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Abstract
image segmentation is often the most time-consuming part of image processing

systems. Traditionally, systems employing real-time color-based segmentation are either
implemented in hardware, or in very specific software systems. This paper describes an
FPGA implementation of a skin color segmentation based on a neural network. The proposed
segmentation approach is an essential stage for face detection. The system uses a multilayer
feedforward  neural architecture with three-inputs, one hidden layer, two output neurons and a
pipelined saturating linear activation function to simplify the FPGA hardware
implementation. The system was tested by using different colored face images for face
segmentation problem and its performance was compared with the results obtained using
advanced software system designed specifically for face segmentation. A comparable
performance was achieved and a speed up of (64583) was estimated compared to a Pentium 4,
2.4 GHz general purpose sequential computer and when it is compared to reduced instruction
set computer IBM RISC 350 station, it was (407).
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1   INTRODUCTION

Image segmentation, which aims to divide a given image into homogeneous and
meaningful regions, is the crucial step in image processing since it directly affects the
performance of subsequent operations such as image analysis, measurements, detection and
classification. Despite the multitude of image segmentation methods proposed in the last three
decades[1]., the quest for new more effective methods continues. This is partly due to the
necessity to handle as broad a category of images as possible, partly to meet the real-time
demands in practical applications.

Artificial neural networks(ANNs) have been widly used in image segmentation. One
of the early applications of the use of ANNs in medical image segmentation was by Ozkan et
al., who used the backpropagation learning to segment medical images[2]. Uchiyama and
Arbib used competitive learning(CL) to cluster colors in image[3]. Littmann and Ritter
developed an ANN, named local linear maps(LLM), for adaptive color segmentation and
compared  it  with  statistical  methods[4].  It  has  shown that  ANNs are  well-suited  for  using  in
segmentation problems than conventional methods.

But in the field of computational speed, using of sequential computers to implement
neural based segmentations seems to be practically unsuitable in real time image processing
applications such as mobile robot applications, or other domains where interaction with
humans or dynamic world is required such as videophone. To speed up calculations in ANNs
which are softwarely implemented, computers with high performances are required. Littmann
and Ritter[4] used an IBM RISC 350 station for implementation of LLM network. Hardware
implementation of ANNs speeds up the computational performance and in consequently
speeds up the required bit rates for such real time applications. Boussaid et al., described an
analog VLSI implementation of a skin detector based on multilayer feedforward neural
network[5]. Fiesler developed a high speed image segmentation system based on single,
onchip CMOS analog processor[6].

We address in this paper a digital techniques coupled with parallel processing
potential of neural networks for segmentation of skin in colored images. A hybrid adaptive
system which combined the advantages of knowledge based and neural methods is proposed.
This system is a special-purpose object detector that can segment arbitrary objects in real
images with a complex distribution in the feature space in real time. This is achieved after
training with one or several previously labeled image(s). The proposed adaptive segmentation
system uses local color information to estimate the membership probability in the object,
respectively, background class. The classification methodology is more similar to that used in
[4] and [5], while the implementation technique differs. The system can be applied to detect
and to localize the human face in colored images in real time. The system is hardwarely
implemented using FPGA techniques (see Fig. 1)..
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Fig. 1:  The system of Face detection
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2   COLOR REPRESENTATIONS

So far, the RGB system is the dominating representation of color due to its importance
for television and camera systems. Physiologically, this representation is similarly realized in
the human retina that consists of three color-sensitive photoreceptor types with a maximum
spectral sensitivity corresponding to red, green, and blue. Besides the RGB system there is a
variety of other representation that can be constructed by linear or nonlinear transformations
from the RGB values[4]. One  major  disadvantage  of  the  RGB  system  is  the  dependency
of all three parameters from the light intensity. This disadvantage is avoided in other
representation schemes where color and intensity are represented independently. One such
system is the Yuv color space. The color plane forms an equilateral triangle that can be
constructed in the RGB cube by connecting its R,G, and B corner. The intensity Y is
perpendicular to the image plane. The value u and v are the Cartesian coordinated of the color
value.  The  value  for  Y  , u, and v are calculated as Y=(R+G+B)/3, u=3(R-B)/2Y, and
v= 3 (2G-R-B)/2Y.

