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Abstract

In this investigation, steady state two — dimensional laminar forced convection heat transfer
of Newtonian and non-Newtonian fluids inside a duct of Rectangular shape has been studied
numerically for a wide range of the Reynolds numbers of (Re = 500 and 10000) with the Power law
index (n) of Power law model ranging from (0.1 to 2), and Prandtl number of (Pr =1 and 10). Two
types of boundary conditions have been considered. The first, when the side walls are heated with
different uniform temperatures and the horizontal walls are insulated. The second, when the bottom
wall is heated by applying a uniform heat flux while the other walls at the constant cold
temperature. Also, the time independent non-Newtonian fluids under consideration were assumed
obey to the Power law model. The numerical results of the values of average Nusselt number have
been confirmed by comparing it to similar known previous works using the same boundary
conditions. Good agreement was obtained. The results are presented in terms of isotherms and
streamlines to show the behavior of the fluid flow and temperature. In addition, some graphs that
repesent the relation between average Nusselt number and the parameters mentioned previously are
drawn. Also, the results show that the power law index (#) has, for a given Reynolds and Prandtl
numbers, a large effect on the heat transfer rate at high Reynolds number. Twelve different
correlations to show the dependence of the average Nusselt number on the power law index, the
Reynolds and Prandtl numbers has been fund.
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Nomenclature
Symbol Description Unit
Ar Aspect ratio Dimensionless
g Gravitational acceleration m/s°
H Height of the duct m
h Heat transfer coefficient Wim®. K
K Thermal conductivity W/m. K
L Width of the duct m
m Consistency coefficient Kg/ sec™. m
n The Power law index Dimensionless
gL Dimensionless
Nu Nusselt number= —K (Th iy )
Nu, Average Nusselt number Dimensionless
P Pressure Pa
Pr ) Dimensionless
Prandtl number = (;j
q Heat flux W/m’
Re ou LY u., (n=1) Dimensionless
Reynolds number = (WJ(TJ
T Temperature K
u Velocity in x-direction m/s
v Velocity in y-direction m/s
x&y Cartesian coordinate m
Greek Symbols Description Unit
a Thermal diffusivity m’/s
f Arbitrary function, f (x,y)
AT Temperature difference K
Ax g Ay Grid size in the x and y directions, respectively m
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T-T
—_— for B.C.1
rl-‘h - Tc
) Dimensionless temperature =
T-T
< for B.C.2
qL
k
Dynamic viscosity kg/m. s
Kinematics viscosity m’/s
Density kg/m’
Y7 o u For Newtonian Fluids
dy
T
ou
m| — For non- Newtonian Fluids
dy
T, Normal stress in the y direction N/m®
y Stream function m’/s
w Vorticity 1/s
Subscripts
c Cold.
h Hot.
i,j Denotes nodal positions.
0 Reference condition.
Superscript

x | Dimensionless parameter
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1. Introduction:

It is important to have knowledge of the characteristics of the forced convective heat transfer
in steady laminar non-Newtonian flow through ducts with arbitrary shaped cross-sections in order
to exercise proper control over the performance of the heat exchanger, and the heat transfer in the
combined entry region of rectangular ducts is of particular interest in the design of compact heat
exchangers. Forced convection heat transfer of Newtonian and non — Newtonian fluids through
ducts has been the subject of several studies in the last years. The attention is due to the wide range
of applications such as petrochemical industries, heat exchangers that are widely used would
include boilers and condensers in steam power plant and petrochemical plants [1]. In these
applications passages are generally short and usually composed of cross-section such as rectangular
geometry. Also, food, polymer, petrochemical, rubber, paint and biological industries fluids with
non-Newtonian behavior are encountered. Forced convection heat transfer through ducts involves
different aspect of problems. This variety of problems comes from possibly geometry characteristic
of ducts, kind of fluid, nature of fluid flow, etc. In the present work, a numerical study is performed
to analyze the laminar forced convective heat transfer of Newtonian and non — Newtonian fluids
through rectangular duct under two different cases of thermal boundary conditions. The fluid
motion and heat transfer are affected by Reynolds number, Prandtl number, and power law index
(n) of Power law model [2]. The power law index (n) determines the nature of fluid, that is,

Newtonian (n=1) and non — Newtonian fluids ( /> n < 1).

