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Nomenclature 

Symbol Description Unit 

Ar Aspect ratio Dimensionless 

g Gravitational acceleration m/s
2
 

H        Height of the  duct m 

h Heat transfer coefficient W/m
2
. K  

K Thermal conductivity W/m. K  

L Width of the duct m 

m Consistency coefficient Kg/ sec
(n)

. m 

n The Power law index Dimensionless 

 

Nu 
Nusselt number= ( )ch TTK

qL

−
 

Dimensionless 

Nua Average Nusselt number Dimensionless 

P       Pressure Pa 

Pr 

 
Prandtl number = �

�

�
�
�

�

α

υ
 

Dimensionless 

q  Heat flux W/m
2
 

Re       

Reynolds number =

)1( −
∞∞ �
�

�
�
�

�
�
�

�
�
�

�
n

L

u

mn

Luρ
 

Dimensionless 

T Temperature K  

u Velocity in x-direction m/s 

v Velocity in y-direction m/s 

x & y Cartesian coordinate m 

��

Greek Symbols Description Unit 

α  Thermal diffusivity m
2
/s 

f Arbitrary function, f (x,y)  

∆Τ  Temperature difference K  

x∆ & y∆  Grid size in the x and y directions, respectively m 
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Dimensionless temperature =  
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µ  Dynamic viscosity kg/m. s 

υ  Kinematics viscosity m
2
/s 

ρ  Density kg/m
3
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yxτ
 

Normal stress in the y direction N/m
2
 

ψ  Stream function m
2
/s 

ω  Vorticity 1/s 

 

Subscripts 

c Cold. 

h Hot. 

i,j Denotes nodal positions. 

o Reference condition. 

 

Superscript 

∗  Dimensionless parameter 

��
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��
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 For Newtonian Fluids  

 

 

 

 For non- Newtonian Fluids  
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ntroduction:I 1.��

 

            It is important to have knowledge of the characteristics of the forced convective heat transfer 

in steady laminar non-Newtonian flow through ducts with arbitrary shaped cross-sections in order 

to exercise proper control over the performance of the heat exchanger, and the heat transfer in the 

combined entry region of rectangular ducts is of particular interest in the design of compact heat 

exchangers. Forced convection heat transfer of Newtonian and non – Newtonian fluids through 

ducts has been the subject of several studies in the last years. The attention is due to the wide range 

of applications such as petrochemical industries, heat exchangers that are widely used would  

include boilers and condensers in steam power plant  and petrochemical plants [1]. In these 

applications passages are generally short and usually composed of cross-section such as rectangular 

geometry. Also, food, polymer, petrochemical, rubber, paint and biological industries fluids with 

non-Newtonian behavior are encountered. Forced convection heat transfer through ducts involves 

different aspect of problems. This variety of problems comes from possibly geometry characteristic 

of ducts, kind of fluid, nature of fluid flow, etc. In the present work, a numerical study is performed 

to analyze the laminar forced convective heat transfer of Newtonian and non – Newtonian fluids 

through rectangular duct under two different cases of thermal boundary conditions. The fluid 

motion and heat transfer are affected by Reynolds number, Prandtl number, and power law index 

(n) of Power law model [2]. The power law index (n) determines the nature of fluid, that is, 

Newtonian (n=1) and non – Newtonian fluids ( 1> n < 1).  

      

2. Mathematical Formulation: 

            Consider steady state, two – dimensional, laminar incompressible flow of a non – 

Newtonian fluid with constant physical properties (kinematics viscosity and thermal diffusivity) 

flowing through a duct have rectangular cross sectional area of width (L) and height (h) under two 

different cases of thermal boundary conditions, these boundary conditions are:  

Case(I) :-   

            The vertical walls are heated with different uniform temperatures ( c h T T & )  and the 

horizontal walls are perfectly insulated (B.C.1), as shown in (Fig.1a). 

Case(II) :-   

            The lower wall is heated by applying a uniform heat flux (q) and the other walls are 

isothermally cooled ( cT ) (B.C.2), as shown in (Fig.1b). 

               The governing equations are the following: 
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            In the above equations, (u, v, �, P, T ) are the fluid velocity components (Fig.1), the thermal 

diffusivity, the pressure and the temperature. In fact Eqs.(� to �) are system of partial differential 

equations. They are represent the base for forced convection phenomenon for 2D ducts, presented 

by mass, momentum and energy conservation equations. 

