
 

 Hanan Al-Hadeethi, Ikhlas Al-Hadeethi, 2024. Using Mathematical Techniques to Analyse Biomedical Data: A K-complexes EEG Signal Classification 
Study. Journal port Science Research, 7(special), pp.208-218. https://doi.org/10.36371/port.2024.special.19            

 

208 

Journal port Science Research 

Available online www.jport.co 
Volume 7,  special issue  2024 

 

Using Mathematical Techniques to Analyse Biomedical Data: A K-
complexes EEG Signal Classification Study  

 

Hanan Al-Hadeethi1*, Ikhlas Al-Hadeethi2 

1College of Health and Medical Technologies, Uruk University, Baghdad, Iraq. 

2 College of Media/ Iraqia University, Baghdad, Iraq. 

hanan.ali.hammoodi@uruk.edu.iq 

 
 

 

 

 

 

 

 

 

 

 

Keywords: Electroencephalogram, Classification, K-complexes, Features Extraction, K-means, Naïve Bayes Algorithm.

1. INTRODUCTION 

The sleep staging classification procedure is the most crucial 

function within the context of sleep studies. Over the previous 

slight decades, analyzing EEG recordings has evolved on a 

group of principles presented by the search undertaken by 

Rechtschaffen and Kales [37]. These principles authorize 

physicians to designate particular labels to particular time 

intervals applied to characterize diverse situations of sleep 

stages, for instance, wakefulness, stages 1-4, and rapid eye 

movements (REM), as elucidated in Fig. 1. 

The American Academy of Sleep Medicine (AASM) [6] 

produced several amendments to the R&K guidelines (1968). 

In their commendation, the non-REM stages were diminished 

into three stages, namely, Stage 1, Stage 2 and Stage 3. 

 
Fig. 1. Sleep Stages. 

Transient events, such as sleep spindles, K-complexes, micro-

arousals, and various modalities demand an analysis to be 

implemented [6]. An EEG waveform that appears during Stage 

2 of the non-REM stage is called a K-complex. It is deemed to 

be the most considerable incident in a healthy human EEG [10]. 

The K-complex was specified in 1937 in the particular 

laboratory presented by Alfred Lee Loomis [27]. 

The K-complexes have two major tasks: first, repress cortical 

arousal in response to an impulse that the sleeping brain 

considers is not due to signal danger; second, assisting sleep-
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based memory consolidation [10]. Therefore, it has been 

proposed that K-complexes both protect sleep and evolve 

information processing. These tasks are a substantial part of the 

synchronization of the non-REM sleep stage. While they react 

to both the internal and the external stimuli in a reactive mode 

[8, 27], this would be consistent with a primal task in 

suppressing the cortical arousal in response to the stimuli that 

the brain chooses to initially procedure whether the stimulus is 

serious or not [10, 19]. Fig. 2 elucidates a K-complex 

waveform. 

Furthermore, based on the current AASM definition [6], a K-

complex is a well-determined negative severe wave, instantly 

pursued by a positive component standing out from the 

background EEGs, with an aggregate period overrunning 0.5s. 

Ordinarily, maximum amplitude when recording utilizing 

frontal derivations. Diverse studies have also presumed a 

maximum duration of ordinarily between one to three seconds 

[7, 13, 24, 25, 38]. Since they are among the most substantial 

aspects of Stage 2, the K-complexes are deemed to be one of 

the fundamental features that participate in the valuation of the 

several sleep stages. Nevertheless, the visual consistency of the 

K-complexes is time-consuming, relying on the information 

and experiences of clinicians due to they cannot be performed 

orderly [9]. This hardness is deemed to be a fundamental 

defiance of the automated K-complexes correspondence issues, 

for example, a shortage of convenient descriptions of the wave 

and its resemblance to various other EEG waves.  Such 

example is the delta waves. 

 
Fig.2. A K-complex waveform. 

2. LITERATURE REVIEW 

Varied efforts have been made to boost the automatic 

identification of K-complexes in the literature where some 

studies have transacted with the detection of K-complexes [7, 

14, 15, 24, 25, 40, 43, 46]. Some studies have utilized a 

complete night’s recording, while others [4, 22, 23, 29, 30, 38, 

40] while others have enforced the classification concept that 

utilizes EEG segments of a stable length. The first endeavor 

was to characterize the K-complex waveforms inclusive of the 

design of an electronic detection technique that was eligible to 

operate in real time [5]. However, the reliability proportion of 

the detection procedure could be argumentative for several 

reasons [7]. Later, Jansen et al. [23] presented a knowledge-

based process for an automated sleep EEG analysis and the 

detection of sleep spindles and K-complexes. The results of 

Jansen et al. [23] were credible, on the other hand, the utilized 

datasets were not significant. In another model of exploratory 

research, Jansen BH [22] employed an artificial neural network 

(ANN) for the K-complexes detection. The ANN procedure 

was implemented employing both the filtered digitized data as 

well as the raw dataset, but it generated a non-conclusive 

outcome. 

