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Severe acute respiratory syndrome (SARS) is a very dangerous disease 

that affects the human respiratory system. In this article, we discuss the 

optimal control of this disease via a fractional SVEIR epidemic model 

together with two control variables (treatment and vaccination). For 

this purpose, we first design a fractional optimal control problem and 

then apply Pontryagin's minimal principle in a fractional version to 

find the optimal control. Also, the forward and backward fractional 

Euler methods (FEM) are used to solve the state and co-state equations, 

respectively. The results gave a new treatment and vaccine strategy for 

breaking dawn and preventing the spread of SARS.  

 

 

 

 

 

 

http://creativecommons.org/licenses/by-nc/4.0/
mailto:sanaasanaa1978@yahoo.com


758-570Bas J Sci 40(1) (2022)                           et al.                                                        Mohammed S. Kadhim 

571 
 

                     This article is an open access article distributed under 

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license) 

).nc/4.0/-http://creativecommons.org/licenses/by( 

1. Introduction  

Pathogens, which can include bacteria, fungi, viruses, and other microorganisms, are the biological 

agents that are responsible for the transmission of infectious diseases. Pathogens can also cause 

other diseases [1-5]. There are many different channels through which infectious diseases can be 

passed on from one person to another. Bodily fluids, faeces, and SARS-infected equipment are 

examples of these channels. [6]. Contact with an infected person (I) can make a susceptible person 

(S) get sick, which can then transmit the disease to other individuals who are susceptible. This 

occurrence is evidence that a disease has spread throughout an entire society or country, which can 

lead to an increase in the mortality rate in a relatively short amount of time. The World Health 

Organization (WHO) says that infectious diseases kill about 1/ 6  of all people around the world 

and are the second leading cause of death [7]. SARS is a virus-borne infectious disease. Fever, 

shortness of breath, dry cough and other pneumonia-like symptoms are among the clinical 

symptoms of SARS [8]. SARS is a disease that spreads quickly, progresses, and is fatal. The 

majority of people who contract SARS are between the ages of 25 and 70, but it can also affect 

children under the age of 15 [9]. The first case of SARS was discovered in Guangdong province, 

China, in November 2002. The SARS virus also spread quickly across the continent, particularly 

in Asia and the Pacific. In March of 2003, the WHO reported a disease known as SARS that was 

caused by a virus known as SARS-CoV or coronavirus [8]. This led to 774 deaths and 8098 people 

getting sick with the SARS-CoV virus [10].  

   Infectious diseases have a big effect on the health of a country or population, so it's important to 

understand how they spread, come up with plans to stop them, and take into account the costs of 

doing so. In this case, we need a mathematical model to show how diseases will spread in the 

future based on information from the present. To comprehend the mechanism of spreading the 

disease and how procedures can be connected with disease control programs, mathematical 

modeling is necessary. The field of mathematics that was developed to determine the most 

effective means of controlling dynamic systems is known as optimal control theory. When optimal 

control theory is used, the goal is to figure out how effective different policies and control measures 

are and how much they cost [11]. Vaccination is extremely popular as a preventative measure. 

WHO-approved vaccinations are expected to save the lives of approximately 2-3 million people 

each year and prevent 25 diseases. There has been a rise in the use of vaccination and other control 

policies, such as quarantine, isolation, screening, and treatment, in recent decades [7]. 
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   In recent few years, Kumar and Srivastava included control variables in the model of the SVIR 

epidemic in an effort to halt the progression of the disease. In an attempt to stop the spread of 

disease, people also need to get treated and vaccinated. The optimal control theory was always 

used by scholars to implement an efficient economic strategy to reduce costs and ensure optimal 

management of treatment and vaccination to control and stop the spread of disease [12].  Kumar 

and Srivastava's research also looks at the costs because health or government institutions may not 

have enough money to pay for it [7]. Mathematical modeling was used in the past to try past to try 

to figure out how an anti-SARS vaccine might affect people, but it wasn't perfect. Further results 

show that an imperfect anti-SARS vaccine is still able to stop the spread of SARS  in the public, but 

only if the vaccine is at least 75% effective [13]. 