As mentioned in Ref.[3], the Power law model for non – Newtonian fluids can be represented as: 

`             
n

y
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=τ                                                                                                         

Hence, the shear stresses:  
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where m is Consistency coefficient for the power law model. 

            Since it proves to be more convenient to work in terms of a stream function and vorticity, 

the stream function �(x,y) is introduced in the usual manner: 

             
y

�
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∂
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�
v

∂
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−=                                                                                                            

            It is evident from Eq.(9) that the stream function satisfies the continuity equation identically. 

Further more, for this plane flow field, the only non – zero component of the vorticity is:   

            
y

u

x

v
�

∂

∂
−

∂

∂
=                                                                                                             

         Combining the definition of vorticity and the velocity components in terms of the stream 

function, and cross – differentiating the Eqs.(2) and (3) to reduce the number of equations and 

(5)��

(6) 

(8) 

(7)��

(9) 

(10) 

(1) 

(2)��

(4) 

(3)��
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eliminate the pressure terms, and substituting for (�) from Eqs.(6 - 8), a new set of equations is 

obtained with independent variables �, � and T: 
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             Now, the mathematical problem formulated above is placed in dimensionless form by 

defining the new dimensionless variables [4]: 
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   Inserting all the dimensionless variables into Eqs.(11) to (16), yield the following final non 

– dimensional equations: 
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3. Numerical Method : 

            Numerical methods have been developed to handle problems involving nonlinearities  in the 

describing equations, or complex geometries involving complicated boundary conditions. A finite-

difference technique is applied to solve the governing equations. These three equations (Eqs.(17), 

(18), and (19)) are to be solved in a given region subject to the condition that the values of the 

stream function, temperature, and the vorticity, or their derivatives, are prescribed on the boundary 

of the domain. The finite difference approximation of the governing equations is based on dividing 

the interval ( 01 * ≥≥ x )into (m) equal segments separated by (m+1) nodes. Likewise, the ( *
y ) 

interval was divided into (n) segments. The usual procedure for obtaining the form of partial 

differential equation with finite-difference method [5 & 6] is to approximate all the partial 

derivatives in the equation by means of their Taylor series expansions. 

           Eq.(17) can be approximated using central – difference at the representative interior point 

(i,j), thus, Eq.(17) can be written for regular mesh as:    

          ])�2(�2(/[]))(�(�))(�())(�([ 22222*
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          Also, a central – difference formulation can be used for Eqs.(18), and (19). But this problem 

will need to be solved for reasonably high values of Reynolds numbers; it is known that such a 

formulation may not be satisfactory owing to the loss of diagonal dominance in the sets of 

difference equations, with resulting difficulties in convergence when using an iterative procedure.  

          A forward – backward technique can be introduced to maintain the diagonal dominance 

coefficient of (�i,j) in Eq.(18) and (�i,j) in Eq.(19) which determines the main diagonal elements of 

the resulting linear system; this technique is outlined as follows [7]: 
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           To assure the diagonal dominance of the coefficient matrix for )ji,
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depends on the sign of ( � ) and (�) , Eqs.(18) and (19) are expressed in the following difference 

forms:  
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            An under – relaxation technique can be applied to accelerate the convergence of Eq.(28); the 

expression is used in this technique presented in the following :  
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Where (Fv) is the relaxation factor for the vorticity. The value of this relaxation factor is in the 

range of (0 to 2). 

            In order to obtain results of the conservation equations, The above equations (Eqs.(24), (28), 

and (29)) are subjected to the following boundary conditions [8]: 
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             Also, the following finite difference equation for the vorticity at a wall is adopted as the 

boundary condition for the vorticity equation:    

            
2�

)(3 1

2

1 �

n

��
� o

o −
−

=      where, x    yn ∆∆=∆ or  

            The physical quantities of interest in this problem are the local Nusselt number along the 

heated wall [9], defined by:          

            
)( ch TTk

qL
Nu

−
=                                                                                                    

and also the average Nusselt number, which is defined as: 

-: Case (I)��

           dy
x

�
Nu

  x

*a
*

�
=∂

∂
=

1

0 1or0

                                      

                                                        

