑖) ⇒ (𝑖𝑖) Let 𝑛, 𝑚 be any two distinct points of 𝑀 . We show that δ(𝑛) ≠ δ(𝑚). Since (𝑀, 𝛿) is 𝑇0
𝑋-space . 

∃ 𝑌 ⊂ 𝑀(𝛿(𝑌) = 𝑌) such that 𝑛 ∈ 𝑌 and 𝑚 ∉ 𝑌 (by Definition). 

Hence m ∈ Y𝐶  . So m ∈ δ(𝑚) as 𝑛 ∉ {𝑌}𝐶 . 

Therefore δ(𝑛) ≠ δ(𝑚) . 

(𝑖𝑖) ⇒ (𝑖) Suppose that for every 𝑛, 𝑚 ∈ 𝑀 . 𝑛 ≠ 𝑚 and δ(𝑛) ≠ δ(𝑚). Let 𝑣 ⊂ 𝑀 such that 

 v ⊂ δ(𝑛) . hence v ⊂ δ(𝑚) . If n ∈ δ(𝑚) .Then n ⊆ δ(𝑚) which implies that δ(𝑛) ⊆ δ(𝑚) and hence v ⊂ δ(𝑚) 

which is a contradiction . thus n ∉ δ(𝑚) . 

Therefore (𝑀, 𝜏𝛿) is 𝑇0
𝑋  ̶ approximation space. 

 

Example 3.7: Let 𝑀 = {1,2,3} and 𝛿 = {(1,1), (2,2), (3,3), (3,1), (1,3)}.  

Then 𝛿𝑁(1) = {1,3} , 𝛿𝑁(2) = {2} , 𝛿𝑁(3) = {3,1} . 

𝜏𝛿 = {M, 𝜙, {2}, {1,3}} . 

Since 𝛿({2}) ≠ 𝛿({1,3}) , 𝛿({𝑀}) ≠ 𝛿({1,3}) , 𝛿({𝑀}) ≠ 𝛿({2}). 

Is 𝑇0
𝑋  ̶ approximation space. 

 

 

Definition 3.8: [13] A topological space 𝑀 is said to be a 𝑇1 − space if it satisfy following axiom for any 

𝑛, 𝑚 ∈ 𝑀 , 𝑛 ≠ 𝑚. There exist two an open set 𝑌, 𝐾 such that 𝑛 ∈ 𝑌 and 𝑚 ∈ 𝐾. 

 

Definition 3.9: Let (𝑀, 𝜏𝛿)  be a T- approximation space. Is called 𝑇1
𝑋 ̶  approximation space if for all 𝑛, 𝑚 ∈ 𝑀 . 

𝑛 ≠ 𝑚 . 

∃ 𝑌, 𝐾 ⊂ 𝑀(δ(𝑌) = 𝑌, δ(𝐾) = 𝐾) ∈ 𝜏δ such that (𝑛 ∈ 𝑌 ∧ 𝑚 ∉ 𝑌) or (𝑚 ∈ 𝐾 ∧ 𝑛 ∉ 𝐾) .  

 

Example 3.10: Let 𝑀 = {1,2,3} and δ = {(1,1), (2,2), (3,3)}. 

Then δ𝑁(1) = {1} , δ𝑁(2) = {2} , δ𝑁(3) = {3} . 

𝛽 = {𝑀, 𝜙, {1}, {2}, {3}} . 

𝜏δ = {𝑀, 𝜙, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}. 

1 ≠ 2, ∃  {1}  , {2} ∈ 𝜏δ such that (1 ∈ {1}     ∧     2 ∉ {1}) or  

(2 ∈ {2}     ∧     1 ∉ {2}) . 

1 ≠ 3, ∃  {1}  , {3} ∈ 𝜏δ such that (1 ∈ {1}     ∧     3 ∉ {1}) or 

(3 ∈ {3}     ∧     1 ∉ {3}) . 

2 ≠ 3, ∃  {2}  , {3} ∈ 𝜏δ such that (2 ∈ {2}     ∧     3 ∉ {2}) or  

3 ∈ {3}     ∧     2 ∉ {3}) . 

Therefore (𝑀, 𝜏δ) is 𝑇1
𝑋  ̶ approximation space. 

 

Proposition 3.11: The discrete approximation space  (𝑀, 𝐷δ) is 𝑇1
𝑋  ̶ approximation space. 

proof: Let 𝑛, 𝑚 ∈ 𝑀 , 𝑛 ≠ 𝑚. ∃𝑌, 𝐾 ⊂ 𝑀 (δ{𝑌} = 𝑌, δ{𝐾} = 𝐾) ∈ 𝐷δ (by definition)  

We get (𝑛 ∈ 𝑌 and 𝑚 ∉ 𝑌) or (𝑚 ∈ 𝐾 and 𝑛 ∉ 𝐾 ). 

Therefore discrete approximation space   (𝑋, 𝐷δ) is 𝑇1
𝑋 ̶ approximation space. 

 

Corollary 3.12: Let (𝑀, 𝜏𝛿) be a T-approximation space. Every 
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𝑇1
𝑋 ̶ approximation space  is   𝑇0

𝑋  ̶ approximation space. 

 

proof:  Let 𝑛, 𝑚 ∈ 𝑀,𝑛 ≠ 𝑚 . since 𝑀 is 𝑇1
𝑋 ̶ approximation space. 

 ∃ 𝑌 ⊂ 𝑀(δ(𝑌) = 𝑌) ∈ 𝜏δ such that 𝑛 ∈ 𝑌  but 𝑚 ∉ 𝑌 and 𝑚 ∈ 𝑌 but  

 𝑛 ∉ 𝑌. 

