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Abstract
 A numerical solution to the frequency equation for the transverse vibration of a beam

(Simply Supported with symmetric overhang) is done. It is proposed two limiting cases of a
beam with no overhang, and no span. This agrees with the cases in which the supports are at
the nodal Points of a freely vibrating beam. Also the numerical results compared with the
analytical solutions for this study are coincident.

An approximation to the solution of the frequency equation for beams with small
overhang is presented and compared with the numerical solution. This approximation is quite
useful to determine a beam’s flexural stiffness (EI), or modulus of elasticity (E), by free
vibrating of a simply supported beam.
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Nomenclature:
A Beam Cross-section area (m2)
C1, C2, C3, C4 Constant
E Beam Young modulus of elasticity (N/m2)
I Beam Second moment of area (m4)
K1 Fundamental root of frequency equation
L Length of the Beam (m)
EI Dynamic flexural stiffness
B Base. horizontal dimension (length)
H Height, vertical dimension (length)
g Acceleration of Gravity (m/Sec2)
X1,X2,X3 Normal Function
W Total Beam Weight (kg)
W/gL Beam mass / Weight
Ecalculated E calculated from equation (9)
Etrue Best estimated E
Eoverhang factor to account for specimen overhang at supports
Fshear factor to account for shearing deformations and rotary inertia
Fsupport factor to account for non-rigid supports
FI, FW, FK Factor of account [13]

Beam Mass Density (kg/m3)
f Beam Natural Frequency  (HZ)

t Time (sec)
Beam Overhang (mm)

S Beam Span (mm)

Introduction:
Since the mid-seventies the dynamic behavior of cracked shaft has been investigated

increasingly because damages in turbines, generators, pumps, and other machines occurred
quite often. This caused costly shutdowns of entire plants and was sometimes followed by the
total loss of the machine.  Fracture of a shaft which means crack are originated at points of
stress concentration either inherent in design or introduced during fabrication on or operation.
Cracks defined as micro or macro interrupt the system in principle is unavoidable. Also the
initiation occurs during the vibration especially when the shaft is unbalance or miss-alignment
[1].

Timoshenko and others [1] account for shearing deformations on the flexural vibration
of beams. Note that this factor is slightly conservative (E calculated < E true).
For h/S = 1.5/94 = 0.0166, F shear = 0.996; for h/S = 1.5/70 = 0.021, F shear = 0.992. As h/S
increases, the correction factor F shear becomes more conservative.
 Pellerin [2] was investigated the use of transverse vibrations of beams to determine the
modulus of elasticity, E, of lumber and then predict strength. He examined free vibration of
two systems. One was a beam freely supported at two nodal points, and the other was a beam
simply supported at the ends. These two systems have analytical solutions to the equations of
motion and can be found in the literature [3,7]. In these two cases, the supports are located at
distances 0.224 times the length of the beam from the ends (nodal points), and at the ends of
the beam. Dimarogonas and Papadopoulos [10] have computed the flexibility matrix for a
beam, They have modeled the longitudinal and bending vibrations with 2x2-flexibility matrix
[6]. For stress analysis purposes, Rice and Levy [11] computed the local flexibility
corresponding to tension and bending, including their coupling terms.. Dimarogonas and
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Massouros [12], combined this spring hinge model and developed a frequency spectral
method to identify any cracks in various structures or beams.

 In practice, a beam has some overhang and is never supported at its extreme ends. In
this search, the vibration of a beam with an overhang of different length is investigated
numerically, an approximate formula for small overhang is proposed, and the results are
compared.

Determine the natural Frequency:
In order to determine the natural frequency (f), of a beam (simply supported with

symmetric overhang) of different length, we use the methodology used by Timoshenko [3]
and Seto [5] and for brevity refer the reader to these publications. Also, we assume that the
cross-sectional dimensions of the beam are constant and small in comparison to its length this
is by ignoring the effects of rotary inertia and shearing deformations. A beam vibrates
transversely in one of its natural modes, the deflection at any location Varies harmonically
with time (t), as follows:

)2sin2cos( ftBftAXy                                                                   ----------(1)

Where X is strictly a function called a (normal function) of distance (x) along the
beam and satisfies a fourth-order ordinary differential equation which can be written as  [7]: -

044 XKX .

The general solution to this differential equation has the following form:
kxCkxCkxCkxCxX sinh4cosh3sin2cos1)( ----------(2)

And for transverse vibration of beams:

EI
A
fK

2
4 )2(

                                                                                                   ----------(3)

The constant (C1) to (C4) must be determined from the boundary conditions at the ends of
the beam. Solve for these constant leads to the frequency equation specification for the
boundary conditions under consideration.
For the considered  beam (simply supported with symmetric overhang), it is  divide into
three sections with three coordinate systems and origins. As Shown in (Fig.1) below for
beam geometry.