-: Case (II)��

           dx  
�

Nu
h

a �=
1

0

1
                                                                                                          

            The numerical work starts with giving the distributions of stream function and temperature 

for forced convection as the zeroth-order approximation. Then, obtain the zeroth-order 

approximation of vorticity: Based on these old fields, equation (	�) is used to determine point-by-

point the new ( *ψ ) field, and equation (	
) is used to determine the new ( *ω ), while the energy  

equation (2�) is used to  determine  the  new  (� ) field.  The iteration process is terminated under 

the following condition: 

            5

,

,
1

,

,,
1 10−++ ≤− ��

Ji

ji
r

Ji

ji
r

ji
r τττ                                                                                 

(30) 

(32) 

(33)��

(31) 
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(r) denotes the iteration step.  );or,,( * θωψ    
* where,(�) stands for either ��

            Before starting the computational solution, the grid independence of the results must be 

tested. Thus, numerical experiments have been carried out to solve a two – dimensional problem in 

which the Power law index (n = 1). The Prandtl number in this test is set to be (6.7), while the grid 

size varies from (10×10) to (60×60) for different values of Reynolds number as shown in Fig.(2). It 

is found that the change in the Nusselt number for grid size of (35×35) and (45×45) is less than 

(0.8) percent for the range of Reynolds number ( 53 10Re10 ≤≤ ). Therefore, the number of grid that 

is adopted in the present study is (35×35) for both two cases. The number of grid point was selected 

as a compromise between accuracy and speed of computation. 

  ��

4. Results and discussion : 

Case (I) :- under B.C.1 

 

a-Temperature and Flow Fields: 

            The contour lines of the temperature distribution and flow fields for different values of 

system parameters are presented in Figs.(3) to (11). In this case, the energy is transported from hot 

wall to cold wall by conduction (25 ≤  Nua ≤ 38) at Reynolds number and Power law index (n) are 

less than (10) and (1) respectively. In the conduction regime, the isotherms are almost parallel to 

isothermal walls. The small value of (�)max characterizes a very weak convective flow. However, 

an increase in Re or (n) results in an asymmetric flow pattern producing streamlines near the walls, 

and change the direction of the isotherms, as shown in Figs.(3) and (4). As Re is increased further 

for a given n or n is increased for high values of Re, the streamlines more closer to the vertical 

walls, producing strong boundary layer effects on the isothermal walls. As a result, the stratified 

region become bigger, as shown in Figs.(5) and (6). Although the flow remains unicellular at all 

Reynolds numbers and Power law index (n), the velocity in the upper right corner and lower left 

corner increases substantially. Fig.(7) represent the variation of stream function with Reynolds 

number compared for different values of Power law index and (Pr=10, Ar=1.0). At low Reynolds 

(Re < 2000), � seems to be invariable with Pr, Ar, and n (i.e. at n < 0.2), this is due to dominance of 

conduction as mentioned before. At higher Re, the stream function (�) increases with increasing Pr 

or n. It is also seen that the value of �max increases and reaches the peak value at Re = 10
4
, for Pr = 

100, Ar=1.5, and n = 2. It is also show that the peak value of �max depends on Re and n at a fixed Pr 

and Ar.    
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b -Effect of Aspect Ratio: 

            Effect of aspect Ratio on the flow pattern can be inferred with reference to Figs. (9) and 

(10). It is worth while to note that any increase in aspect ratio increase the appearance of convective  

mode. The reasoning for this is as follows. As the aspect ratio increase, the isothermal walls become 

bigger than the insulated walls. The results of the numerical computations for streamlines and 

isotherms at (Re=10
4
) with (Ar= 0.5, 1, and 1.5) are plotted in Figs. (9 & 10). As depicted in this 

Figures. This is expected because the distance between isothermal wall at (Ar=1.0) is bigger than  

of (Ar=1.5). Figs. (11) and (12) are represent the relation between Nusselt number (Nua) and aspect 

ratio (Ar) compared for different value of Reynolds number. At low aspect ratio (Ar), (Nua) seems 

to be invariable with Reynolds number this is due to dominance of  condition as mentioned before. 

At higher  aspect ratio (Ar) or when convective becomes dominant, (Ar) increasing Nusselt number 

(Nua), since for a higher aspect ratio, the path along which the ascending flow is heated is longer.           

