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A Numerical solution of Transport Problems 

 
 Taghreed Abdul Kareem  
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Abstract: We apply the variational iteration method for solving the transport 

problems. The suggested algorithm is quite efficient and is practically well 

suited for use in these problems. The proposed iterative scheme finds the 

solution without any discritization, linearization, or restrictive assumptions. 

Several examples are given to verify the reliability and efficiency of the method. 

The composition is presented between variational iteration method and Adomian 

Decomposition Method(ADM)   and we found that the proposed technique 

solves this type of problems without using Adomian’s polynomials can be 

considered as a clear advantage of this algorithm over the decomposition 

method and the result accuatte than ADM .several examples are given to verify 

the reliability and efficiency of the method.  
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1. Introduction 

 

        In this paper, our work stems mainly from the variational iteration 

method[4,7-11,13]. The basic motivation of this paper is to propose 

mathematical technique without imposing perturbation, restrictive assumptions 

or linearization. It is used to solve effectively, easily, and accurately a large class 

of non-linear problems with approximations converging rapidly to accurate 

solutions, where the approximate solution of the VIM in the main is readily 

obtained upon using the obtained Lagrange multiplier and on the selective initial 

approximate. The variational iteration method changes the differential equation 

to a recurrence sequence of functions, where the limit of that sequence is 

considered as the solution of the partial differential equations. The main 

advantage of the method is that it can be applied directly to all types of 

nonlinear differential and integral equations, homogeneous or inhomogeneous, 

with constant or variable coefficients [1, 14-16]. Moreover, the proposed 

method is capable of greatly reducing the size of computational work while still 

maintaining high accuracy of the numerical solution. 

 

       The transport problems has also been widely employed as a model for 

chemical reaction processes and this usually entails the inclusion of lower-order 
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terms that describe convection and reaction [12,5]. the considered convection-

diffusion problem involves many tubes inside which convection occurs  

transport equations have been sought in terms of cross-section averaged fields 

[2, 3, 20]. In these cases it is crucial to understand how the micro scale flow may 

be approximated by averaged models. Many research areas such as chemical 

engineering, biomechanics, and porous media are interested by variants of such 

a simple generic convection-diffusion problem.  

In this paper, we investigate the model of unsteady convection-diffusion by 

using VIM. This study shows that, in this particular context, an averaged 

description can capture only large scale features of the exact solution, the 

convergence of which can be made as precise as necessary. Numerical methods 

have provided solutions to problems satisfying a fairly wide range of conditions. 

Among them are restrictive the explicit predictor method [17], the alternating 

direction implicit (ADI) method [18], and Taylor’s approximation [6]. 

Consider the following transport equation: 
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where Ω = (0, 1) × (0, 1), J = (0, T), A1(x, y), A2 (y) are smooth functions and 

H1, H2 are positive constants.  

 

        The paper is organized as follows. The second section presents a 

generalization of the VIM. The third section the sufficient conditions are 

presented to guarantee the convergence of the method. The fourth section given 

the examples and Some numerical results to illustrate the effectiveness and the 

useful of the variational iteration method. In section 5, we presented discussion 

of our work. at the last section the Conclusions are presented. 

2. Variational Iteration Method: 

 

To illustrate the basic concept of the technique, we consider the following 

general differential Equation 

 
),,()()()( txguRuNuL                                                             … (2a) 

  with specified initial condition: 
),( 0

0
xuu 

                                                  

…(2b) 

where L is a linear operator , N is a nonlinear operator and R is a linear operator, 

and g(x) is an inhomogeneous term. According to the VIM [3,10,13], we can 

construct a correction functional as follows: 
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 where 

)( is called general Lagrange multiplier [1,15,16], which can be identified 

optimally via the variational theory and integration by parts. The iterates n
u

 

denote the nth   order approximate solutions, where n  refers to the number of 

iterates. n
u~

 is considered as restricted variations so that their variations are zero, 

0~ 
n

u
[8]. The successive  approximation 1n

u
, 0n  of the solution ),( txu  

will be obtained by using the determined Lagrange multiplier and any selective 

function 0
u

.  

To find the optimal value of 
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, we applied the restricted variations of 

correction functional (3) and integrating by part, noticing that 0),0( xu , in the 
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yields the following stationary conditions: 
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So, the Lagrange multiplier in this case can be identified as follows:   1  

Consequently, we can write the equation (3) as a successive approximation as 

follows: 
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So on, where by finding the nth  order approximation.  Finally summing up 

iterates to yields,  

                           
1,

0




M
nM

M

n

uU
                                                       

The general solution obtained by the VIM can be written as: 

MM Utxu 
 lim),(

                                                                                           
3. Convergence Analysis of the VIM  

 

In this section, we will study the convergence analysis as the same manner in 

[16] of the variational iteration method to the linear equations. we consider 

linear partial differential equations of the form: 
TtxtxguRuL  0,0),,()()(                                              … (4) 

where, )(uL  and )(uR , are linear time and space derivative operators, 

respectively. Then we construct the following correction functional for  
),( txu
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Now, we show that the sequence 
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converges to the exact solution of (4). To do this we state the 

following theorem. 
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4. Numerical Examples 

