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Abstract: This study evaluates the performance of two forecasting models, GM(2,1) and
GAO-GM(2,1) for forecasting the oil price of Irag, the monthly dataset in use is since
(jan. 2021 to Dec. 2023), focusing on their predictive accuracy and efficiency. Accuracy
Metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Akaike
Information Criterion (AIC), and Bayesian Information Criterion (BIC) were used to
compare the performance models. The results indicate that the GAO-GM (2,1) model
significantly outperforms the GM(2,1) model, achieving a lower MSE of 62.384
compared to 86.092 and an RMSE of 7.898 versus 9.279, respectively. Additionally,
GAO-GM (2,1) demonstrates a superior fit to the data, as reflected in its lower AIC and
BIC values. The study also examines the efficiency of a Genetic Algorithm Optimizer
(GAO) across multiple iterations, revealing a consistent convergence toward optimal
solutions. The analysis includes a comparison of actual oil prices against predicted values,
highlighting the model's accuracy and the importance of forecasting in decision-making
processes. Statistical tests for normality confirm the validity of the model's residuals,
further supporting the reliability of the predictions. Overall, the findings underscore the
effectiveness of the GAO-GM (2,1) model in providing accurate and actionable forecasts,
making it a valuable tool in contexts such as finance and economics.
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Introduction

The monthly oil prices of Iraq from 2021 to 2023 reflect significant fluctuations influenced by a
variety of factors, including global demand, geopolitical events, and changes in production levels. As
one of the leading oil producers in the Organization of the Petroleum Exporting Countries (OPEC),
Iraq's oil revenues are crucial for its economy, which heavily relies on hydrocarbon exports. In 2021,
the oil market began recovering from the impacts of the COVID-19 pandemic, leading to an increase
in prices, which averaged around $70 per barrel by mid-year (OPEC, 2022). This upward trend
continued into 2022, driven by heightened demand and supply constraints exacerbated by geopolitical
tensions, particularly the Russia-Ukraine conflict, which led to a surge in oil prices (International
Energy Agency, 2023). However, by 2023, prices exhibited volatility due to fluctuating global
economic conditions and strategic decisions made by OPEC+ regarding production cuts (World
Bank, 2023). Understanding these trends is essential for stakeholders in the oil market, as they impact
economic stability, investment decisions, and policy-making in Iraq. The Genetic Algorithm
Optimized GM(2,1) model integrates the principles of Grey forecasting with genetic algorithms to
enhance predictive capabilities in time series analysis. The GM(2,1) model, a prominent member of
Grey model theory, excels in managing small sample sizes (short time series) and inherent
uncertainties, making it suitable for diverse applications, including agriculture, economics, and
environmental science (Wu et al., 2019). However, the performance of the GM(2,1) model can be
further improved through optimization techniques, particularly genetic algorithms, which utilize
natural selection principles to fine-tune model parameters (Chen et al., 2020). This hybrid approach
not only improves forecasting accuracy but also enhances the model's adaptability to changing data
patterns, addressing the challenges posed by volatile environments (Zhang et al., 2021). As research
progresses, the GA-GM(2,1) model represents a significant advancement in predictive analytics,
offering robust solutions for decision-makers requiring reliable forecasts in complex systems (Liu &
Yang, 2022).

Literature Review

The GM(2,1) model, a type of Grey forecasting model, has gained attention in time series forecasting
due to its ability to handle small sample sizes and uncertainty. Researchers have successfully applied
the GM(2,1) model to various fields, including economics, environmental science, and agriculture.
For example, Wu et al. (2019) demonstrated its efficacy in forecasting agricultural yields in China,
highlighting its accuracy in predicting trends with limited data. However, the model's performance
can be further enhanced through optimization techniques, such as genetic algorithms, which help in
fine-tuning model parameters to achieve better forecasting accuracy.