Detecting K-complexes and sleep spindles in sleep EEGs of 

humans applying a non-linear paradigm relies on two elements: 

transient, and oscillatory, which occurs in a low-frequency 

outcome. The results present that applying a non-linear model 

for detection is more efficient compared to using classic 

detection algorithms [34]. Da Rosa et al. [13] suggested a 

detector of K-complexes and vertex waves whose paradigms 

expose the transient events and neuronal feedback loops over a 

maximum-likelihood estimator. Therefore, the implementation 

of the K-complexes could offer a perfect comprehension of 

how the slow waves are activated by employing a sensory 

system as a portion of the continuum of reactive sleep slow 

waves. This is a major factor emphasizing how the brain may 

elaborate in response to a sensory input [18]. Furthermore, 

Bankman et al. [4] presented a feature-based detection process 

utilizing ANNs, which provided agreement with the 

recognition of visual K-complex. The mentioned study fulfilled 

a sensitivity and false positive (FP) proportion of 90% and 8%, 

respectively. As the aforementioned study stated, the 

information included in the features provided outcomes 

significantly more than the classification based on raw data. 

Subsequently, Jansen et al. [23] conducted a study aimed at 

evolving real and simulated EEG data with two basic ANN 

architectures [24]. Those ANNs received phase values and 

normalized dimensions over a Fourier transformation as inputs, 

gaining the preferable accuracy results with a low false positive 

proportion in the classification of K-complexes. The three 
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feature selection methods that were used were Wrappers, 

filters, and embedded methods. Also, other techniques were 

deemed, such as logistic regression and support vector machine 

[20]. 

The fundamental goal of the project was to improve a new 

technique with the most accurate outcomes for K-complexes 

classification. The first step was to split an EEG signal into 

segments with a period of about 1.0s, subsequently, each 

segment was conveyed into a feature extraction [12]. Statistical 

approaches, for example, sensitivity, specificity, F-measure, 

Matthews’s correlation coefficient, Youden's J statistic, and 

accuracy were applied to assess the performance of the 

suggested technique, diverse and well-established. In the 

classification stage, two types of classifiers, including K-means 

and the Naïve Bayes were utilized to supply greater insights 

into the features determined from the EEG signal. The 

proposed methodology could provide results with high 

accuracy compared to other existing methods, thus it is 

substantial for practical applications of medical diagnostic 

areas. 

3. EEG data  

The database was acquired from the DREAMS project [14], 

and it is obtainable on the website 

http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseKco

mplexes/. The recordings were obtained from six females and 

four males aged between 20 and 47. In this study, ten 

recordings were used, namely: excerpt 1 to excerpt 10. The 

recordings included two electrooculography (EOG) channels 

(P8-A1 and P18-A1), one submental electromyography (EMG) 

channel, and three EEG channels (CZ-A1 or C3-A1, FP1-A1, 

and O1-A1). At a frequency of 200 Hz, the data were sampled 

and for data storage, the standard European data format (EDF) 

was used. The mentioned data are characterized in Fig. 3. 

 
Fig. 3. Data description. 

4. THE SUGGESTED METHODOLOGY 

The outline of the proposed technique demonstrated in Fig. 4. 

In the beginning, using a sliding window procedure to partition 

EEG signals into small sub-segments. After a comprehensive 

experiment in the training phase, a window size of 1.0 seconds 

with an overlap of 0.8 s is set. Then, in feature extraction, each 

1.0 s segment is decomposed into five frequency bands: {Delta, 

Theta, Alfa, Beta and, Gamma} utilizing the Discrete-FT 

algorithm. Later, five sets of features are extracted from each 

band employing the Cov-matrix, then used as an input to K-

means, and Naïve Bayes classifiers. The suggested 

methodology is assessed in terms of the level of accuracy, 

sensitivity, specificity, Youden's J statistic, Matthew’s 

correlation coefficient, and F-measures for the capability of 

these techniques to correctly detect and classify the K-

complexes in sleep EEG signals. To fully explore the method, 

the performance of the proposed approach is also compared 

with other existing techniques using the same database. The 

outcomes display that the suggested approach could detect K-

complexes in the EEG signal, and the method outperforms 

other current studies. Employing Matlab, the experiments were 

carried out (Version: R2022b).   
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Fig. 4. The suggested methodology. 