To show the efficiency of our method described in the previous part, we present 

some examples of  2D transport problem. 
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Example1 We consider the following homogeneous transport problem[19] 
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To solve the problem (6) by using VIM, we consider a correction functional (3) 

as:   
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… (7)                                                                                                                                                                                          

where,   is a general Lagrange multiplier. The value of   can be found by 

considering 
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equation(7), then integrating the result by part to obtain 1 . Then the 

correction functional (7) becomes in the following formula: 
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Using the above iteration formulas (8) and the initial approximations, we can 

obtain the following approximations: 

u1(x,y,t) = 
22

)05.0()05.0(exp[  yx -(-2x+0.1) 
22

)05.0()05.0(exp[  yx t-(-2y+0.1)                                       
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So on.  

we observed that the variational iteration solution has a good convergence to the 

exact solution,  where from the theorem 1 we have the proof of convergence as 

the following form: 
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We explained the Comparison between the variational iteration method and 

Adomian Decomposition Method [19] for examples 1 and 2 in tables 1 and 2 
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Figure (1) Comparison between exact solution and VIM solutions for u(x,y,t) at 

1.0t  
 

 

Example 2 : We next consider the following transport problem[19] 
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then integrating the result by part to obtain 1 . Then the correction 

functional (10) becomes in the following formula: 
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Using the above iteration formulas (11) and the initial approximations, we can 

obtain the following approximations: 
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Table 2: Comparison between the VIM and the exact solution ,and the Absolute 

errors for several iterations of the VIM solution at t=0.1   . 

)(10 VIMe
uu 

 

)(8 VIMe
uu 

 

)(10 VIM
u

 )(8 VIM
u

 e
u

 
yx 

 

3.6705 E-6 1.0051 E-4 0.01325774805 0.01335459157 0.01325407743 0.1 

2.5153 E-5 6.8877 E-4 0.09084931644 0.09151294104 0.09082416342 0.3 

3.8409 E-5 1.0517 E-3 0.1387288876 0.1397422568 0.1386904783 0.5 

2.5107 E-5 6.8751 E-4 0.09068245396 0.09134485969 0.09065734670 0.7 

3.6420 E-6 9.9733 E-5 0.01315478149 0.01325087288 0.01315113952 0.9 
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Figure (2) Comparison between exact solution and VIM solutions for u(x,y,t) at 

1.0t  . 

 

Example 3: We next consider the following non homogeneous transport 

problem[19] 
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To solve the problem (12) by using VIM, we consider a correction functional (3) 

as:   
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where ),,( tyxg is the non homogeneous term. The value of   can be found by 

considering 
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equation(13), then integrating the result by part to obtain 1 . Then the 

correction functional (13) becomes in the following formula: 
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(14)          

Using the above iteration formulas (14) and the initial approximations, we can 

obtain the following approximations: 

0,  ),,(

0),,(
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We 

observe the appearance of noise terms between the components of u1. we obtain 

the exact solution in the form [19]               
23

),,( tyxtyxu 
.             

 

5. Discussion 
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In this paper, we have used the VIM for solving the Unsteady Convection-

Diffusion Problems. The initial condition as a function of x and y solution 

region of this problem is bounded by 
1,0  yx

, 0t . We should be note that 

only 6-10 iterations were needed to obtain the approximately accurate solutions 

for the examples 1 and 2, i.e. when 6n  the results are converging to the 

exact solution ),,( tyxu . The obtained results by using VIM are compared with 

the exact solution, which correspond to the various values of yx  and . Also, we 

presented the absolute errors for the solution in several iterations and compared 

it with absolute errors of Adomian Decomposition Method(ADM)  for example 

1,  and we compared absolute errors for the solution in several iterations for 

example 2, all these errors are listed in Tables (1,2) and represented graphically 

in Figures (1,2) at 1.0t . While, in example 3 we need only one iterate for 

arrive to the exact solution. The results show that the iterate approximation 

solutions obtained by using first sixth terms of this method are very well 

converged to the exact solution. From The tables, one can also see that the 

accuracy of this method increases with increasing the iterations. With other 

means, the errors are decreasing with increasing the number of iterations. The 

results we got from the VIM were better than the results obtained by (ADM) in 

accuracy. 

6. Conclusions 

In this paper, the variation iteration method has been successfully employed to 

obtain the approximate analytical solutions of Unsteady Convection-Diffusion 

Problems. The method has been applied directly without using linearization or 

any restrictive assumptions. The comparison of the numerical results of VIM 

with other solutions by using other methods show that the variational iteration 

method is a powerful mathematical tool to solving linear partial differential 

equations and faster in convergence to exact solution. 
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 حل مسالة التوصيل الحراري عدديا

عبدالكريم حاتم تغريدم.م.   

ميسان التربية/جامعة كلية  

 

    الخلاصة:

في هذا البحث استخدمنا طريقة التغايرالتكرارية  في حل مسالة التوصيل الحراري.الطريقة           

المقترحة كفوءة وملائمة لحل هذه المسالة. تم الحصول على الحل التحليلي باستخدام هذه الطريقة مباشرة 

م اعطاء الشرط الضروري والكافي للتقارب.المقارنة بين طريقتنا من دون استخدام أي فرضيات.كما ت

المقترحة وطريقة ادومين تم تقديمها حيث بينت انها لا تحتاج الى متعددات حدود لاكرانج كما في طريقة 

ادومين حيث يكون الحل بصزرة مباشرة كما ان نتائجها ادق من طريقة ادومين . ايضا تم تقديم امثلة 

 الطريقة وكفاءتها.لتوضيح عمل 

 

 

 