The integration of genetic algorithms with the GM(2,1) model has shown promising results in
improving prediction accuracy. In their study, Chen et al. (2020) introduced a Genetic Algorithm
Optimized GM(2,1) model, which was tested against traditional forecasting methods. The study
found that the GA-GM(2,1) model significantly reduced forecasting errors, particularly in volatile
markets. The optimization process enabled the model to adapt more effectively to changes in data
patterns, leading to improved robustness and reliability in predictions.
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Numerous studies have compared the GM(2,1) model optimized by genetic algorithms to other
forecasting models. For instance, Zhang et al. (2021) conducted a comparative analysis of the GA-
GM(2,1) model against ARIMA and exponential smoothing methods in forecasting energy
consumption. Their findings indicated that the GA-GM(2,1) model consistently outperformed the
other methods in terms of Mean Absolute Percentage Error (MAPE) and Root Mean Square Error
(RMSE). This research underscores the model's adaptability and effectiveness, particularly in
scenarios with fluctuating data trends.

The theoretical framework behind the GM(2,1) model and its optimization through genetic algorithms
provides a robust foundation for various applications. Liu and Yang (2022) explored the mathematical
principles governing the GM(2,1) model and its enhancements via genetic algorithms. Their research
emphasizes the significance of parameter optimization in achieving accurate predictions, particularly
in complex systems with inherent uncertainties. The study also discusses practical implications for
industries such as finance and logistics, where precise forecasting is critical for strategic decision-
making.

In conclusion, the GM(2,1) model, particularly when optimized with genetic algorithms, represents a
promising approach to addressing the challenges of time series forecasting. Its proven adaptability
and accuracy make it a valuable tool for researchers and practitioners alike, paving the way for more
informed decision-making across various sectors. Continued research in this area holds the potential
for further advancements, enhancing the reliability and applicability of forecasting models in an
increasingly uncertain world.

1. Methodology
A. The GM (2,1) Models

The appropriate grey two-by-one model is for exponential pattern sequences; also, it is used to show
changes in monotonic patterns. While for another non-monotonic wave, such as development
sequences or satiate sequences that is sigmoid, we are able to use GM two by one 61,

B. The GM (2,1) Model

For raw data sequences A© = (a(®9(1),a@(2),......,x9(n)), let it a generation accumulation
and inverse accumulation generation bel>™81AM = (@@ M (1),aM(2),...... ,a®(n)) and
bMAO = (pMa@(2), ... ... ,bMa®(n)), where bWa® (k) =a®k) —a@k — 1),k =
2,3,..,n and the adjacent sequence of neighbor mean a generation ofA®™ peY® =

(Y©@,yD@), ... yO ).

Then

bDa® (k) + b;a@ k) + b,y P (k) = ¢ 2.1
Is show that GM(2,1) model ;

d2 a(l) da(l)
a
dt2 1 at

+ bya® =¢ 2.2
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Theorem: For the sequencesA@ADY D and b a® | as defined above, let
—a(O)(Z) —y(l)(Z) 1
_ 2@ —yPB) 1

_3(55 (n) _y(llli(n) 1
bDa®(2) a®(2) —a®(1)
_ b(l)a(O)(g)] _ [ a(o)(?)) _ a(o)(Z)
a

b a® () © ) —a®@n-1)
Also, in the least squares parametric sequenced have estimated the = [by, b, c]T Of the G.M (2,1) is
used as follows:

b= (cTo)~tcTy 2.3
Theorem: For the solution of the G.M two by one winterization equation depend the steps [1]:
. 24(1) & _
1- If A" is a unique solution of dd‘iz + by d?zt + b,a™ = b and AMthe general solution of
d2a® da®

the corresponding homogeneous equation +by—+ b,a® =0, Then A® + AW
represents a universal method for solving the whitening equation for GM(2,1).

2- The general solution to the preceding homogeneous differential equation requires satisfying
the following three conditions: (i) if the defining equation for a2 + ¢;7 + b, = 0 has two

distinct real roots rq, 15,

dt?