 

c-Heat Transfer Coefficient:  

            To understand the heat transfer process by forced convection, it must be to evaluate the heat 

transfer coefficient (h), but to make the present work having generality, the calculated results must 

be in dimensionless form. Therefore, it must be needed to evaluate Nusselt number (Nu) as a 

function of influence parameters. Fig.(8) shows the variation of average Nusselt number versus 

Reynolds number with different values of Power law index and Prandtl number (Pr=10) on the hot 

wall of the duct. It is seen that for range of Reynolds number before (2000), the rate of increase in 

aNu  against Re for different values of n at a fixed Ar and Pr is relatively small. But, aNu increases 

rapidly as n increases for Re0� 10
4 

expressing the increase of convective heat transfer. It is also 

noticed that the effect of n on aNu  is more pronounced as the Re numbers increase.   

Case (II) :- under B.C.2 

a-Temperature and Flow Fields: 

            Figs.(13) to (22) show the contour lines of the temperature distribution and flow fields for 

the present case. A change in boundary conditions from (Case (I)) to (Case (II)), modifies the 

temperature and velocity fields significantly. Fig.(15a) shows the streamlines at Re  = 10
4
, n = 0.1, 

Ar=0.5, and Pr = 10. This flow exhibits one rotating cell, covering all the region. This cell has a 

maximum magnitude (�max = 0.133). This cell is symmetric about the center line of the region. The 

convective velocity near the wall is lower than that along the line of symmetry. As Re  or n 

increases more the streamlines moves closer toward the line of symmetry, producing a strong 

boundary layer effects on the middle region of the duct, and increase the convective velocity in the 
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upper and lower middle region of the duct as shown in Figs.(13) and (15). Fig.(17) represent the 

variation of � with Re  for different values of n at Ar=1.0 and Pr=10. Furthermore, the isotherms 

are symmetric about the vertical line at x.=.0.5 for different values of system parameters, and the 

maximum temperature �max  always occurs at the middle of the lower wall, and is a function of Re , 

n, Ar, and Pr. Furthermore any increase in Re  or n caused a high change in temperature field which 

concentrated in the small region near the top surface as shown in Figs.(14), (16), and (20). The 

isotherms in the upper region are almost horizontal for a large portion of the duct which allows a 

large amount of heat to be rejected on the top wall, and gives the vertical walls weaker effects than 

that in case (I). For a fixed Re , the amount of energy removed on the top wall is increased with n. 

Indeed, the large scale modification in the temperature and flow fields due to the change in the 

boundary conditions from (Case(I)) to (Case (II)) is mostly concentrated in small region, near the 

top surface. A significant amount of energy is also rejected at the vertical surfaces when the Re  or 

n is small. However, the heat transfer on this surfaces decreases with an increase in Re  or n which 

clearly implies that the effect of the vertical walls boundary Conditions diminishes with higher 

velocities or higher Re .  

 

b- Effect of Aspect Ratio: 

            Effect of aspect Ratio on the flow pattern in case (II) can be inferred with reference to 

Figs.(19) and (20). It is worth while to note that any decrease in aspect ratio due to increase the 

appearance of convective  mode. The reasoning for this is as follows. As the aspect ratio increase, 

the heat flux walls become smaller.  Thus, there area for convective contribution, compared to the 

path for flow, Also it is seen the flow at (Re =500) for (Ar=1). Now, different values of aspect ratio 

will be taken examine the appearance of the flow. The results of the numerical computations for 

streamlines and isotherms at (Re=10
4
) with (Ar= 0.5, 1 and 1.5) are plotted in Figs.(19) and (20) 

which show the value of aspect ratio. As depicted in this Figures. This is expected because the 

distance between heat flux wall at (Ar=1) is bigger than  of (Ar=1.5). It is worthwhile to note that 

any increase in aspect ratio due to decrease the appearance of convective mode. Figs.(21) and (22) 

are represent the relation between Nusselt number (Nua) and aspect ratio (Ar) compared for 

different value of Reynolds number. At low aspect ratio (Ar), (Nua) seems to be invariable with 

Reynolds number this is due to dominance of  condition as mentioned before. At higher  aspect ratio 

(Ar) or when convective becomes dominant, (Ar) decreasing Nusselt number (Nua), since for a 

higher aspect ratio, the path along which the ascending flow is heated is smaller. 
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c-Heat Transfer Coefficient: 

            The average Nusselt number as defined by Eq.(33) is presented in Fig.(18). It is seen that for 

Re  and n are less than (2000) and (0.2) respectively, the rate of increase in aNu  is relatively small. 