The formulation of this system in polar coordinates the HIS system, distinguishes hue,
specified by the angle, saturation as radial component, and intensity again  vertical  to  the  uv
plane. We prefer the Yuv system because of its continuous representation of the color
components. A similar effect of intensity independence can be achieved by simply calculating
color ratios QRG=R/(R+G) and QRB=R/(R+B). This color representation is referred to as YQQ
space.

3   SKIN DETECTION USING NEURAL NETWORKS

Neural networks have the ability to learn complex data structures from a set of
example patterns. They have the advantage of working fast (after the training phase) even
with large amount of data. The results presented in this paper are based on a multilayer
feedforward network architecture, known as the multilayer perceptron(MLP). The MLP is a
powerful tool that has been used extensively for classification, nonlinear regression, speech
recognition, hand-written character recognition and many other applications [7]. The
elementary processing unit in a MLP is called a neuron or perceptron. It consists of a set of
input synapses, through which the input signals are received, a summing unit and a nonlinear
activation transfer function. Each neuron performs a nonlinear transformation of its input
vector; the input-output relationship is given by:
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where W is the synaptic weight vector, X is the input vector,  is a constant called the bias, f is
the activation function, superscript T is the transpose operator, and (X). is the neuron output
signal.

An MLP architecture consists of a layer of input units, followed by one or more layers
of processing units, called hidden layers, and one output layer. Information propagates, in a
feedforward manner, from the input to the output layer; the output signals represent the
desired information. The input layer serves only as a relay of information and no information
processing  occurs  at  this  layer.  Before  a  network  can  operate  to  perform the  desired  task,  it
must be trained. The training process changes the parameters of the network in such a way
that the error between the network outputs and the target values (desired outputs) is
minimized.
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In this paper, we propose a method to detect skin color. The skin detector uses an
MLP with three inputs, one hidden layer and two output neurons (see Fig. 2). Each pixel is
represented by either RGB (red, green and blue) or Yuv color components. These three color
components are used as inputs by the neural network. The output of each hidden neuron is
given by (1), and the network output is given by:

(2))(
1

Xcy j

Q

j
j

where j(X)  is the output of the j-th hidden neuron, and cj is the synaptic weight of the output
neuron.

To estimate the neural network parameters (i.e. synaptic weights and biases), a
training set containing 8800 skin and non-skin pixels was extracted from set of images. The
network was trained using backpropagation algorithm [8]. The generalization ability of the
trained network is tested using a set containing several thousands of skin and nonskin pixels.
The training and test sets were extracted from images containing skin colors of people from
different races and under different lighting conditions.

4   ANN IMPLEMENTATION PLATFORMS

The implementation of applications such these involve different processes like image
processing and neural networks on a general purpose computer can be easier but not very
efficient in terms of speed. The reason being the additional constraints put on memory and
other peripheral device management.

An important aspect of computer architecture is the design of the instruction set for the
processor. The instruction set chosen for a particular computer determines the way that
machine language programs are constructed. Early computers had small and simple
instruction sets, forced mainly by the need to minimize the hardware used to implement them.
As digital hardware became cheaper with the advent of integrated circuits, computer
instructions tended to increase both in number and complexity. Many computers have
instruction that include more than 100 and sometimes even more than 200 instructions. These
computers also employ a variety of data types and a large number of addressing modes. The
trend into computer hardware complexity was influenced by various factor, such as upgrading
existing models to translation from high- level language into machine language programs, and
striving to develop machines that move functions from software implementation into
hardware implementation. A computer with a large number of instructions is classified as a
complex instruction set computer, abbreviated CISC.
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Fig. 2: Neural Network structure for pixel face detection
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A number of computer designers recommended that computers use fewer instructions
with simple constructs so they can be executed much faster within the CPU without having to
use memory as often. This type of computer is classified as reduced instruction set computer
or RISC. The major characteristics of RISC processor are:1) Relatively few instructions 2)
Relatively few addressing modes 3) Memory access limited to load and store instructions 4)
All operations done within the registers of the CPU 5) Fixed-length, easily decoder instruction
format 6) Single-cycle instruction execution 7) Hardwired rather than microprogrammed
control.