Therefore (𝑀, 𝜏𝛿) is  𝑇0
𝑋 ̶ approximation space. 

 

Definition 3.13: [13] A topological space 𝑀 is said to be a 𝑇2 − space if it satisfy following axiom for any 

𝑛, 𝑚 ∈ 𝑀 , 𝑛 ≠ 𝑚. There exist two an open set 𝑌, 𝐾 such that 𝑛 ∈ 𝑌 and 𝑚 ∈ 𝐾, 𝑌 ∩ 𝐾 = 𝜙. 

 

Definition 3.14: Let (𝑀, 𝜏𝛿) be a T- approximation space. Is called 𝑇2
𝑋  ̶ approximation space if for all 𝑛, 𝑚 ∈ 𝑀 , 

𝑛 ≠ 𝑚 .There exist two an open set  𝑌, 𝐾 ⊂ 𝑀(δ(𝑌) = 𝑌, δ(𝐾) = 𝐾) ∈ 𝜏δ such that  

(𝑛 ∈ 𝑌 𝑎𝑛𝑑 𝑚 ∈ 𝐾) . 𝑌 ∩ 𝐾 = 𝜙 .  

 

Example 3.15: Let 𝑀 = {1,2,3} and δ = {(1,1), (2,2), (3,3)}. 

Then δ𝑁(1) = {1} , δ𝑁(2) = {2} , δ𝑁(3) = {3} . 

𝜏δ = {𝑀, 𝜙, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}. 

1 ≠ 2, ∃  {1}  , {2} ∈ 𝜏δ such that (1 ∈ {1}     ∧     2 ∈ {2}) . 

{1} ∩ {2} = 𝜙 . 

1 ≠ 3, ∃  {1}  , {3} ∈ 𝜏δ such that (1 ∈ {1}     ∧     3 ∈ {3}) . 

{1} ∩ {3} = 𝜙 

2 ≠ 3, ∃  {2}  , {3} ∈ 𝜏δ such that (2 ∈ {2}     ∧     3 ∈ {3}) . 

{2} ∩ {3} = 𝜙 

Therefore (𝑋, 𝜏δ) is 𝑇2
𝑋 ̶ approximation space 

 

Proposition 3.16: The The discrete approximation space (𝑀, 𝐷δ) is 𝑇2
𝑋 ̶ approximation space . 

 

proof: Let 𝑛, 𝑚 ∈ 𝑀, 𝑛 ≠ 𝑚. ⟹ {𝑌} 𝑎𝑛𝑑 {𝐾} ∈ 𝐷δ ,{ 𝑌} ∩ {𝐾} = 𝜙 (by definition)  

(𝑛 ∈ δ{𝑛}  𝑎𝑛𝑑  𝑚 ∈ δ{𝑚}). 

Therefore discrete approximation space (𝑀, 𝐷δ) 𝑖𝑠 𝑇2
𝑋  ̶ approximation space. 

 

 

Corollary 3.17: Let (𝑀, 𝜏𝛿) be a T- approximation space. Every 𝑇2
𝑋  ̶  approximation space is 𝑇1

𝑋  ̶ approximation 

space. 

 

proof:  Let 𝑛, 𝑚 ∈ 𝑀,𝑛 ≠ 𝑚 . since 𝑀 is 𝑇2
𝑋  ̶ approximation space. 

 ∃ 𝑌, 𝐾 ⊂ 𝑀(δ({𝑌}) = 𝑌, δ({𝐾}) = 𝐾) ∈ 𝜏δ such that 𝑛 ∈ 𝑌  but 𝑚 ∉ 𝑌 and 𝑚 ∈ 𝐾 but  

 𝑛 ∉ 𝐾. 

Therefore (𝑀, 𝜏𝛿)  𝑖𝑠 𝑇1
𝑋  ̶ approximation space. 

 
4. CONFLICTS OF INTEREST 

In this paper we have some results as shown below 

    1-   Let (𝑀, 𝜏𝛿)  be a T- approximation space. Then the family 𝜏𝛿 = {𝑌 ⊆ 𝑀: 𝛿(𝑌) = 𝑌 ∪}𝜙 is a topology on 𝑀. 

 

    2-   𝜏𝛿 = {𝑌 ⊆ 𝑀: 𝛿(𝑌) = 𝑌} ∪ 𝜙 is a topology on 𝑀 if 𝛿 is reflexive. 

 

    3-   Let  𝛿  is symmetric on 𝑀 . for all 𝑌 ⊆ 𝑀 . then 𝛿(𝑌) = 𝑌 if δ(𝑌𝐶) = 𝑌𝐶 . 

    4-   If 𝛿 is transitive and reflexive. Then 𝜏𝛿 = {𝑌 ⊆ 𝑀: 𝛿(𝑌) = 𝑌} ∪ 𝜙 . 

          𝛿 ( 𝛿  are respectively). The closure( interior) operators of   𝜏𝛿  . 

    5-   Let (𝑀, 𝜏𝛿) be a T- approximation space. Then we have statements are equivalent: 
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          (𝑖)  (𝑀, 𝜏𝛿) is  𝑇0
𝑋-space . 

          (𝑖𝑖) For all 𝑛, 𝑚 ∈ 𝑀 . 𝑛 ≠ 𝑚 implies δ(𝑛) ≠ δ(𝑚). 

 

    6-   Let (𝑀, 𝜏𝛿) be a T-approximation space. Every 𝑇1
𝑋  ̶ approximation space  is   𝑇0

𝑋  ̶ approximation space. 

 
    7-  Let (𝑀, 𝜏𝛿) be a T- approximation space. Every 𝑇2

𝑋  ̶  approximation space is 𝑇1
𝑋  ̶ approximation space. 
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