   Fractional calculus plays the main role in designing real-life models, especially biological 

systems. In fact, fractional derivatives possess three main properties that distinguish them from 

the classical derivative. The first is the mathematical model described by the fractional derivative, 

which takes the historical behaviour of the system into account. The second is that the region of 

stability of the fractional model is greater than the region of stability of the classical model. The 

third is the classical derivative, which is a local operator, but the fractional derivative is a nonlocal 

operator. This gives fractional derivatives more flexibility to describe more complicated real-life 

systems [14, 15, 16, 17, 18, 19, 20]. The goal of having a control function in this work is to decrease 

the number of exposed and infected subpopulations so that the SARS disease doesn't spread too far 

and to reduce the cost of putting control in place. Problems with optimal control were solved with 

Pontryagin's minimum principle combined with the FEM. The results of the simulations are also 

looked at to figure out the best ways to stop the spread of the SARS disease. 

   The following outline is the structure of this paper: Section two provides a general formulation 

of the fractional SARS Epidemic Model. The application of the maximal Ponntryagin principle has 

been discussed in Section 3. The numerical simulation results and their discussion are presented 

in section four. Section five summarizes the conclusions. 

2. Formulation of the fractional SARS Epidemic Model 

The SVIR model serves as the basis for the development of the SVEIR model, which incorporates 

subpopulation exposed E. According to the findings that Li et al. [12] presented, the subpopulation 

model E hypothesises that susceptible individuals who become infected with the disease on 

account of coming into exchange with an individual who already has the disease will go into the 

exposed E subpopulation at some point during the exposure period. When it's over, the exposure 
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period, the individual starts to display clinical symptoms and gains the disease's capacity to spread, 

becoming a member of the infected subpopulation I. This happens after the end of the exposure 

period. In addition to this, the SVEIR model makes the assumption that individuals who have been 

infected with SARS are unable to recover on their own through natural means. This presumption 

originates from the model that was developed as a result of Huang's research1. The incorporation 

of these hypotheses led to the conclusion that there is no natural recovery rate among the infected 

individuals. This conclusion was reached because of the addition of these assumptions. 

   This investigation into the spread of the SARS disease focused on a single population that had 

been subdivided into five different subpopulations: a susceptible S, a vaccinated V, an exposed E, 

an infected I, and a recovered R. In addition, a variety of research approaches are utilized in order 

to accomplish the goals. There are many interesting definitions of fractional derivatives in 

fractional calculus13, but for this purpose, we will use the famous Caputo derivatives due to their 

advantage on initial value problems. 

Definition 1 [21] The fractional integral of order 0 < <1, > 0t  is defined by  

 
10

1 ( )
( ) =

( ) ( )

t f x
J f t dx

t x



 − −          (1) 

Definition 2 [21] Let 1< <n n− , the Caputo fractional derivative of order   is given by  

 
0 10

1 ( )
( ) =

( ) ( )

n
t

C

t n

f x
D f t dx

n t x



 + − − −  (2) 

     The model for the broadcast of the SARS disease is formulated as follows of fractional 

differential equations: 
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  

  

− − −

− − −

+ − −

− −
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 (3) 

  

All of the parameters in system (3) of the SVEIR model are positive constants. The 

fractional SVEIR model's parameters are described in Table 1. 

 

Table 1: Fractional SVEIR parameters and meaning [7] 

Parameter   Description 
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    The natural rate of birth and death. 

1    Disease transmission rate from ( )I t  to ( )S t . 

1    The constant vaccination rate in ( )S t .  

2    The rate of disease transmission from SARS-infected to unvaccinated individuals. 

2    The vaccinated person's immunity so they recover during or after vaccination. 

   Exposure-infection rate. 

t    Treatment rate of ( )I t . 

 

   Treatment and vaccination have been chosen as control policies because vaccination is simple 

to obtain and put into practice, and these policies have the backing of the WHO [7].  The SARS 

model, which was previously explicated in a model system (3), was altered in this study in order 

to express it in a model system (4) with treatment and vaccination as a control strategy, which will 

be covered in the next section. 