System implementation on CISC or RISC is considered as a software implementation.
Application specific hardware offers much greater speed than a software implementation.
Most artificial neural network models have been implemented in software, but the size and
complexity of many problems has quickly exceeded the power of conventional computer
hardware.

It is the goal of neural network engineers to transfer the progress made into new
hardware systems. These are intended to accelerate future developments of algorithms and
architectures, and to make possible the use of dedicated neural networks in industrial
applications.

At  present  there  are  three  main  avenues  of  research  to  implement  the  ANN  in
hardware, each with its own merits and associated problems, namely the digital VLSI,
analogue VLSI and optical approaches. This section does not consider optical
implementations  which  are  altogether  different  from  the  VLSI  approach.  The  employed
technology defines the cost, performance and reconfiguration of ANN:i) analog
implementation  has  good performance  and  low cost  ,  but  it  is  difficult  to  implement  due  to
required references voltages ii)digital implementation (ASIC: Application Specific Integrated
Circuit)  has  higher  cost  and  poor  performance  compared  with  analog  one,  but  it  is  faster  to
implement. Both approaches (analog and digital-ASIC) have fixed topology, resulting in an
ANN suited only for one type of target application. Modern reconfigurable (FPGA) devices
can be used to implement neural networks in hardware[9,10]. Furthermore, digital
implementation, using Field Programmable Gate Arrays (FPGAs), allows the redefinition of
the topology using the same hardware. FPGAs have traditionally been configured by
hardware engineers using a Hardware Description Languages (HDL). The disadvantage of an
implementation using FPGA over ASIC is the performance. FPGA normally run slower than
ASICs.

4.1   Learning algorithm implementation

   The learning algorithms used for modifying weights values using inputs and training
data are as an important part of the network system as the architecture itself. Implementation
of learning in VLSI systems takes three forms; off-chip, ’chip-in-the-loop’ and on-chip
learning. In off-chip learning, weights values are calculated externally by software and are
then downloaded to the neural network which is then used only for recall. This is the easiest
but least favored method, since training times can be long. Off-chip learning does have the
advantage in that it is easy to change the learning algorithm simply by modification of
software. It also allows the use of floating point arithmetic for the algorithms which may not
be feasible on a neural network chip. ’Chip-in-the-loop’ training chip may also be considered
as an off-chip method since the training algorithm is still run in software. However, in this
case the neural network is used in the training loop which removes the need for a software
model of the network itself, and compensates for device variability. The main drawback of
this method is the communications overhead in continually reading and writing data across
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the network/host interface. On-chip learning must be seen as the most desirable method, since
it may open the way to stand-alone neural network chips. The main advantage of running the
learning algorithm in hardware is the gain in speed.

4.2   Numerical Representation

In general, neural networks have low-precision requirements, even though the exact
specification is algorithm and application dependent. Digital neurohardware can profit from
this property by using fixed-point arithmetic with reduced precision. Fixed-point
implementations are less complex and less area consuming than floating-point arithmetic and
therefore their use helps to reduce system cost[11,12].