A(l)=clerlt+c2er2t 2.4
when the repeated root r is the characteristic equation,
A(l)=ert(cl+c2t) 2.5

when the two complex conjugate roots are the characteristic equation

rn=b+ifandr, =b—if

XM = e%(c cosPt + c,sinft) 2.6
3- Inparticular, one of the following three scenarios may represent a solution to the winterization
equation:

a. The characteristic equation root isn't zero,A)" = C.
b. In the characteristic equation, zero is one of the2 distinct roots of, A" = Ca.
c. In the characteristic equation, zero is the only root of, A" = Ca?.

C. Genetic Algorithm Optimizer (GAO)

It is a heuristic optimization technique inspired by the principles of natural selection and genetics. It
is particularly useful for solving complex optimization problems where traditional methods may be
inefficient or infeasible. Here’s a detailed overview of GAO, including its principles, components,
processes, and applications. Genetic Algorithms (GAs) are optimization techniques inspired by
natural selection, employing key concepts such as populations, fitness functions, and genetic
operators. A population consists of a set of potential solutions, each represented as a chromosome.
The fitness function evaluates these solutions based on how well they solve the given problem,
guiding the selection process. Genetic operators play a crucial role in creating new solutions: selection
involves choosing the fittest individuals for reproduction, while crossover combines two parent
solutions to generate offspring. Mutation introduces random changes to maintain diversity within the
population. The GAO process begins with the initialization of a random population, followed by
evaluation, selection, crossover, mutation, and replacement. This iterative cycle continues until a
stopping criterion, such as a maximum number of generations or a satisfactory fitness level, is
achieved. The components work together to explore the solution space efficiently, allowing GAs to
tackle complex optimization challenges.
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The Genetic Algorithm Optimization (GAQO) process involves several mathematical steps, each
grounded in specific equations. Here’s a breakdown of the main steps:

(1) Initialization: Generate an initial population of P individuals (chromosomes). Each individual is
represented as a vector:

Population={X1,X>,...,Xp}
(2) Fitness Evaluation

o Evaluate the fitness of each individual using a fitness function f(X):
Fi=1(X;) fori=1,2,...,P 2.7
e Normalize the fitness values if necessary to enhance selection pressure.

(3) Selection: Select individuals based on their fitness. Common methods include:

e Roulette Wheel Selection: Probability of selection for individual 1:
F.
P(Xi) = 5—

D
Z]-=1 Fj
above matrix)

2.8 (please investigate well about this formula and the

e Tournament Selection: Randomly select a subset and choose the best.

(4) Crossover (Recombination):For selected pairs of parents X, and X, generate offspring using
crossover with a crossover rate rc:

Crossover(Xq, Xp) ifr<r,

X, ifr>r, 2.9

Offspring ={

where 1. is a random number (having uniform distribution with range) between 0 and 1.
(5) Mutation: Apply mutation to the offspring with a mutation rate rm:

Mutate ifr<r,

X ifr=r, 2.10

Xnew = {

The mutation process introduces small random changes to the individual.

(6) Replacement: Replace the old population with the new offspring to form the next generation:
New Population = {Offspringi, Offspringy, ..., Offspringp }
(7) Termination Condition: Check for termination criteria, such as:

o A specified number of generations.
e A convergence threshold in fitness.
 Satisfactory solution found: If Termination Condition then stop.
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(Data entry to initialize populations]

( First generation population (G=0) ]1—

(Calculating the degree of adaptation]

i No
Genetic operations
1. count selection
2. crossover
3. mutation

Binding Conditions

Yes
Generating the next generation of
populations (G=G+1)

Termination
of judgment
conditions

Flowchart (1): represents the GAO steps
D. Evaluate Precision of Forecasting Models

To test the accuracy and the performance of the proposed model ,used some statistical tests and
measurements, including, mean square error, root of mean square error, Akaike information criteria,
and Bayesian information criteria.