2. Mathematical Formulation:

Consider steady state, two — dimensional, laminar incompressible flow of a non —
Newtonian fluid with constant physical properties (kinematics viscosity and thermal diffusivity)
flowing through a duct have rectangular cross sectional area of width (L) and height (4) under two

different cases of thermal boundary conditions, these boundary conditions are:

Case(]) :-

The vertical walls are heated with different uniform temperatures (7, &7,.) and the

horizontal walls are perfectly insulated (B.C.1), as shown in (Fig.1a).

Case(II) :-

The lower wall is heated by applying a uniform heat flux (¢) and the other walls are

isothermally cooled (7,) (B.C.2), as shown in (Fig.1b).

The governing equations are the following:

4
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du av 0 )

ox ay
al/l ap aT az-yx

po(u ax 8y)_ ax ox T dy @)

0 0

po(uﬁ —) = T T 3)
ox dy dy oOx dy

ua—T+va—T o 82T+82T)

ox dy ox*> 9y’ 4)

In the above equations, (1, v, a, P, T') are the fluid velocity components (Fig.1), the thermal
diffusivity, the pressure and the temperature. In fact Eqs.(} to £) are system of partial differential
equations. They are represent the base for forced convection phenomenon for 2D ducts, presented
by mass, momentum and energy conservation equations.

As mentioned in Ref.[3], the Power law model for non — Newtonian fluids can be represented as:

\ 7= m<3—;‘>" 5)
Hence, the shear stresses
i p
Ty = zm(a_z) (6)
dv
= 2m(=)"
T, =2m( ay) (7
ou
T —+— 8
o = T =i ax) (8)

where m is Consistency coefficient for the power law model.
Since it proves to be more convenient to work in terms of a stream function and vorticity,

the stream function w(x,y) is introduced in the usual manner:

dy dy
= — & = —_
dy ’ ox ©)

It is evident from Eq.(9) that the stream function satisfies the continuity equation identically.

Further more, for this plane flow field, the only non — zero component of the vorticity is:

:@_a_u (10)

ox dy

Combining the definition of vorticity and the velocity components in terms of the stream

function, and cross — differentiating the Egs.(2) and (3) to reduce the number of equations and
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eliminate the pressure terms, and substituting for (z) from Eqgs.(6 - 8), a new set of equations is

obtained with independent variables y, @ and T:

(14)

az az
axl/; " ayl/; - a
0 92 oS, aS
Wow_dvie| |00 do| B 8 50 )|k (12)
dy dx Odx dy ax~  dy ox dy  ox
a_y/a_T_a_z//a_T_a(aW +ﬁ) (13)
dy dx dx dy dx> 9y’
where;
4 4 4
s, =| 2V, OV, 0V
ot oyt 0x2dy?
n—1 n—
s 2|y v (2w o 7y | (o oy (15)
17152 2 2 3|, 525|270 3 2
dy ox oxdy”  ox dy”  ox dy”  dyox
321/, n-1 831// azl/, n—1 831//
S3:——aa 5 ’&54288 > (16)
yox 0xdy ydx 0xdy

Now, the mathematical problem formulated above is placed in dimensionless form by

defining the new dimensionless variables [4]:

X .y
X =— , = =
L)
T-T
. for B.C.1
Th_ c
6 =
T-T
< for B.C.2
qL
k
x W « oL
=, 0 =—
v u L U,

Inserting all the dimensionless variables into Egs.(11) to (16), yield the following final non
— dimensional equations:

y" 9y’ .
ox? oyt (17)