4.3   Mapping Neural Networks on Parallel Computers

How can we map a specific neural network on a parallel computer to achieve the a
maximum performance? [13]. The key concepts of an efficient mapping are load balancing,
minimizing inter-PE communication and minimizing synchronization between the PEs.
Furthermore, the mapping should be scalable both for different network sizes, and for
different number of processing elements. In Fig. 3, the weight matrix presentation of a simple
neural network (four neurons with four synapses each) is shown in the middle, while the left
side shows the conventional presentation of the same network. The rectangle N in the mid
part of Fig. 3 denotes the activation function of the neuron.

The circle wij represents the computation of the synapse: yi = wij*xj +yi-1 where yi-1 is the
result from the proceeding synapse.

4.4   Implementation of ANNs Activation Function
Direct implementation for non-linear sigmoid activation functions is very expensive.

There are two practical approaches to approximate sigmoid functions with simple FPGA
designs[14]. Piece-wise linear approximation describes a combination of lines in the form
of y=ax + b which is used to approximate the sigmoid function. Note that if the coefficients
for the lines are chosen to be powers of two, the sigmoid functions can be realized by a series
of shift and add operations. Many implementations of neuron activation functions use such
piece-wise linear approximations one of them is. The second method is lookup tables, in
which uniform samples taken from the center of sigmoid function can be stored in a table for
look up. The regions outside the center of the sigmoid function are still approximated in a
piece-wise linear fashion.

Figure 3.  Presentation of a neural network: conventional (left), weight matrix
(middle), mapped neuron-parallel (right)
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4.5   Implementation of the Pixel Skin Detection
The design and all of the work are geared towards the implementation of the MLP

neural network for skin detection in a modular fashion. The modular design means that the
network can become as large as practically possible thus providing a structure for more
complex application. In this implementation, the MLP are trained off-chip and the convergent
parameters then fed to the hardware for test and synthesis. The processing elements and the
complete architecture of the proposed neural network is shown in Fig. 4(a,b). The processing
element does the algebraic equations of the electric model of the neuron, that is, the
multiplication and sum required in the neuron's internal processing(see Fig. 4a).

Buffers are used to make the processing element works in a pipelined fashion to speed
calculations of input and weight vectores.

Because the number of processing circuits integrated in a FPGA chip is restricted and
because that it is not possible to make use of simultaneous computation since the a given layer
needs the result of the predecessor in order to operate, all layers use the same resources to
build a compact resources shared system, therefore, all layers are executed on the same
processing element units by using multiplexers and temporary buffers. The 1st layer uses all
the four PEs exist, while the 2nd layer uses only two of them, leaves the two other PEs unused.
Weights for each layer can be stored in the FPGA RAM Blocks. Layers implementation cycle
is  shown  in  Fig.  4(b). The n-parallel mapping shown in Fig.3 is used to map the MLP in
parallel architecture.

The sigmoid function has been substituted by a piecewise linear function. The
substitution is based on the selection of a linear equation that has a minimum least square
error with the original sigmoid function. This is achieved in software, where the sigmoid
equation that is used during the learning phase is approximated with a linear function that best
fit it, then the last function parameters are adapted. Using this approximation leads to reduce
the  at  most  bottleneck  problem  in  FPGAs  (the  multiplication).  Each  processing  element
output feeds the input of the activation function. But using two multipliers for each
feedforward node may be seemed a critical problem if the number of layer nodes exceeds the
number of embedded multipliers in the FPGA chip. To solve this problem, only one activation
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Figure 4:  (a) A block diagram of the processing element (PE)  (b) The
architecture layers implementation cycle of the  Neural Network
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function unit is built and made common to all feedforward nodes, such that the output nodes
use this unit sequentially in a pipelined manner. All the mentioned operations are controlled
by one control unit (see Fig. 4(b)). These operations are based on the fixed point
representation that is described in section 4.2. The minimum word length for each weight and
input elements is the one that should preserve the same generalization ability that achieved
from software. It is selected to be 10-bits.