4.1. Segmentation    

The detection of K-complexes in EEGs is the most crucial task 

in sleep staging. The frequency range of the K-complex waves 

is between 8 and 16 Hz.  The optimal length of those 

waveforms is 0.5 s. To segment the EEG signals into their 

respective intervals, a sliding window technique was used. The 

length of window size is set to 1 second with an overlap of 0.8 

s 

4.2 Feature extraction 

Feature extraction is employed to diminish the demanded 

resources to characterize an enormous set of high-dimensional 

data, this is one of the major issues stemming from the number 

of variables involved when implementing an analysis of 

complex data. Commonly, analysing a massive number of 

variables requires considerable computation capacity and a 

huge quantity of computer memory. Another possible problem 

is the classification algorithm could overfit the training samples 

and subsequently provide an inferior generalization of the new 

samples used as a test set [17]. The project combines Discrete-

FT with discrete Cov-matrix in one model to design a 

procedure that captures relevant features of EEG signals. 

 
Fig. 5. Feature Extraction Steps 

4.3 Discrete Fourier Transform (Discrete-FT)  

The Discrete-FT is a data analysis technique applied to modify 

a specific species of sequence of a given function into other 

types of representation. Furthermore, this procedure is capable 

of transforming the structure of the cycle of a waveform into 

the sine components. The fundamental formula representing 

the Discrete-FT process is defined in Equation 1 [31, 11]: 

𝑇𝑘 = ∑ 𝑡𝑛𝑒−𝑖2𝜋𝑘
𝑛
𝑁

𝑁−1

𝑛=0

   ,    𝑘 = 0, 1, 2, … 𝑁 − 1 …   (1) 

where 𝑇𝑘 is the Discrete-FT coefficients, N is the total number 

of input EEG samples, and n is the total number of points in 

Discrete-FT. 
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4.4 Covariance Matrix (Cov-matrix) 

The covariance matrix is an essential term applied in the area 

of statistics and probability theory. The covariance matrix 

elucidates that there is an asymmetric array of numbers, it has 

diverse substantial properties [14]: 

Let the covariance matrix of a random vector 𝐴 ∈ 𝑅𝑛 and mean 

vector 𝑚𝐴 is defined as: 

𝐻𝐴 = 𝐸[(𝐴 − 𝑚)(𝐴 − 𝑚)𝑇]. 

The elements (𝑖, 𝑗)𝑡ℎ of the covariance matrix 𝐻𝐴 is given by 

𝐻𝑖𝑗 = 𝐸[(𝐴𝑖 − 𝑚𝑖)(𝐴𝑗 − 𝑚𝑗)] = 𝜎𝑖𝑗 . 

The diagonal entries of 𝐻𝐴 are the vars of the components of the A such as 

𝐻𝑖𝑖 = 𝐸[(𝐴𝑖 − 𝑚𝑖)
2] = 𝜎𝑖

2.  

𝐻𝑗𝑗 = 𝐸 [(𝐴𝑗 − 𝑚𝑗)
2

] = 𝜎𝑗
2. 

The trace (tr) of H_A is positive because all diagonal entries are positive such as 

𝑡𝑟(𝐻𝐴) = ∑ 𝐻𝑖𝑖 > 0.

𝑛

𝑖=1

 

The  𝐻𝐴 is symmetric, 𝐻𝐴 = 𝐻𝐴
𝑇  because 𝐻𝑖𝑗 = 𝜎𝑖𝑗 = 𝜎𝑗𝑖 = 𝐻𝑗𝑖 . 