(1P P | (1)1 &2 0 1
_(Ei 22 o }{Eei v +2§(S* 3—§4)]4{Ee}5*‘1 (18)

oy 0 oY o
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dy~ 90 9y 90 20’6 0°0
- = Prie— ) (19)
dy dx odx dy ox dy
where;
. | oty oty oty
s =| T S Y (20)
ox” dy” ox™ ay”
2 2 VT s 3
« |o%y" oty AN & Va
S = Wz - Wz v 2 W3 1)
dy* ox* oax'oy*”  ox”
2 2 Y (45 3
Y kA A @)
dy ox dy dy ox
821//* n-1 831//* azij n-1 831//*
S*?’ -7 kK 2 & S*4 = k% —2 (23)
dy ox ox*dy* dy ox ox*ay”

1% )
Pr= 5 8 the Prandtl number.

,OMOOL "o n—1
Re = wn N L is the Reynolds number.

3. Numerical Method :

Numerical methods have been developed to handle problems involving nonlinearities in the
describing equations, or complex geometries involving complicated boundary conditions. A finite-
difference technique is applied to solve the governing equations. These three equations (Eqgs.(17),
(18), and (19)) are to be solved in a given region subject to the condition that the values of the
stream function, temperature, and the vorticity, or their derivatives, are prescribed on the boundary
of the domain. The finite difference approximation of the governing equations is based on dividing

the interval (1> x" >0)into (m) equal segments separated by (m+1) nodes. Likewise, the (y")

interval was divided into (n) segments. The usual procedure for obtaining the form of partial
differential equation with finite-difference method [5 & 6] is to approximate all the partial
derivatives in the equation by means of their Taylor series expansions.

Eq.(17) can be approximated using central — difference at the representative interior point

(i,j), thus, Eq.(17) can be written for regular mesh as:

Vo =W, o DY) + W+ A + (A7) Ay e, 1/1(28y" + (2Ax7)] (24)

7
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Also, a central — difference formulation can be used for Egs.(18), and (19). But this problem
will need to be solved for reasonably high values of Reynolds numbers; it is known that such a
formulation may not be satisfactory owing to the loss of diagonal dominance in the sets of
difference equations, with resulting difficulties in convergence when using an iterative procedure.

A forward — backward technique can be introduced to maintain the diagonal dominance
coefficient of (w;;) in Eq.(18) and (6;;) in Eq.(19) which determines the main diagonal elements of

the resulting linear system; this technique is outlined as follows [7]:

Set; Y= ‘//;11,,' - l//i*-l,j and fB= l//;iﬂ - ‘//:j-1 (25)

Then approximate Eq.(18) by:
L{(w(iﬂ, =200 p+ai-1.)) , (@i, j+1) =20, j)+ e, j-1)

Re Ax? Ay?

1| dS, 95, 0 (o¢ o " y do B dw

— - +2 S, =S, D+S, |+ - —)]=0 26

Re {(8{ oy 8x*( } 4)) 1} (Ax2 dy’ Ay’ ox ) (20)
and Eq.(19) by:

Pr(am,j _261‘,]' +9il,jj+(9i,j+l _261‘,]' +9i,j—1 j_i_ Y d0 ﬁ a0 =0 (27)

Ax? Ay? Ax* 9y B Ay? ox’

Now, if
20, S _Jum Sy (b, =1), and (b, =0)
dy Ay
y<o, L=t ) o) ana v, =1)
dy Ay,
. o _Jiy— Sy
if f=0, %ZJT,”’ (a, =1), and (a, = 0)
) fz+_fz
B <0, ézf, (a, =0), and(a, =1)

To assure the diagonal dominance of the coefficient matrix for (a)f ;)and 0, ;)» which

depends on the sign of (y) and (f) , Eqs.(18) and (19) are expressed in the following difference

forms:
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,; =[(0.5yb, (Ax)(Ay) + é (Ax*)w, ., +(0.5a, (Ax)(Ay) + é (Ay* ), ;
] 2 * 1 2 *