5  EXPERIMENTAL RESULTS

The color segmentation system mentioned in previous sections have been applied to
detect and to localize the human face in colored images in real time. In this paper a FPGA
VLSI architecture that implements the segmentation network is proposed. Xilinx Spartan-3
FPGA of 200,000 gates is used for implementation. The FPGA digital hardware model has
been designed using Xilinx Foundation environment.

Table 1 presents the utilization summary of the Spartan-3 XC3S200, 50MHz chip
when the word length is set to 10 bits. The FPGA resources shown in this table are exploited
from all units of the designed architecture. From this table

Table 1: Utilization summary for the selected device: 3s200ft256-5
Component Number %utilization
Slices 206  out of   1920 10%
Slice Flip Flops 266  out of   3840 6%
4 input LUTs 248  out of   3840 6%
bonded IOBs 33    out of     173 19%
MULT18X18s 5      out of     12 41%
GCLKs 1      out of      8 12.5%
DCMs 1      out of       4 25%
7.361ns (Maximum Frequency: 135.851MHz)

one can see that only five (18×18bits) integrated multiplier is used. Four multipliers are used
by a layer which its index in the order sequence, each belongs
to every node, and one multiplier is used by the unique network's activation function that
operates in a pipelined fashion. The remaining seven integrated multipliers still available. One
device clock manager(DCM) among three other available is used. This DCM is connected to
the single used global clock(GCLK) to solve  many common problems that may occur. There
are two inputs and one output, thus 33 FPGA bounded I/O port are used. The 1st is the input
clock (clk) and its word length equal to 1 bit. The 2nd input is the colored pixel(Xi) and its
word length equal to 3×10=30 bits. The output port is the pixel class and its word length equal
to 2 bits.

The last row of table 1 shows that the designed network can operate as fast as of
frequency 135.851MHz, but of coarse if the FPGA chip works on this frequency.

The implementation speed performances are compared to the speed of software
implementation of the same segmentation network running on a 2.4GHz Pentium 4, General
Purpose  Processor:GPP, with 256 Mb  RAM  and    for   the IBM RISC 350 station that is
used in [4]. The time required to classify each pixel by using the FPGA hardware model
equals to (23×1/50000000=0.46) µs. This module used a 50MHz, Xilinx Spartan-3 200,000-
gate Platform FPGA - XC3S200. While the same function needs (31) ms when implemented
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in Pentium 4 GPP, resulting a speedup of (67391). While the speedup that achieved over the
IBM RISC 350 station is (407).

The speedup can be further increased by factors of 2.71. This is achieved when the
designed systems are mapped onto an FPGA model that can operate on the maximum
allowable operating frequencies.

The training and testing pixel's samples are gathered from an image that containing
different faces, skin and non skin regions taking into account that the color spectrum of this
image is wide (see left side of upper row of Fig. 5). Training samples are extracted from skin
and non skin regions, then each pixel is labeled with skin:1 or non skin:0 values(see right side
of upper row and middle row of Fig. 5).

Figure 5: Original colored, Sample and Segmented images
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           The segmented images shown in the lower row of Fig. 5 are achieved when the
original image pixels are represented as RGB or Yuv respectively.

6   DISCUSSION AND CONCLUSION

In this paper a method to detect and to segment skin color region that is suitable for
FPGA VLSI implementation has been proposed. To simplify the FPGA implementation, a
saturating linear activation function is used. Each pixel is represented by its RGB and Yuv
color components, which are used as inputs by the neural network. The proposed skin detector
offers a good trade-off between skin detection performance and implementation complexity.
The proposed system gives better performances than sequential computers or even than RISC
computers.

It has shown from Fig. 5 that neural networks based colored segmentation is well-
suited for classification of complex objects like human faces only on the basis of the single
pixel's color information. The classification turns out to be very robust even if the available
training data is limited. This can be seen from the segmented images where some faces which
are not included in the training samples are also segmented correctly according to the
generalization property of the ANN.  From the two versions of the segmented images, one can
see that the performance is largely independent of the chosen color representation (both RGB
and Yuv give well results).
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