The  𝐻𝐴 is positive semidefinite, for all 𝑏 ∈ 𝑅𝑛 

𝐸{[(𝐴 − 𝑚)𝑇𝑏]2} = 𝐸{[(𝐴 − 𝑚)𝑇𝑏]𝑇[(𝐴 − 𝑚)𝑇𝑏]} ≥ 0 

𝐸[𝑏𝑇(𝐴 − 𝑚)(𝐴 − 𝑚)𝑇𝑏] ≥ 0, 𝑏 ∈ 𝑅𝑛 

𝑏𝑇𝐻𝐴𝑏 ≥ 0, 𝑏 ∈ 𝑅𝑛  

The H_A is symmetric, this is mean self-adjoint with the usual 

inner output, its eigenvalues are real and positive and the 

eigenvectors that belong to distinct eigenvalues are orthogonal,  

𝐻𝐴 = ∨∧∨𝑇= ∑ 𝛾𝑖𝑣⃗𝑖𝑣⃗𝑖
𝑇 .𝑛

𝑖=1   

 

5. CLASSIFICATION ALGORITHMS  

5.1 Naïve Bayes Algorithm  

Frequently, Naïve Bayes is applied for classification and 

pattern recognition, it is a functional approach that relies on the 

implementations of the posterior hypothesis and principles of 

the Bayes theorem. The Naïve Bayes algorithm is a 

classification algorithm based on a series of conditional 

independence theories and Bayes rule [21, 28, 39]. To the aim 

of a learning process, indicated as  f(Y/T) where T = (t1 ..., tni), 

the Naïve Bayes algorithm allocates a theory that each ti is 

conditionally independent of each of the other Tks given Y, 

also it is  independent of each subset of the other Tk’s, given 

Y. The value of the theory is facilitated by the representation of 

f(T/Y) and the problem of measuring it from the training data. 

For instance, the case where T = (t1, t2), we can state that [28, 

39], 

𝑓(𝑇/𝑌) = 𝑃(𝑡1, 𝑡2 /𝑌) 

                = 𝑓(𝑡1/𝑡2, 𝑌)𝑃(𝑡2/𝑌)    ...     (4) 

                = 𝑓(𝑡1/𝑌)𝑃(𝑡2/𝑌)   …     (5) 

where 𝑓(𝑡1/𝑡2, 𝑌)𝑃(𝑡2/𝑌) follows a common property of 

probabilities and 𝑓(𝑡1/𝑌)𝑃(𝑡2/𝑌) follows directly from the 

above explanation of conditional independence. In general, 

when T contains n attributes which satisfy the conditional 

independence hypothesis, we have 

𝑓(𝑡1 … 𝑡𝑛/𝑌) = ∏ 𝑓(𝑡𝑖/𝑌)       𝑛
𝑖=1   (6) 

where Y and ti are Boolean variables.  

It is relevant to state that this stage demands just 2n parameters 

to define f (Ti = tik/Y = yj). This is a dramatic diminution 

compared to the 2(2n −1) parameters required to describe f 

(T/Y) if we do not make a conditional independence 

assumption. To derive the algorithm, let us presume that Y is 

any discrete-valued variable, and the characters t1, ..., tn are any 

discrete or real-valued characters. The major aim here is to train 

a classifier that will produce the probability distribution over 

potential values of Y, for each new instance T be classified. The 

expression for the probability that Y will use on its kth possible 

value, according to the Bayes rule, is [28, 39]:  

𝑓(𝑌 = 𝑦𝑘/𝑡1 … 𝑡𝑛) =
𝑓(𝑌 = 𝑦𝑘)𝑓(𝑡𝑖/𝑌 = 𝑦𝑘)

∑ 𝑓(𝑌 = 𝑦𝑗) 𝑗 𝑓(𝑡𝑖/𝑌 = 𝑦𝑗)
            (7)  

This sum is taken over all potential values yj of Y. For example, let us presume that ti are conditionally independent given Y, we 

can employ Equation (7) to rewrite this as (McCallum and Nigam 1998; Rish 2001) 

𝑓(𝑌 = 𝑦𝑘/𝑡1 … 𝑡𝑛) =
𝑓(𝑌 = 𝑦𝑘) ∏ 𝑓(𝑡𝑖/𝑌 = 𝑦𝑘)𝑖

∑ 𝑓(𝑌 = 𝑦𝑗) ∏ 𝑓(𝑡𝑖/𝑌 = 𝑦𝑗)𝑖𝑗

            (8)  
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Equation (7) is the substantial equation for the Naïve Bayes classifier. Given a new character Tnew = (t1 ...tn), this equation 

illustrates how to compute the probability that Y will take on any given value, given the observed attribute values of Tnew and 

given the distributions P(Y) and P(ti/Y) measured from the training data. If we are interested only in the most possible value of 

Y, then we have the rule of Naïve Bayes classification as: 

𝑌 ←  𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑘

𝑓(𝑌 = 𝑦𝑘) ∏ 𝑓(𝑡𝑖/𝑌 = 𝑦𝑘)𝑖

∑ 𝑓(𝑌 = 𝑦𝑗) ∏ 𝑓(𝑡𝑖/𝑌 = 𝑦𝑗)𝑖𝑗

                  (9) 

which simplifies to the following Equation (denominator does not depend on yk). 