Then, aNu  increases rapidly as Re  or n increases expressing the existence and increase of 

convective heat transfer. As already indicated by the temperature field, the average Nusselt number 

for the present case is higher than that for the case (I) for the same given condition. 

            Finally, twelve correlation equations have been predicted depending on variation of 

Reynolds number, Prandtl number, and Power law index of the Power law model for both two 

cases, by using least square method. 

    hhhhhhhhjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjhhhhhhhhhhhhhhhhhhhhhhhh                                                                                               

Case (I): under B.C.1                                                             �                                                                                                

a)  At (Ar=0.5): 

            953.0,501.0,Re301986.0 386.087304610 =≤≤= R    .n         n Pr  Nu
. .

a                            

and, 

            942.0,250,Re085.0 4.08305670 =≤<= R    n.            n Pr  Nu . .

a  �                            

b) At (Ar=1):  

             912.0,501.0,Re1 2.2785.0556.0 =≤≤= R    .n            n Pr 6.68Nu
  

a  

and,        

             949.0,250,Re037.0 5.195306560 =≤<= R    n.         n Pr  Nu
. . 

a   

c) At (Ar=1.5): 

               8991.0,501.0,Re264.0 47.1832.0932.0 =≤≤= R    .n              n Pr  Nu
 

a  

and, 

           962.0,250,Re0216.0 987.075908320 =≤<= R    n.          n Pr  Nu
. .

a  

 

Case (II): under B.C.2                                �                   

a) At (Ar=0.5): 

            89.0,501.0,Re335.76 036.1197.0367.0 =≤≤= R    .n           n Pr  Nu
  

a                          

and, 

                           959.0,250,Re233.7 78.085501490 =≤<= R  n.                n Pr Nu . . 

a
             

 b) At (Ar=1): 

            899.0,501.0,Re33.75 036.188.0989.0 =≤≤= R    .n                n Pr  Nu
  

a  

and, 

(34) 

(36) 

(35) 

(37) 

(39)��

(38) 

(40) 

(42)��

(41)��
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            959.0,250,Re77.6 069.089901490 =≤<= R  n.                n Pr  Nu
.. 

a  

c) At (Ar=1.5): 

           887.0,501.0,Re66.86 036.1878.0901.0 =≤≤= R    .n                n Pr  Nu
  

a  

and, 

           959.0,250,Re677.9 699.089901490 =≤<= R  n.           n Pr  Nu
. . 

a  

            The above correlations are acceptable in the range of Reynolds number (500 to 10
4
), Prandtl 

number (1 to 100), and Power law index ( n= 0.1 to 2 ).                                        

            To ensure that these approximation correlations are usable, the coefficient of determination 

(R) had been obtained for each equation. The minimum value of (R) was (0.887), that means these 

approximate equations are good for predicting the value of average Nusselt number.  

            Now, the values of average Nusselt number have been compared with those of other 

investigators using the same boundary conditions to show the validation of the present numerical 

results. 

               To compare the present numerical results with those of convection heat transfer in duct for 

Newtonian fluids. The power law index (n) in Eq.(28) is set to one, and the comparison has been 

done with a Rectangular duct subjected to different temperature on it's vertical sides with the top 

and bottom are insulated. Table (1) show this comparison with the studies of Y., S., Muzychka.[6] . 

            A similar comparison has been made with the solution of convection heat transfer in 

rectangular duct filled with Newtonian fluids and subjected to an ascending constant heat flux, this 

is shown in Table(2). The comparisons have been done for different values of Reynolds numbers 

( 63 10to10  ) and at Prandtl number of (Pr = 0.71, and 100). The results for (Re =10
4
 and 10

5
) show a 

good agreement with those presented by Y., S., Muzychka [6] has analyzed a similar problem for 

different values of Reynolds numbers. The comparison with his results show agreements within (± 

4 ). as shown in Table (1), there are some differences between the present work and this of Y., S., 

Muzychka [6]. These differences are due to the finite difference approximation and the computing 

system used.  