= (0.5Ba,(Ax)(Ay) —— (Ay“ N, ; —(0.5yb, (Ax)(Ay) —— (Ax"))w, ; , +
Re Re

"
Di—a,j S2)i,j+bl - SZ)i,j-bz ) Ss)iwz,j T P Wivay.j (SS)ifal,j B S4)i—a1,j))

St
L an )y e
Re

(Av) (Ay) (Av)
I« 2 2 2 2 2 2 V4
87 (A AY)TI2A(AY?) + 2(Ax?) + (Ax>)(A _
R S AR+ 200 + ()T
" by
M) (A0 (—AD)*
(28)
(9,.’]. =[Pr (0.5yb,(Ax)(Ay) + (sz ))91',,41 + (O.Sﬂal (Ax)(Ay) + (Ay2 ))91._1!].
(0.5, (AV(AY) — (Ay*)f,.s , — (0.5b, (Ax)AY) — (A6, ., 1/
[208y%) + 2(AF%) + (A¥)(Ay> )X ’ n p ) 29)

2(A%)(Ay)" (=Ay,)™  2(Ay)(Ax, )" (—Ax)™

An under — relaxation technique can be applied to accelerate the convergence of Eq.(28); the
expression is used in this technique presented in the following :
colj"” =(1- Fv)a):;‘ + (Fv)a);jj (computed)

Where (Fv) is the relaxation factor for the vorticity. The value of this relaxation factor is in the

range of (0 to 2).

In order to obtain results of the conservation equations, The above equations (Egs.(24), (28),

and (29)) are subjected to the following boundary conditions [8]:

Case (1) :-

o<y <l y=0 y=Y _o 99
dy dy

0<x' <1y =Ar z//*_a'/ﬁ ~0 a6::0
dy dy

=0 o<y <ar y =Y _0 a-9
ox

x =1 05y <Ar Yy =—+=0 6=86,
ox
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Case (II) :-

o<y <l y=0 w=Y_0 2.9
dy dy
: . oy
0<x <1 y =Ar y = =0 6=6

Also, the following finite difference equation for the vorticity at a wall is adopted as the

boundary condition for the vorticity equation:

3 —
w :M—% where, An=Ay or Ax

’ An’®
The physical quantities of interest in this problem are the local Nusselt number along the

heated wall [9], defined by:
qL

Nuy=—"-—
K(T,—T,) G0
and also the average Nusselt number, which is defined as:
Case (1) :-
1
o, <[22 4 G1)
0 aX x"=0orl
Case (II) :-
01
Nu,=|— dx 32
B o

The numerical work starts with giving the distributions of stream function and temperature
for forced convection as the zeroth-order approximation. Then, obtain the zeroth-order
approximation of vorticity: Based on these old fields, equation (Y ¢) is used to determine point-by-
point the new (¥ ) field, and equation (YA) is used to determine the new (@), while the energy
equation (2%) is used to determine the new (6 ) field. The iteration process is terminated under

the following condition:

Z z_r+1i’j _ z_rl,]‘/zz_rﬂl’] S 10—5 (33)
i,J i,J

10
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(r) denotes the iteration step. (W, ", or @); where, (1) stands for either

Before starting the computational solution, the grid independence of the results must be
tested. Thus, numerical experiments have been carried out to solve a two — dimensional problem in
which the Power law index (n = 1). The Prandtl number in this test is set to be (6.7), while the grid
size varies from (10x10) to (60x60) for different values of Reynolds number as shown in Fig.(2). It
is found that the change in the Nusselt number for grid size of (35x35) and (45x45) is less than
(0.8) percent for the range of Reynolds number (10° < Re <10°). Therefore, the number of grid that
is adopted in the present study is (35x35) for both two cases. The number of grid point was selected

as a compromise between accuracy and speed of computation.