𝑌 ←  𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑘 
𝑓(𝑌 = 𝑦𝑘) ∏ 𝑓(𝑡𝑖/𝑌 = 𝑦𝑘)

𝑖

              (10) 

5.2  K-means 

K-means is a procedure based on the vector quantization technique, originally derived from the signal processing area, which is 

usually used in data mining for cluster analysis. The purpose of the K-means method is to split n observations into k clusters in 

which each observation belongs to the cluster with the closest mean serving as a prototype of the cluster. A group of observations 

(t1, t2, …, tn), could use where each observation is a d-dimensional real vector, and K-means clustering aims to split the n 

observations into k (≤ n) sets S = {S1, S2, …, Sk} to diminish the within-cluster sum of squares (WCSS). The goal is to find [16]: 

 𝑠        
𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑ ‖𝑡 − 𝜇𝑖‖

2 =  𝑠          
𝑎𝑟𝑔𝑚𝑖𝑛

 ∑ |𝑆𝑖|𝑉𝑎𝑟 𝑆𝑖
𝑘
𝑖=1𝑡∈𝑆𝑖

𝑘
𝑖=1         (11) 

where 𝜇𝑖  is the mean of points in 𝑆𝑖. This is equivalent to diminishing the pairwise squared deviations of points in the same 

cluster: 

 𝑠        
𝑎𝑟𝑔𝑚𝑖𝑛 ∑

1

2|𝑆𝑖|

𝑘
𝑖=1  ∑ ‖𝑡 − 𝑦‖2

𝑡,𝑦∈𝑆𝑖
    (12) 

The equivalence could deduced by identifying: ∑ ‖𝑡 − 𝜇𝑖‖
2

𝑡∈𝑆𝑖
=  ∑ (𝑡 − 𝜇𝑖)(𝜇𝑖 − 𝑦)𝑡≠𝑦∈𝑆𝑖

. Because the total variance is 

constant, also, this is equivalent to diminishing the sum of squared deviations between points in different clusters [26]. 

6. EVALUATION OF MODEL PERFORMANCES   

The assessment of the suggested techniques allows to conduct of a topical valuation of the outcomes of the methodology. 

Evaluation methods are applied as following: 

 

Fig. 6. The suggested Evaluation Methods 

6.1. Accuracy  

Accuracy (Acc.) is the degree of vicinity of a calculated quantity to its actual (true) value.  The accuracy defined in Equation 

(15) [3, 35]: 
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Acc. = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄          (15) 

where true negative (TN) comprises the practical non-K-complexes that are correctly classified employing the proposed method 

as non-K-complexes. True positive (TP) denotes the practical K-complex waves that are correctly detected using the suggested 

procedure. False negative (FN) demonstrates the practical K-complex that is incorrectly marked as non-K-complexes. False 

positive (FP) refers to the number of K-complexes that are incorrectly defined by the proposed process. 

6.2. Sensitivity (Sen.) 

Sensitivity (Sen) is a statistical approach to the performance of a binary classification test applied to measure the rate of the 

actual positive predication, it is determined as follows [1, 41]:  

Sen. = 
The number of true positives 

The number of true positives+ the number of false negatives 
      ….     (16) 

Sen = 𝑇𝑃 𝑇𝑃 + 𝐹𝑁⁄          …       (17) 

6.3. Specificity (Spe)  

Specificity (Spe) is employed to measure the proportion of the genuine negative predication, it is defined as follows [1, 41]:  

Spe. = 
The number of true negatives

number of true negatives+number of false positives 
    ..         (18) 

6.4. F-measure  

F-measure is a substantial measurement that is applied to 

display the overlap between the collections of the true K-

complexes and the extracted K-complexes utilizing the 

suggested procedure. It is defined in Equation (24) Sokolova 

[41]: 

F-measure = 2 ×
𝑃𝑃𝑉×𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑃𝑉+𝑟𝑒𝑐𝑎𝑙𝑙
           (24) 

where  ppv = 𝑇𝑃 𝑇𝑃 + 𝐹𝑃⁄   ;             (25) 

recall = 𝑇𝑃 𝑇𝑃 + 𝐹𝑁⁄        (26) 

6.5 Matthews correlation coefficient  

To test the quality of binary classifications in machine learning, 

the Matthews correlation coefficient (MCC) is applied. The 

MCC is the correlation coefficient between predicted binary 

classifications and the observed. The value of the MCC is 

between -1 and +1. MCC = +1 denotes an optimal prediction 

and MCC =-1 represents the total disagreement between 

prediction and observation. The MCC is defined in Equation 

(27) Baldi [41]: 

MCC = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁 √(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)⁄                   (27) 

6.7 Youden's J statistic 

Furthermore, the study applied Youden's J statistic as a single statistic that epitomizes the performance of a binary diagnostic 

test [50]. 