(1) Mean Square Error (MSE)

Mean Squared Error (MSE) is a widely used metric for assessing the accuracy of a predictive
model. It measures the average of the squares of the errors that is, the average squared difference
between the actual values and the values predicted by the model.

1 o
MSE:;Z?ﬂ(}’t _Yt)2 2.11
where:

e 1 is the number of observations.
eyt is the actual value.
e ¥, is the predicted value.

A lower MSE indicates a better fit of the model to the data, as it suggests that the predictions are
closer to the actual values. However, MSE can be sensitive to outliers because it squares the errors,
which can disproportionately affect the overall score.

(2) Square Root of Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) is a commonly used metric to evaluate the accuracy of a
predictive model, providing a measure of the model's prediction error. It represents the square root of
the average squared differences between predicted and actual values, making it easier to interpret
than the Mean Squared Error (MSE) because it is expressed in the same units as the original data.
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1 A
MSE = [LE1, (v 07 212

(3) Akaike Information Criteria (AIC)

The Akaike Information Criterion (AIC) is a statistical measure used to compare the goodness of fit
of different models while accounting for the complexity of each model. Developed by Hirotugu
Akaike, AIC helps in model selection by balancing the trade-off between the accuracy of the model
and the number of parameters used.

AIC=2k-2In(® 2.13
Where:

e n: is the number of observations.
e % 1is the log-likelyhood.
e k:is the number of explanatory variables in the model.

(4) Bayesian Information Criteria (BIC)

The Bayesian Information Criterion (BIC), also known as the Schwarz Information Criterion (SIC),
is a statistical tool used for model selection among a finite set of models. It provides a criterion for
choosing a model that balances goodness of fit with model complexity, incorporating a penalty for
the number of parameters in the model.

BIC =k . In(n) -2 In(¥) 2.14
Where:
e n:is the number of observations.
e % is the log-likelyhood.
e k:is the number of explanatory variables in the model.

In conclusion the lower MSE, RMSE, AIC and BIC indicates a better fit of the model to the data, as
it suggests that the predictions are closer to the actual values.

2. Applications
A. Data Description

This research utilizes Monthly data of Brent crude oil price, from January 1, 2021, to December 31,
2023. The data reflects the daily closing price in U.S. dollars per barrel.

B. Results and Discussions

In the discussion, we explore the implications of these findings, comparing both GM(2,1) and GAO-
GM(2,1) models. Additionally, we address limitations of the study and propose directions for future
research to further investigate this connection.

Table (1): shows the iteration of GAO for finding best estimator

Performance
Metrics GM(2,1) GAO-GM(2,1)
MSE 86.092 62.384
RMSE 9.279 7.898
AIC 162.395 150.799
BIC 163.979 152.382
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The performance metrics for the two models, GM(2,1) and GAO-GM(2,1), demonstrate the
comparative effectiveness of the latter. The Mean Squared Error (MSE) for GM(2,1) is 86.092,
whereas the GAO-GM(2,1) model achieves a significantly lower MSE of 62.384, indicating that the
GAO-GM(2,1) model provides more accurate predictions. This trend continues with the Root Mean
Squared Error (RMSE), where the GAO-GM(2,1) shows an RMSE of 7.898 compared to 9.279 for
GM(2,1), further confirming the improved accuracy of the GAO-GM(2,1) model. Additionally, the
Akaike Information Criterion (AIC) is lower for GAO-GM(2,1) at 150.799 versus 162.395 for
GM(2,1), suggesting that the GAO-GM(2,1) model not only fits the data better but also has fewer
parameters relative to its goodness of fit. Similarly, the Bayesian Information Criterion (BIC) reflects
this pattern, with GAO-GM(2,1) scoring 152.382 compared to 163.979 for GM(2,1). Then, these
metrics collectively indicate that the GAO-GM(2,1) model outperforms the GM(2,1) model in terms
of predictive accuracy and efficiency.