 

�. Conclusions :-  

             The present numerical solutions for laminar forced convection heat transfer of Newtonian 

and non-Newtonian fluids for rectangular duct under two different cases of boundary conditions 

(B.C.1 and B.C.2), show that the effect of the geometry and the type of fluid on the flow 

development and the energy transfer are dominant and complex. The main conclusions of the 

present study are: 

(43)��

(45)��

(44) 
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1- For the two cases that have been solved, it has been demonstrated that the average Nusselt 

number  is a strong function of Reynolds number, Power law index (n), and Prandtl number, also 

the results show the average Nusselt number: 

a- Increases as (Re) increases, for a given values of (n) and (Pr). 

b- Increases as (n) increases except for (n < 0.1) at (Re � 2000), for a given value of (Pr). 

c- Increases as (Pr) increases, for a given values of (Re) and (n). 

d- aNu  for the second case of boundary conditions (B.C.2) is always higher than for the first case 

(B.C.1).                                                      

2- For large Reynolds number, the power law index (n) of the Power law model has, for a given 

Reynolds and Prandtl numbers, a large effect on the heat transfer rate. The peak in average Nusselt 

number occurs between (0.1� n �2), depending upon Reynolds and Prandtl numbers. As the (Re) 

increases, the value of the power law index at which maximum average Nusselt number takes place 

shift towards lower values of (n) for all values of (Pr), while for small (Re), it does not have much 

effect on the heat transfer because in this situation, the convection is very weak and the dominant 

mode of energy transfer is conduction. 

3- For Case(II), The maximum dimensionless temperature is always located at the middle of the 

bottom wall. 

4-.The study shows how to predict the effectiveness of a given duct in terms of energy transfer or to 

design an efficient one by suitably selecting the type of fluid or the shape of the duct or both. 

� ���

��

: References 

[1] Yogosh, H., S., "Numerical Investigation of the Greatz Problemfor Newtonian and  Non-

Newtonian Flows in Circular-Segment Ducts", M. Sc. Thesis, Univ. of Bombay (India), 2002. 

[2] Ibrahim, U., "Heat Transfer to a Power-law Fluid in Aribitrary Cross- Sectional Ducts" Kirikkal 

University,2002. 

[3] J. M. Coulson, and J. S. Richardson, "Chemical Engineering", Bergamon, International Library, 

Vol..3, 1983. 

[4] Myers, E., “Analytical Methods in Conduction Heat Transfer”, Mc Graw – Hill Book Company, 

Inc., 1971.  

[5] L., S., Han, "Hydrodynamic Entrance Lengths for Incompressible Laminar Flow in Rectangular 

Ducts" Int. Journal of heat transfer, Vol. 27, pp 403-409,2002. 



Kufa Journal of Engineering ,The Second Scientific Conference of Pure and Applied Sciences, Special Vol.,No.1, 2010 

�������������������������������������������������������������������������������
��
 

17 

[6] Y., S., Muzychka, "Laminar Forced Convection Heat Transfer in the Combind Entry Region of 

Non- Circular Ducts" Int. Journal of heat transfer, Vol. 126, pp54-61,2004. 

[7] Najdat N., “Laminar Flow Separation in Constructed Channel”, Ph.D. Thesis, Michigan State 

University, 1987. 

[8] Sparrow, E., M.,Haji-Sheikh, A., "Flow and Heat transfer in ducts of arbitrary 

shape with arbitrary thermal boundary conditions, Journal of Heat Transfer", Vol. 88 1966, pp. 351-

358, vol. 91, pp. 588-589, 1969. 

[9] Frank, K., and Mark, S., “Principles of  Heat Transfer”, 5
th

 Edition, PWS Publishing Company, 

1997.  

 

 

Nua 

��
��

Re��

 

 

Present work��Muzychka.[9] 

24 24.8267 �����

24.5311 24.99 �����

25.471 27.4679 �����

 

 

 

Nua 

��
��

Ar 

��
Re�� Present work 

��

Ibrahim, [2]��

 
30.556 30.73982 ���	�����

                                                 ��

��

��

��

��

��

��

��

��

 

 

 

 

 

L 
(a)��

Th Tc g 

u 

v 

x 

y 

0====
∂∂∂∂

∂∂∂∂

y

T

0====
∂∂∂∂

∂∂∂∂

y

T

H 

(b) 

Fig.(1) Physical model and coordinate system. (a) case (I); (b) case (II) 
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Table (1) Nusselt number comparison for the case of the square duct filled with Newtonian fluids and heated 

from the side for Pr=0.71. 