4. Results and discussion :

Case (I) :- under B.C.1

a-Temperature and Flow Fields:

The contour lines of the temperature distribution and flow fields for different values of
system parameters are presented in Figs.(3) to (11). In this case, the energy is transported from hot
wall to cold wall by conduction (25< Nu,<38) at Reynolds number and Power law index (n) are
less than (10) and (1) respectively. In the conduction regime, the isotherms are almost parallel to
isothermal walls. The small value of (y)max characterizes a very weak convective flow. However,
an increase in Re or (n) results in an asymmetric flow pattern producing streamlines near the walls,
and change the direction of the isotherms, as shown in Figs.(3) and (4). As Re is increased further
for a given n or n is increased for high values of Re, the streamlines more closer to the vertical
walls, producing strong boundary layer effects on the isothermal walls. As a result, the stratified
region become bigger, as shown in Figs.(5) and (6). Although the flow remains unicellular at all
Reynolds numbers and Power law index (n), the velocity in the upper right corner and lower left
corner increases substantially. Fig.(7) represent the variation of stream function with Reynolds
number compared for different values of Power law index and (Pr=10, Ar=1.0). At low Reynolds
(Re <2000), y seems to be invariable with Pr, Ar, and n (i.e. at n < 0.2), this is due to dominance of
conduction as mentioned before. At higher Re, the stream function () increases with increasing Pr
or n. It is also seen that the value of ., increases and reaches the peak value at Re = 104, for Pr =
100, Ar=1.5, and n = 2. It is also show that the peak value of y,,,, depends on Re and n at a fixed Pr
and Ar.

11
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b -Effect of Aspect Ratio:

Effect of aspect Ratio on the flow pattern can be inferred with reference to Figs. (9) and
(10). It is worth while to note that any increase in aspect ratio increase the appearance of convective
mode. The reasoning for this is as follows. As the aspect ratio increase, the isothermal walls become
bigger than the insulated walls. The results of the numerical computations for streamlines and
isotherms at (Re=104) with (Ar= 0.5, 1, and 1.5) are plotted in Figs. (9 & 10). As depicted in this
Figures. This is expected because the distance between isothermal wall at (Ar=1.0) is bigger than
of (Ar=1.5). Figs. (11) and (12) are represent the relation between Nusselt number (Nu,) and aspect
ratio (Ar) compared for different value of Reynolds number. At low aspect ratio (Ar), (Nu,) seems
to be invariable with Reynolds number this is due to dominance of condition as mentioned before.
At higher aspect ratio (Ar) or when convective becomes dominant, (Ar) increasing Nusselt number

(Nu,), since for a higher aspect ratio, the path along which the ascending flow is heated is longer.

c-Heat Transfer Coefficient:

To understand the heat transfer process by forced convection, it must be to evaluate the heat
transfer coefficient (%), but to make the present work having generality, the calculated results must
be in dimensionless form. Therefore, it must be needed to evaluate Nusselt number (Nu) as a
function of influence parameters. Fig.(8) shows the variation of average Nusselt number versus
Reynolds number with different values of Power law index and Prandtl number (Pr=10) on the hot
wall of the duct. It is seen that for range of Reynolds number before (2000), the rate of increase in

Nu, against Re for different values of n at a fixed Ar and Pr is relatively small. But, Nu,increases

rapidly as n increases for Re > 10" expressing the increase of convective heat transfer. It is also

noticed that the effect of n on Nu, is more pronounced as the Re numbers increase.

Case (II) :- under B.C.2

a-Temperature and Flow Fields:

Figs.(13) to (22) show the contour lines of the temperature distribution and flow fields for
the present case. A change in boundary conditions from (Case (I)) to (Case (II)), modifies the
temperature and velocity fields significantly. Fig.(15a) shows the streamlines at Re = 10*, n = 0.1,
Ar=0.5, and Pr = 10. This flow exhibits one rotating cell, covering all the region. This cell has a
maximum magnitude (. = 0.133). This cell is symmetric about the center line of the region. The
convective velocity near the wall is lower than that along the line of symmetry. As Re or n
increases more the streamlines moves closer toward the line of symmetry, producing a strong

boundary layer effects on the middle region of the duct, and increase the convective velocity in the