Table (2): shows the iteration of GAO for finding best estimator

Genetic Algorithm Optimizer

Iterations Mean Best Iterations Mean Best Iterations Mean Best
iterl -7136.368 -2197.336 iter35 -2441.737 -2146.959 iter69  -2349.269 -2121.255
iter2 -4448.186 -2197.336 iter36  -2262.315 -2146.959 iter70  -2575.207 -2121.255
iter3 -3396.129 -2197.336 iter37  -2275.705 -2133.482 iter71 -2362.925 -2121.255
iter4 -2966.859 -2197.336 iter38  -2800.549 -2133.482 iter72  -2243.762 -2121.255
iter5 -2807.231 -2197.336 iter39  -2276.383 -2133.482 iter73 -2198.827 -2121.255
iter6 -2753.624 -2197.336 iter40  -2804.511 -2130.627 iter74  -2447.067 -2121.255
iter7 -2995.416 -2184.685 iter41 -2366.912  -2130.627 iter75 -2536.83  -2121.255
iter8 -2858.746  -2184.685 iterd2  -2285.532 -2130.627 iter76 -2303.32  -2121.255
iter9 -2662.629 -2184.685 iter43 -2215.939  -2130.627 iter77 -2273.96  -2121.255
iterl0  -3098.343 -2184.685 iterd4d  -2573.769 -2130.627 iter78  -2292.228 -2121.255
iterl1 -2582.61  -2184.685 iter45 -3203.014 -2130.627 iter79  -2357.741 -2121.255
iterl2  -2694.805 -2184.685 iterd6  -2714.684 -2122.735 iter80  -2885.109 -2121.255
iter13 -2504.255 -2184.685 iterd7 ~ -2277.161 -2122.735 iter81 -2558.79  -2121.255
iterl4 ~ -2550.511 -2168.893 iter48 -2210.82  -2122.735 iter82  -2494.067 -2121.255
iter15 -2644.826 -2168.893 iter49  -2496.084 -2122.735 iter83 -2217.348 -2121.255
iterl6  -2444.107 -2168.893 iter50 2245428 -2122.735 iter84  -2570.699 -2121.255
iterl7  -2367.686 -2168.893 iter51 -2307.078 -2122.735 iter85 -2295.714  -2121.255
iter18 -2313.261 -2168.893 iter52  -2264.004 -2122.735 iter86  -2257.034 -2121.255
iterl9  -2299.709 -2168.893 iter53 -2296.04  -2122.735 iter87  -2165.143 -2121.255
iter20 -2602.73  -2168.893 iter54  -2462.483 -2122.735 iter88  -2351.396 -2121.255
iter21 -2553.113  -2168.893 iter55 -2428.742  -2122.735 iter89  -2269.774 -2121.255
iter22  -2618.452 -2168.893 iter56  -2453.779 -2122.735 iter90  -2417.117 -2121.255
iter23 -2579.644 -2168.893 iter57  -2265.136 -2122.735 iter91 -2292.125 -2121.255
iter24  -2394.059 -2146.959 iter58  -2265.607 -2122.735 iter92  -2260.097 -2121.255
iter25 -2356.186  -2146.959 iter59 -2197 -2122.735 iter93 -2811.703  -2121.255
iter26  -2465.637 -2146.959 iter60 -2333.75  -2122.735 iter94 -2534.14  -2121.255
iter27  -2407.601 -2146.959 iter61 -2251.66  -2122.735 iter95 -2379.367 -2121.255
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iter28 -2642.845 -2146.959 iter62 -2412.371  -2122.735 iter96 -2211.072  -2121.255
iter29 -2355.168 -2146.959 iter63 -2320.379 -2122.735 iter97 -2226.309 -2121.255
iter30 -2348.783  -2146.959 iter64 -2323.481 -2122.516 iter98 -2196.51  -2121.255
iter31 -2372.049  -2146.959 iter65 -2383.787 -2122.516 iter99 -2456.22  -2121.255
iter32 -2395.566 -2146.959 iter66 -2639.684 -2122.516 iter100  -2219.527 -2121.255
iter33 -2396.916 -2146.959 iter67 -2316.743  -2121.255