     Fig.1 Geometry of Beam with an Overhang
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 Let X1, X2, and X3 be the normal functions of the beam sections [4,5]. The general solution
for the normal functions can be expressed as:-

10kx1D1sinhkx1C1sinkx1B1coshkx1cosA1X1 Xfor
20kx2D2sinhkx2C2sinkx2B2coshkx2cosA2X2 Xfor      ----------(4)
30kx3D3sinhkx3C3sinkx3B3coshkx3cosA3X3 Xfor

With these three normal functions, we have to satisfy a number of boundary conditions. Due
to the Principle of Strength of Material [6,8], the ends of the beam both moment and shear are
zero. Also at the midpoint ,deflection is zero, slope and moment are continuous. These (12)
boundary conditions are expressed mathematically as follows:
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Where ( ) is beam overhang with (0 < ), (S) is beam span with (0 < S), and (L) is beam
length with the (S < L). If we define (  = S/L) as the ratio of span to length, then the overhang
can be expressed as (  = L (1– )/2).
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From the boundary conditions and the normal functions we can construct a (12 x 12)
matrix of the coefficients of the (12) constants. The elements of the matrix consist of the
trigonometric and hyperbolic terms of the normal functions is constructed. At x1, x2, x3 = 0
the arguments of their respective terms are zero.

 At x1, x3=  the arguments of their respective terms are k , that is kL (1 - )/2. At (x2
= S) the arguments of its terms are kS, that is kLa . Therefore all the arguments are either zero
or kL (1- )/2 or kL . If a (span to length ratio) is fixed, then the arguments are a function of
kL only.

This set of (12) homogeneous equations will have non-trivial solutions only if the
determinant of the coefficients vanishes. Expansion of the (12 x 12) determinant is the
frequency equation for a simply supported beam with symmetric overhang. Roots of the
frequency equation, numerical values of kL forcing the determinant to vanish, correspond to
the natural frequencies.

 We are interested in the first non-zero root, the kL value that corresponds to the
fundamental natural frequency. Thus, the minimum non-zero kL value that makes the
determinant zero will be used to calculate the fundamental frequency (specific for the
overhang corresponding to the chosen a). We re-write Eq 3 as:

AL
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                                                                                        ----------(5)

We define K1 as the transformed fundamental root of the frequency equation:

WL
gLEIk

AL
EIkf

kLk

41
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22

1 2

                                                                                                    ----------(6)

where:
Gravityofonacceleratig

weightbeamtotalW

lengthmassbeam
gL
W /

The Steps of Calculation:
Select a value for  ratio of span to length (S/L) with (1 >   > 0). For =1 or =0 with

a special values of kL. Then Find the determinant of the (12 x 12) matrix by (a). Using
Gaussian elimination program. Multiplying the diagonal terms to calculate the determinant.
Check the determinant against a very small number until the determinant is close enough to
zero. Calculate K1 = [(kL)2/(2 )]2, this K1 is specific for the a being investigated.



Al-Rafidain Engineering             Vol.17       No.1                           Feb.   2009

88

Idealized Equation
The following idealized equation from Timoshenko and others (1974) is used to

calculate flexural stiffness EI using transverse vibration of a simply end-supported beam:

gL

WLfEI 2

42

2

                                                                                             ------------(7)

Equation (7) was derived for an idealized homogenous material with constant cross
section and rigid supports at the extreme ends of the member for boundary conditions
rectangular shape (lumber), which, although not necessary (for example, the method is valid
for constant cross section, I shape, T shape,), further defines the moment of inertia I:

12

3bhI                                                                                                        --------------(8)

The idealized equation takes the final form

3

2

3

32

3

42
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L

Kb
Wf

Kbh
WLf

L
W

Kbh
LfE                                                 --------------(9)

where the constant K = ( /2)2 g/12 (that is, 201.641 cm/s2, 79.386 in/s2). This
commentary discusses six factors that affect the calculated flexural modulus of elasticity E
using Equation (9). The six factors are multiplicative [13] :

KWIportshearoverhangtruecalculated FFFFFFEE sup                                       --------------(10)