3. The optimal control problem of fractional model of SARS  

    The theory of optimal control is widely used to determine the extreme value of an objective 

function satisfying certain differential equations. In this section, optimal control theory is used to 

determine the best drug treatments and vaccination as a function of time. The SARS disease spread 

model with treatment and vaccination control strategies is derived from equations (3) and the 

following statements: 

   1. Anti-SARS vaccines are given to susceptible subpopulations to prevent disease transmission. 

From an economic point of view, getting vaccinated over and over again might not be a good idea 

for some diseases. In addition, administering vaccines to a large population is expensive and 

difficult, as it is difficult to reach all susceptible individuals. Vaccination policies should be limited 

in scope to meet predetermined objectives because health agencies have limited resources and time 

to do so. That's why we assume that vaccination control is limited, which is to say, 10 ( ) 1u t  [7].  

    2. Infected subpopulations are treated to reduce disease burden and spread. Diagnosis, 

hospitalization, drug administration, and other medical services are all part of treatment programs. 

Treatment programs for infected individuals, like vaccination programs, are expensive and must 

be kept to a minimum. Therefore, t

  on model (3) become as treatment control 2 ( )u t  and assumed 

that 20 ( ) 1u t  [7].  
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   Consequently, treatment and vaccination control of fractional  model of SARS disease spread is 

given by: 
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In other words, we're looking for the best control u  so that.  

  * *

1 2 1 2 1 2( ( ), ( )) = min ( ( ), ( )) : 0 , 1,0 fu t u t u t u t u u t T       (5) 

 Consider the cost function as follow:  

 2 2

1 1 2 2
0

( ) = [ ( ) ( ) ( ) ( )]
T

f
u E t I t Au t A u t dt + + +  (6) 

 Where 1 0A   and 2 0A   represent the weight of vaccination and treatment, respectively, that 

should be minimized. Also, the Hamiltonian functional H  is given as follows:  

 

2 2

1 2 1 1 2 2
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+
 (7) 

 Now, we can derive the necessary conditions from Eq. (7) as follows as in [22] 
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t T
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 And ( ) = 0, =1,2,...,5j fT j   are the Lagrange multipliers. 
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Theorem 1: Consider *

1u  and *

2u  are optimal controls with the corresponding state * * * *, , ,S V E I  

and *R  then there exist 1 2 3 4, , ,     and 
5 satisfies the following:  

 *

1 3 1 1 2 1 1 1( ) = ( ) ( ) ( )C

t T
f

D t I u t         − + − −  

  *

2 3 2 2 2 2 5 2( ) = ( ) ( )C

t T
f

D t I            − − + +  

  
3 4 3 3( ) =1 ( )C

t T
f

D t       + − −  

  * *

4 3 1 1 3 2 2 5 4 2 4( ) =1 ( ) ( ) ( ) ( )C

t T
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 With transversality conditions ( ) = 0, =1,2,...,5j fT j   Furthermore, the optimal controls *
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*

2u  are given by:  
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 Proof: By definition the Hamiltonian function H , we get  
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 By using Pontryagin's minimum principle with we can get  
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*
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 And the transversality conditions 
1 2 3 4 5( ) = ( ) = ( ) = ( ) = ( ) = 0f f f f fT T T T T     . The optimal 

control *

1u  can be obtained from the condition  
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 Since 10 1u   then we can rewrite *

1u  in the Eq. (23) as follow  
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2u  can be obtained from the condition  
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4. Numerical Simulations  

    In this section, the results of numerical simulations are implemented to study the impact of 

control policy strategies on the dynamics of the disease as well as the costs associated with putting 

those strategies into action. Numerical simulations of systems (4) and Eq. (16)- Eq. (20) use the 

forward and backward Euler method in the MAPLE software. Now, we list the numerical 

simulation parameters in Table 2. 

Table 2: Fractional SVEIR parameters [7] 

 Parameter   Value 

    0.00005  

1    0.3  

2    0.01 

2    0.04  

    0.02  

1u    0 1−  variable 

2u    0 1−  variable 

 

In addition to this, we will use the suggested values for the initial conditions of the state variables 

that are presented in Table 3. 