iter34 -2494.643  -2146.959 iter68 -2245.332  -2121.255

The data presented illustrates the performance of a Genetic Algorithm Optimizer (GAO) over
multiple iterations, showcasing key metrics that evaluate its efficiency in finding optimal solutions.
Each iteration is characterized by two primary metrics: the mean and the best values of the objective
function. The mean indicates the average performance of all candidate solutions evaluated during that
iteration, while the best value represents the highest-performing solution found at that point. As the
iterations progress, we observe a general trend of decreasing mean and best values, suggesting that
the GAO is effectively converging toward an optimal solution. Initially, there is significant
fluctuation in the mean values, indicative of exploration within the solution space. However, as the
algorithm matures through iterations, the mean stabilizes, reflecting improved convergence. By
iteration 35 and beyond, the best values demonstrate a marked consistency, suggesting that the
optimizer has successfully identified a satisfactory solution within a specific range.

Table (3): shows the optimized estimated parameters

GAO-GM(2,1)

o 0.9956971
b 55.07711

iteration 35

Table (4): represents the actual and predicted values of GAO-GM(2,1) model

Periods Oil Price Predicted Residuals Periods Oil Price Predicted Residuals

1 54.77 55.077 -0.303 19 111.93 122.670  -10.744
2 62.28 54.771 7.505 20 100.45 111.976  -11.530
3 65.41 62.248 3.162 21 89.76 100.500  -10.735
4 64.81 65.396 -0.590 22 93.33 89.806 3.526
5 68.53 64.813 3.722 23 91.42 93.315 -1.899
6 73.16 68.514 4.650 24 80.92 91.428 -10.504
7 75.17 73.140 2.026 25 82.50 80.965 1.536
8 70.75 75.161 -4.414 26 82.59 82.493 0.092
9 74.49 70.769 3.720 27 78.43 82.590 -4.155
10 83.54 74.474 9.064 28 84.64 78.448 6.190
11 81.05 83.501 -2.451 29 75.47 84.613 -9.147
12 74.17 81.061 -6.890 30 74.84 75.509 -0.670
13 86.51 74.200 12.306 31 80.11 74.843 5.265
14 97.13 86.457 10.672 32 86.15 80.087 6.060
15 117.25 97.084 20.161 33 93.72 86.124 7.598
16 104.58 117.163  -12.588 34 90.60 93.687 -3.091
17 113.34 104.634 8.703 35 82.94 90.613 -7.673
18 122.71 113.303 9.408 36 77.63 82.973 -5.342
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The table presents a detailed comparison of actual oil prices against predicted values, along with the
residuals, which indicate the difference between these two. For each period, the actual oil price is
shown alongside its predicted counterpart, derived from a forecasting model. The residuals reflect the
accuracy of the predictions, also the table shows varied prediction performance across periods, with
some residuals indicating good accuracy, while others reveal notable discrepancies.

GAO-GM(2,1) Model Predictions

— Oil Price
— Predicted

100 110 120
l

Values
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Figure (1): demonstrates the scatter plot of actual and predicted values.

Residuals

15 20
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Figure (2): shows the scatter plot of residual values.

Table (5): demonstrates the normality test for the residuals of the GAO-GM(2,1) model

Tests of Normality

Variable Kolmogorov-Smirnova Shapiro-Wilk
) Statistic df Sig. Statistic df Sig.
Residuals
0.072 36 0.200 0.975 36 0.579

The above table presents results from two statistical tests for normality applied to the residuals of a
model, the Kolmogorov-Smirnov test and the Shapiro-Wilk test. Both tests assess whether the
residuals are normally distributed, which is an important assumption in many statistical analyses,
from their p-values which are both greater than 0.05 that means the residuals are distributed normally,
so the assumption of normally distributed is achieved.