12
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upper and lower middle region of the duct as shown in Figs.(13) and (15). Fig.(17) represent the
variation of y with Re for different values of n at Ar=1.0 and Pr=10. Furthermore, the isotherms
are symmetric about the vertical line at x = 0.5 for different values of system parameters, and the
maximum temperature 6,,,, always occurs at the middle of the lower wall, and is a function of Re,
n, Ar, and Pr. Furthermore any increase in Re or n caused a high change in temperature field which
concentrated in the small region near the top surface as shown in Figs.(14), (16), and (20). The
isotherms in the upper region are almost horizontal for a large portion of the duct which allows a
large amount of heat to be rejected on the top wall, and gives the vertical walls weaker effects than
that in case (I). For a fixed Re, the amount of energy removed on the top wall is increased with n.
Indeed, the large scale modification in the temperature and flow fields due to the change in the
boundary conditions from (Case(I)) to (Case (II)) is mostly concentrated in small region, near the
top surface. A significant amount of energy is also rejected at the vertical surfaces when the Re or
n is small. However, the heat transfer on this surfaces decreases with an increase in Re or n which
clearly implies that the effect of the vertical walls boundary Conditions diminishes with higher

velocities or higher Re.

b- Effect of Aspect Ratio:

Effect of aspect Ratio on the flow pattern in case (II) can be inferred with reference to
Figs.(19) and (20). It is worth while to note that any decrease in aspect ratio due to increase the
appearance of convective mode. The reasoning for this is as follows. As the aspect ratio increase,
the heat flux walls become smaller. Thus, there area for convective contribution, compared to the
path for flow, Also it is seen the flow at (Re =500) for (Ar=1). Now, different values of aspect ratio
will be taken examine the appearance of the flow. The results of the numerical computations for
streamlines and isotherms at (Re=10") with (Ar= 0.5, 1 and 1.5) are plotted in Figs.(19) and (20)
which show the value of aspect ratio. As depicted in this Figures. This is expected because the
distance between heat flux wall at (Ar=1) is bigger than of (Ar=1.5). It is worthwhile to note that
any increase in aspect ratio due to decrease the appearance of convective mode. Figs.(21) and (22)
are represent the relation between Nusselt number (Nu,) and aspect ratio (Ar) compared for
different value of Reynolds number. At low aspect ratio (Ar), (Nu,) seems to be invariable with
Reynolds number this is due to dominance of condition as mentioned before. At higher aspect ratio
(Ar) or when convective becomes dominant, (Ar) decreasing Nusselt number (Nu,), since for a

higher aspect ratio, the path along which the ascending flow is heated is smaller.

13
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c-Heat Transfer Coefficient:

The average Nusselt number as defined by Eq.(33) is presented in Fig.(18). It is seen that for

Re and n are less than (2000) and (0.2) respectively, the rate of increase in Nu, is relatively small.

Then, Nu, increases rapidly as Re or n increases expressing the existence and increase of

convective heat transfer. As already indicated by the temperature field, the average Nusselt number

for the present case is higher than that for the case (I) for the same given condition.

Finally, twelve correlation equations have been predicted depending on variation of

Reynolds number, Prandtl number, and Power law index of the Power law model for both two

cases, by using least square method.

Case (I): under B.C.1
a) At (Ar=0.5):
Nu,, =0.301986 Re™*®! pr 9873 038 0 1<n<05, R=0.953

and,

Nu, =0.085Re™ Pr % %, 0.5<n<2, R=0942
b) At (Ar=1):

Nu, =16.68Re *° Pr 7 n*?, 0.1<n<05, R=0.912
and,

Nu, =0.037 Re *®° pr ** pn'?, 0.5<n<2, R=0.949
c) At (Ar=1.5):
Nu, = 0.264 Re** pr * n'¥7, 0.1<n<05 R=0.8991

and,

Nu, =0.0216 Re"** pr *7 n®, 0.5<n<2, R=0.962

Case (II): under B.C.2
a) At (Ar=0.5):