Table 3: Fractional SVEIR initial values [7]  

 Variable   Initial values 

( )S t    0.8  

( )V t   0.04  

( )E t    0.08  

( )I t   0.04  

( )R t    0.04  

  

   To assess the utility of control policy, two control strategies are implemented, namely strategy 

1: implementation of a no-vaccination and no-treatment policy to study the behaviour of SARS 

spread. While strategy 2 is the implementation of a treatment and vaccination policy to control the 

disease's spread.  To find the optimal treatment and vaccination strategy, we construct the 
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following algorithm based on applying the forward and backward Euler method to solve state Eq. 

(4) and co-state equations Eq. (16)-Eq. (20), respectively, and on the optimal controls law in Eq. 

(24) and Eq. (28). 

Algorithm 1:   

Step 1:  Insert the values of fractional order  , and the biological parameters 1 2 2, , ,     and  . 

Also, insert the initial conditions of (0), (0), (0), (0), (0)S V E I R  and terminal conditions 

1 2 3 4 5( ) = ( ) = ( ) = ( ) = ( ) = 0N N N N N     .  

Step 2: Suppose the time interval is [0, ]fT  and compute the step size =
fT

h
N

, where N  is positive 

integer number.  

Step 3: Set 1 2( ) = ( ) = 0u h u h  , for all = 0,1,..., .N   

Step 4: Compute the coefficients 
,jC   as follows: 

, = (( 1 ) ( ) )
( 1)

j

h
C j j


 

  


+ − − −
 +

, for all 

= ,..., 1j N − , and = 0,..., 1N − .  

Step 5: Compute the coefficients 
,jB  as follows: 

, = (( ) ( 1) )
( 1)

j

h
B j j


 

  


− − − −
 +

, for all

= 0,1,..., 1j  − , and =1,2,...,N .  

Step 6: For all =1,2,...,N , compute ( ), ( ), ( ), ( )S h V h E h I h    , and ( )R h by applying forward 

fractional Adams method as follows:  

 
1

, 1 1

=0

( ) = (0) [ ( ) ( ) ( ) ( ) ( )]j

j

S h S B S jh I jh u jh S jh S jh


  

   
−

+ − − −  

 
1

, 1 2 2

=0

( ) = (0) [ ( ) ( ) ( ) ( ) ( ) ( )]j

j

V h V B u jh S jh V jh I jh V jh V jh


  

   
−

+ − − −  

 
1

, 1 2

=0

( ) = (0) [ ( ) ( ) ( ) ( ) ( ) ( )]j

j

E h E B S jh I jh V jh I jh E jh E jh


   

    
−

+ + − −  

 
1

, 2

=0

( ) = (0) [ ( ) ( ) ( ) ( )]j

j

I h I B E jh u jh I jh I jh


 

  
−

+ − −  

 
1

, 2 2

=0

( ) = (0) [ ( ) ( ) ( ) ( )]j

j

R h R B V jh u jh I jh R jh


 

  
−

+ + −  

Step 7: For all = 1, 2,...,0N N − − , compute 1 2 3 4( ), ( ), ( ), ( )h h h h        , and 5 ( )h  by 

applying backward fractional Adams method as follows:  
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1
*

1 1 , 3 1 1

=

2 1 1 1

( ) = ( ) [ ( (( 1) ) (( 1) )) (( 1) )

( (( 1) ) (( 1) )) (( 1) ) (( 1) ) ]

N

f j

j

h T C j h j h I j h

j h j h u j h j h









     

   

−

− + − + +

+ + − + + − +


 

 

1
*

2 1 , 3 2 2

=

2 2 5 2

( ) = ( ) [ ( (( 1) ) (( 1) )) (( 1) )

(( 1) )( ) (( 1) ) ]

N

f j

j

h T C j h j h I j h

j h j h







  

     

    

−

− + − + +

− + + + +


 

 
1

3 3 , 4 3 3

=

( ) = ( ) [1 ( (( 1) ) (( 1) )) (( 1) ) ]
N

f j

j

h T C j h j h j h 




       
−

− + + − + − +  

 

1
*

4 4 , 3 1 1

=

*

3 2 2 5

4 2 4

( ) = ( ) [1 ( (( 1) ) (( 1) )) (( 1) )

( (( 1) ) (( 1) )) (( 1) ) ( (( 1) )