ISSN:2222-2995 Vol. 14 No. 4 234



I R H D I University of Kirkuk Journal For Administrative

Acadomis Seloniific Journals and Economic Science (2024) 14 (4): 225-236

Table (6): represents the forecasted values for 12 periods

Periods Forecasted Confidence Interval 95%
37 73.6577 68.0007 78.6065
38 71.0345 65.3775 75.9833
39 72.469 66.812 77.4178
40 79.952 74.295 84.9008
41 75.6291 69.9721 80.5779
42 80.443 74.786 85.3918
43 82.7952 77.1382 87.744
44 77.2811 71.6241 82.2299
45 73.5721 67.9151 78.5209
46 72.7692 67.1122 77.718
47 74.664 71.5897 77.7383
48 71.894 68.8197 74.9683

The table presents forecasted values for oil prices, each row corresponds to a period, indicating the
forecasted value for that period and the range within which the true value is expected to fall with 95%
confidence. For instance, in period 37, the forecasted value is approximately 73.66, with a confidence
interval ranging from about 68.00 to 78.61. This means that based on the model used, we can be 95%
confident that the actual value will lie within this range. Similarly, for period 38, the forecasted value
is 71.03, with a confidence interval of 65.38 to 75.98. This format allows stakeholders to assess the
reliability of the forecasts, as wider intervals indicate greater uncertainty. Monitoring these values
over time can help in decision-making processes, especially in contexts like finance, economics, or
supply chain management, where predictions are crucial for planning and strategy.

3. Conclusions

In conclusion, the comparative analysis of the GM(2,1) and GAO-GM(2,1) models highlights the
superior predictive capabilities of the GAO-GM(2,1) model. The metrics demonstrate a clear
advantage for the GAO-GM(2,1), with a significantly lower Mean Squared Error (MSE) of 62.384
compared to 86.092 for the GM(2,1), as well as a lower Root Mean Squared Error (RMSE) and
improved AIC and BIC values. These findings indicate that the GAO-GM(2,1) model not only
provides more accurate predictions but also achieves this with greater efficiency. The performance
of the Genetic Algorithm Optimizer (GAO) over multiple iterations illustrates a systematic
convergence toward optimal solutions, as evidenced by decreasing mean and best values.
Additionally, the analysis of residuals indicates that the model meets the assumption of normality,
further validating its robustness. Forecasting results, accompanied by 95% confidence intervals,
provide valuable insights for stakeholders, emphasizing the reliability and practical utility of the
model in decision-making processes. Overall, this comprehensive evaluation underscores the
effectiveness of the GAO-GM(2,1) model in delivering precise and actionable forecasts in dynamic
contexts such as oil price prediction.

4. Limitations and Future works
A. Limitations

This study is constrained by its focus on a limited dataset covering only the period from January 2021
to December 2023, which may not fully capture longer-term trends or variations in oil prices. The
GAO-GM(2,1) model’s effectiveness is assessed using specific performance metrics (MSE, RMSE,
AIC, and BIC), which may not encompass all relevant factors affecting forecasting accuracy.
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Additionally, external variables such as geopolitical events and economic shifts are not incorporated
into the model, potentially limiting its ability to predict price changes under varying market
conditions.

B. Future Study

Future research should aim to extend the dataset to include a broader historical range, enabling the
analysis of longer-term trends and seasonal patterns in oil prices. Incorporating additional influential
factors, such as global economic indicators and geopolitical risks, could enhance the model’s
predictive power. Furthermore, exploring the integration of hybrid models that combine GAO-
GM(2,1) with other forecasting techniques may yield improved accuracy and robustness in
predictions, while sensitivity analyses could help evaluate the impact of different modeling
assumptions on outcomes.
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