Nu, =76.335Re "7 pr *'7 n', 0.1<n<05, R=0.89
and,
Nu, =7.233Re *'¥ Pr % 7%, 0.5<n<2, R=0.959
b) At (Ar=1):
Nu, =75.33Re ™ Pr *% n'% 0.1<n<05, R=0.899
and,

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

14
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Nu, =6.77 Re *'* pPr®*” n®%%, 0.5<n<2, R=0.959 43)
c) At (Ar=1.5):

Nu, =86.66Re **' Pr *¥ ' 0%, 0.1<n<05, R=0.887 44)
and,

Nu, =9.677Re *'* Pr % n®®, 0.5<n<2, R=0.959 45)

The above correlations are acceptable in the range of Reynolds number (500 to 10%), Prandtl
number (1 to 100), and Power law index ( n= 0.1 to 2).

To ensure that these approximation correlations are usable, the coefficient of determination
(R) had been obtained for each equation. The minimum value of (R) was (0.887), that means these
approximate equations are good for predicting the value of average Nusselt number.

Now, the values of average Nusselt number have been compared with those of other
investigators using the same boundary conditions to show the validation of the present numerical
results.

To compare the present numerical results with those of convection heat transfer in duct for
Newtonian fluids. The power law index (n) in Eq.(28) is set to one, and the comparison has been
done with a Rectangular duct subjected to different temperature on it's vertical sides with the top
and bottom are insulated. Table (1) show this comparison with the studies of Y., S., Muzychka.[6] .

A similar comparison has been made with the solution of convection heat transfer in
rectangular duct filled with Newtonian fluids and subjected to an ascending constant heat flux, this

is shown in Table(2). The comparisons have been done for different values of Reynolds numbers

(10°to 10°) and at Prandtl number of (Pr = 0.71, and 100). The results for (Re =10* and 10°) show a
good agreement with those presented by Y., S., Muzychka [6] has analyzed a similar problem for
different values of Reynolds numbers. The comparison with his results show agreements within (+
4 %). as shown in Table (1), there are some differences between the present work and this of Y., S.,
Muzychka [6]. These differences are due to the finite difference approximation and the computing

system used.

¢, Conclusions :-

The present numerical solutions for laminar forced convection heat transfer of Newtonian
and non-Newtonian fluids for rectangular duct under two different cases of boundary conditions
(B.C.1 and B.C.2), show that the effect of the geometry and the type of fluid on the flow
development and the energy transfer are dominant and complex. The main conclusions of the

present study are:

15



Kufa Journal of Engineering ,The Second Scientific Conference of Pure and Applied Sciences, Special Vol.,No.1, 2010

1- For the two cases that have been solved, it has been demonstrated that the average Nusselt
number is a strong function of Reynolds number, Power law index (n), and Prandtl number, also
the results show the average Nusselt number:

a- Increases as (Re) increases, for a given values of (n) and (Pr).

b- Increases as (n) increases except for (n < 0.1) at (Re < 2000), for a given value of (Pr).

c- Increases as (Pr) increases, for a given values of (Re) and (n).

d- Nu, for the second case of boundary conditions (B.C.2) is always higher than for the first case

(B.C.1).

2- For large Reynolds number, the power law index (n) of the Power law model has, for a given
Reynolds and Prandtl numbers, a large effect on the heat transfer rate. The peak in average Nusselt
number occurs between (0.1< n <2), depending upon Reynolds and Prandtl numbers. As the (Re)
increases, the value of the power law index at which maximum average Nusselt number takes place
shift towards lower values of (n) for all values of (Pr), while for small (Re), it does not have much
effect on the heat transfer because in this situation, the convection is very weak and the dominant
mode of energy transfer is conduction.

3- For Case(Il), The maximum dimensionless temperature is always located at the middle of the
bottom wall.