(( 1) )) (( 1) ) (( 1) ) ]

N

f j

j

h T C j h j h S j h

j h j h V j h j h

j h u j h j h










     

   

  

−

− + + − + +

+ + − + + + +

− + + − +



 

 
1

5 5 , 5

=

( ) = ( ) [ (( 1) ) ]
N

f j

j

h T C j h 




    
−

− − +  

 Step 8: Apply the optimal control law to compute 1( )u h  and 2 ( )u h  for all =1,2,...,N  as 

follows:  

 * *2 1
1

1

( ( ) ( ))
( ) = min{max{0, ( )},1}

2

h h
u h S h

A

   
 

−
 

  * *5 4
2

2

( ( ) ( ))
( ) = min{max{0, ( )},1}

2

h h
u h I h

A

   
 

−
 

Step 9: If the stopping criterion (the absolute value of optimal control of the current and the 

previous iterations) is held, then the algorithm ends, else return to Step 6.  

The numerical simulation results show the changes in the behavior of the subpopulation when 

strategies 1 and 2 are applied. The number of subpopulations S , V , E  and I  decreases faster than 

without control i.e. when strategy 2 of treatment and vaccination is used. While we note that the 

recovered subpopulations R  increase when strategies 1 and 2 are applied. 
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Figure  1:  The Susceptible Subpopulation without 𝑢1 and 𝑢2. 

 

 
       Figure  2:  The Susceptible Subpopulation with 𝑢1 and 𝑢2. 

 

           

 
Figure  3:  The Vaccinated Subpopulation without 𝑢1 and 𝑢2. 
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                          Figure  4:  The Vaccinated Subpopulation with 𝑢1 and 𝑢2. 

               

 
Figure  5:  The Exposed Subpopulation without 𝑢1 and 𝑢2. 

 

 
Figure  6:  The Exposed Subpopulation with 𝑢1 and 𝑢2. 
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Figure  7:  The Infected Subpopulation without 𝑢1 and 𝑢2. 

 

 

 
Figure  8:  The Infected Subpopulation with 𝑢1 and 𝑢2. 

 

 
Figure  9:  The Recovered Subpopulation without 𝑢1 and 𝑢2. 
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Figure  10:  The Recovered Subpopulation with 𝑢1 and 𝑢2. 

   

    

 
Figure  11:  The Vaccination Control 𝑢1. 

 

 

 
                                                                                        Figure  12:  The Treatment Control 𝑢2. 
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Conclusions 

Mathematical modelling is a powerful tool for creating a comprehensive picture of disease spread 

behavior. In fact, the mathematical models described by the fractional derivative have more 

flexibility to describe more complicated real-life systems. The main goal of this work was to find 

optimal treatment and vaccination strategies to decrease the number of exposed and infected 

subpopulations so that the SARS disease doesn't spread too far and to reduce the cost of putting 

these strategies in place. The results of the study provided a novel treatment and vaccination 

strategy for halting the progression of SARS and preventing its further spread. 
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من خلال النموذج الكسري السيطرة المثلى على مرض السارس     

,  محمد علي ابراهيمسناء لفته خلف  , محمد ساري كاظم   

قسم الرياضيات ،كلية العلوم ،جامعة البصرة   

 المستخلص 

  كيفية  المتلازمة التنفسية الحادة الوخيمة )سارس( مرض خطير للغاية يصيب الجهاز التنفسي للإنسان. في هذه المقالة ، نناقش

قمنا أولاً بتصميم    ذاكم )العلاج والتلقيح(. لالجزئي مع متغيرين للتح  SVEIRالسيطرة المثلى لهذا المرض من خلال نموذج وبائي  

  استخدمنا  أيضًا  .  لحل الامثلا   اف  يجادلا   الكسرية  صيغتهالأدنى في    Pontryaginمشكلة التحكم الأمثل الجزئي ثم تطبيق مبدأ  

يجية  ، على التوالي. أعطت النتائج استرات رافقةمعادلات الحالة والحالة الم ( لحلFEM) الامامية والخلفية يةأويلر الكسر ةطريق

 السارس. مرض ومنع انتشار وقفعلاج ولقاح جديدة ل
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