Table (2) Nusselt number comparison for  the case of the rectangular duct  with Newtonian fluids and 

subjected to an ascending constant heat flux for (Pr= 100).��
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Fig.(2) Variation of  Nusselt  number with the number of grid points for  

different values of Reynolds number.     Case (I) . 
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                     (a)                                                           (b)                                                                  (c)                                           

Fig.(3) Pattern of streamlines for Re =500 , Ar = 0.5 and Pr=10. (a) n=0.1,  (b) n=1,  (c) n=2.                  For Case (I)            

 

��

                     (a)                                                                             (b)                                                                            (c)                               

Fig.(4) Pattern of isotherms for Re =500 , Ar = 0.5  and Pr=10. (a) n=0.1,  (b) n=1,  (c) n=2.                  For Case (I)             

 

��

                     (a)                                                          (b)                                                                 (c)                                           

Fig.(5) Pattern of streamlines for Re =104 ,  Ar = 0.5  and Pr=10. (a) n=0.1,  (b) n=1,  (c) n=2.                  For Case (I)            
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               (a)                                                         (b)                                                             (c)                                                

Fig.(6) Pattern of isotherms for Re =104 , Ar = 0.5  and Pr=10. (a) n=0.1,  (b) n=1,  (c) n=2.                  For Case (I)             

                 (a)                                                                  (b)                                                       (c)                                               

Fig.(9) Pattern of streamlines for Re =104 , n = 2 and Pr=1. (a) Ar=0.5,  (b) Ar=1,  (c) Ar=1.5.                  For Case (I)            

 

             (a)                                                               (b)                                                     (c)                                                

Fig.(10) Pattern of isotherms for Re =104 , n = 2 and Pr=1. (a) Ar=0.5,  (b) Ar=1,  (c) Ar=1.5.                  For Case (I)            
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                     (a)                                                                       (b)                                                  (c)                                           

Fig.(13) Pattern of streamlines for Re =500 , Ar = 0.5 and Pr=10. (a) n=0.1,  (b) n=1,  (c) n=2.                  For Case (II)            

 

                     (a)                                                      (b)                                                         (c)                                                

Fig.(14) Pattern Isotherms for Re =500 , Ar = 0.5 and Pr=10. (a) n=0.1,  (b) n=1,  (c) n=2.                  For Case (II)             

 

                     (a)                                                        (b)                                                           (c)                                               

Fig.(15) Pattern of streamlines for Re =104 , Ar = 0.5 and Pr=10. (a) n=0.1,  (b) n=1,  (c) n=2.                  For Case (II)            
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different values of Re  at  n=1.5 and  Pr=10.      
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                     (a)                                                    (b)                                                             (c)                                                

Fig.(16) Pattern Isotherms for Re =104 , Ar = 0.5 and Pr=10. (a) n=0.1,  (b) n=1,  (c) n=2.                  For Case (II)             

 

                     (a)                                                           (b)                                                            (c)                                           

Fig.(19) Pattern of streamlines for Re =104 , n = 2 and Pr=1. (a) Ar=0.5,  (b) Ar=1,  (c) Ar=1.5.                  For Case (II)            
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Fig.(17) Variation of max)(ψ  with the Re for    

different values of n at Ar=1.5 and Pr=1.  Case 

(II) 

 

Fig.(18) Variation of aNu  with the RaE for  

different values of n at Ar=1.5 and Pr=1.  

Case(II) 
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                     (a)                                                                             (b)                                                                            (c)                               

Fig.(20) Pattern of isotherms for Re =104 , n = 2 and Pr=1. (a) Ar=0.5,  (b) Ar=1,  (c) Ar=1.5.                  For Case (II)            
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Fig.(21) Variation of  aNu  with the Ar for different 

values of Re  at  n=1.5 and  Pr=1.      Case (II)                                           

Fig.(22) Variation of  aNu  with the Ar for different 

values of Re  at  n=1.5 and  Pr=10.      Case (II)                                           