4- The study shows how to predict the effectiveness of a given duct in terms of energy transfer or to

design an efficient one by suitably selecting the type of fluid or the shape of the duct or both.
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Table (1) Nusselt number comparison for the case of the square duct filled with Newtonian fluids and heated
from the side for Pr=0.71.

Nu,
Re | Muzychka.[9] Present work
Vo 24.8267 24
V.S 24.99 24.5311
Vo 27.4679 25.471

Table (2) Nusselt number comparison for the case of the rectangular duct with Newtonian fluids and
subjected to an ascending constant heat flux for (Pr= 100).

Nu,
Re Ar | Tbrahim, [2] Present work
Youu ¢ 30.73982 30.556
)y
YL LS LSS LSS SIS SIS SIS SIS I T
T, *g T. H T, ‘g T,
VI VI
y T
. U Y U
Y 777777777777, I YYYYYYYYYYYYYYYY
9% _o -k aT
- 9y > 1 dy
L

(a) (b)
Fig.(1) Physical model and coordinate system. (a) case (I); (b) case (II)
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Fig.(2) Variation of Nusselt number with the number of grid points for
different values of Reynolds number. Case (I).

(a) (b) (¢)
Fig.(3) Pattern of streamlines for Re =500, Ar = 0.5 and Pr=10. (a) n=0.1, (b) n=1, (c) n=2. For Case (I)
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(a) (b) (©)
Fig.(4) Pattern of isotherms for Re =500, Ar = 0.5 and Pr=10. (a) n=0.1, (b) n=1, (c) n=2. For Case (I)

(a) (b) (©)
Fig.(5) Pattern of streamlines for Re =10* , Ar =0.5 and Pr=10. (a) n=0.1, (b) n=1, (c¢) n=2. For Case (I)
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(a) (b) (©)
Fis.(6) Pattern of isotherms for Re =10*_ Ar = 0.5 and Pr=10. (a) n=0.1. (b) n=1I. (c) n=2. For Case (TN
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Fig.(7) Variation of (¥) ,,, with the Re for Fig.(8) Variation of Nu, with the Ray for
different values of n at Ar=1.0 and Pr=10. Case different values of n at Ar=1.0 and Pr=10.
0] Case(I)

(b) (c)
Fig.(9) Pattern of streamlines for Re =10*, n = 2 and Pr=1. (a) Ar=0.5, (b) Ar=I, (c) Ar=L.5. For Case (I)

(a) (b) (©)
Fig.(10) Pattern of isotherms for Re =10*. n = 2 and Pr=1. (a) Ar=0.5. (b) Ar=1. (¢) Ar=L.5. For Case (I)
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Fig.(11) Variation of Nu, with the Ar for Fig.(12) Variation of Nu, with the Ar for
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different values of Re at n=1.5 and Pr=1. different values of Re at n=1.5 and Pr=10.

(a) (b) ()
Fig.(13) Pattern of streamlines for Re =500, Ar = 0.5 and Pr=10. (a) n=0.1, (b) n=1, (c) n=2. For Case (II)

(b)
Fig.(14) Pattern Isotherms for Re =500, Ar = 0.5 and Pr=10. (a) n=0.1, (b) n=1, (c) n=2. For Case (II)

(a) (b)
Fig.(15) Pattern of streamlines for Re =10* ,Ar =0.5 and Pr=10. (a) n=0.1, (b) n=1, (c) n=2. For Case (II)
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(a)

Fig.(16) Pattern Isotherms for Re =10* ,Ar = 0.5 and Pr=10. (a) n=0.1, (b) n=1, (c) n=2.
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Fig.(18) Variation of Nu, with the Ray for
different values of n at Ar=1.5 and Pr=1.
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Fig.(19) Pattern of streamlines for Re =10* ,n=2and Pr=1. (a) Ar=0.5, (b) Ar=1, (c) Ar=1.5.

For Case (II)
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(b)

N

Fig.(20) Pattern of isotherms for Re =10* ,n=2and Pr=1. (a) Ar=0.5, (b) Ar=1, (c) Ar=1.5. For Case (II)
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