Overhang
Numerically investigated the effect of symmetric overhang on the transverse vibration

of a beam (beam in the generic sense) with matching results for beams with rigid supports at
the ends (span-to-length ratio S/L = 1,where S is span), rigid supports at mid-span (S/L = 0),
and a free–free condition (S/L = 0.442). It developed an analytic approximation to the
vibration equation for small symmetric overhang. His equation accounting for overhang is

gL
WSfEI 2

42

2

                                                                                   ------------------(11)

Comparing Equations (11) and (7) results in the definition of the overhang factor
4

S
LFoverhang                                                                                  ------------------(12)

Table.(1) the un conservative error (Ecalculated > Etrue) associated with ignoring overhang are
introduced. Some transverse vibration systems that use software based on Equation (9) ask
only for the input of L.
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Table 1—Overhang (symmetric) factor
(L/S)4L/S(L/S)4L/S(L/S)4L/SLength 4-in overhang2-in overhang1-in overhang
1.601.131.261.061.121.0372
1.421.091.191.041.091.0296
1.321.071.151.031.071.02120
1.261.061.121.031.061.01144

 For this software. due to overhang could be minimized if span S were input in place
of  specimen length  L.  Then  the  error   could  be  L/S  rather  than  (L/S)4 because the mass per
unit length would be incorrect using span instead of length. Considering overhang, it is
recommended to :

use a corrected formula (Eq. (11)) to explicitly account for overhang or
with systems that utilize Equation (9), use span S rather than specimen length L.

Constant K
The constant K in Equation (3) theoretically should be [( /2)2 (g/12)]. If a different K

is used, then the factor accounting for this is

K

g

FK
122

2

As shown, if the K used is greater than the theoretical value, then Ecalculated < Etrue and
if less, Ecalculated > Etrue. Considering the constant K, it is recommended to

set K to its theoretical value or
set K to L/S times its theoretical value only when S is substituted for the L in the Equation

(9).

Results:
The lower solid curve in (Fig.2) is K1 computed as described as a function of (S/L). As

(S/L) approaches 1, K1 numerically converges to (2.47) which agrees with the analytical
solution [3] of a simply supported beam with no overhang ([( )2/(2 )]2).

As (S/L=0.56), ( =0.22L), K1 is (12.68) which agrees with the analytical solution [3]
of a (free-free) beam with nodal (no deflection) points at (0.22L) and (0.78L),
([(4.73)2/(2 )]2).

As (S/L) approaches 0, K1 numerically converges to (5.001) which agrees with the
adjusted analytical solution [7] of two back-to-back (fixed-end to fixed end) cantilever beams
([(1.875 × 2)2/(2 )]2).

For  small  values  of  ( ), we ignore the overhang while still keeping the same beam
mass per unit length, we would substitute (S4) for (L4) and use (2.47). The approximation for
K1 is then  plotted as the curve in Fig. 2.

4

4

1 47.2
S
Lk

 At (S/L=0.85) the ratio of the approximation to numerical solution is (1.009) while at
(S/L=0.80) the ratio is (1.026). Substituting this approximation into Eq 6 results in a simple
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approximation of the solution to the frequency equation for beams (simply supported with
symmetric overhang):-

WS
gLEI

f 4
2 47.2

Transverse vibration is used to first calculate stiffness EI and then E, using a measured
or  assumed  I.  It  is  extremely  important  to  be  consistent  in  research  which  I  is  used.  If  a
regression is developed (for example, strength versus E) using one I (for example, measured),
then it should be noted so that the other I (for example, assumed nominal) is not accidentally
used in it subsequently.

Also, an apparent change in the quality of the forest resource, as measured by E
calculated, might actually be attributed to a change in dimension if nominal dimensions are
used.

Buckling is dependent on E; therefore, the engineer using E measured by transverse
vibration has to be made aware of exactly how E was calculated.

Conclusions:

The numerical solution of the frequency equation of the free transverse vibration of a simply
supported beam with symmetric overhang of arbitrary length is presented.

 A simple analytical approximation to the numerical solution for the case of small overhang is

shown to be quite good for ( 85.01
L
S ) and reasonable for ( 80.085.0

L
S ).

 The approximation valid for a vibrating beam (Simply supported with small
overhang), can be used to compute a beam’s flexural stiffness (EI) from measured frequency
(f), measured geometry (S, L, and W) and could result in a conservative estimate of (EI). The
beam’s modulus of elasticity (E) can be computed if (I) is known

Fig.2 the Approximation of (K1) vs. the Function (S/L) of
Beam with an Overhang
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