𝐽 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 

+
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
− 1                (29) 

J= sensitivity+specificity-1                    (30) 

7.  EXPERIMENTAL RESULTS  

The efficiency of the proposed method in detecting K-

complexes is assessed. To determine all information from data 

without missing any part of EEG signals, the segmentation 

technique is employed. The EEG signal is divided into little 

segments. At the beginning, the interval of each segment is set 

at 1s. Then, the EEG signal is transformed into time-frequency 

data applying discrete FT with five bands (Alfa, Gama, Beta, 

Delta, and Theta). After that, the Covariance Matrix (Cov-

matrix) is used to diminish dimensionality based on feature 

extraction.  The outcomes demonstrated that the extracted 

features through the Covariance Matrix (Cov-matrix) 

procedure were efficient for precise results. For the 

classification, various kinds of classifiers (K-means and Naïve 

Bayes) were applied. The experimental results illustrated that 
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the suggested procedure fulfilled high classification outcomes 

compared to the Naïve Bayes classifier. Many tests have been 

done and the best 10-folds were chosen then the average of the 

folds was calculated.  The proposed technique was assessed 

employing diverse assessment procedures. The results 

mentioned that the suggested process could evolve the 

classification of K-complexes in sleep stages. Furthermore, the 

proposed process presented an optimal prediction based on the 

Matthews correlation coefficient. Fig. 4 displays the average 

outcomes of the 10-folds. After many trials, several proportions 

were applied between training data and testing data. The results 

demonstrated that the best rate of the training data and the 

testing data is 1:1.  

 

Fig. 4 Average outcomes of the 10-folds 

7.1 Discussion and Comparison  

Three types of comparison were built. First, the results of 

Discrete-FT combined with Covariance Matrix (Cov-matrix) 

and without were compared. Second, the performance of the 

presented technique was compared with current studies [14] 

applying diverse statistical evaluation processes of accuracy, 

sensitivity, and specificity with the two classifiers, including 

K-means and Naïve Bayes. The applied method achieved a 

sensitivity was 94%, while the sensitivity of recent researchers 

[4, 40] was 90%, and 86.47% respectively. Finally, the 

outcomes of Naïve Bayes and K-means have been compared. 

The suggested procedure with the Naïve Bayes classifier 

gained the highest F-measure value of 95%. Fig. 5 illustrates 

the outcomes of the comparisons and demonstrates that the 

applied method with Naïve Bayes acquired results better than 

other classifiers. The best accuracy was 95.35% by the Naïve 

Bayes. Moreover, the sensitivity and specificity with the same 

classifier were 94% and 97%, respectively. The second-highest 

results were recorded with the K-means classifier, the accuracy, 

sensitivity, and specificity were 82.5%, 70%, and 75%, 

respectively. 

.  

Fig.5. The outcomes of the comparisons of different classifiers, including the K-means, and Naïve Bayes 
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8. CONCLUSION  

A sufficient method of sleep stages classification was 

suggested. The fundamental objectives were to define a 

classifier that achieved high-accuracy outcomes. First, an EEG 

signal was divided into segments of 1s utilizing a sliding 

window. Then, each segment was transformed into time-

frequency data using a Discrete-FT. After that, a Covariance 

Matrix (Cov-matrix) difference plot was employed to extract 

features. Later, several types of classifiers (K-means and Naïve 

Bayes) were applied. The Naïve Bayes classifier presented 

higher classification outcomes. The results of accuracy, 

sensitivity, specificity, Youden's J statistic, Matthew’s 

correlation coefficient, and F-measure were supplied. The 

outcomes displayed that the proposed procedure could evolve 

the classification of K-complexes in EEG signals. The 

comparison demonstrated that the suggested procedure gained 

the best performance in terms of classification accuracy. The 

proposed technique could assist physicians in accurately 

detecting K-complexes in sleep EEGs, furthermore, it can be 

employed for diverse medical data types and several 

application areas.  

Informed consent:  

Informed consent was obtained from all individual participants 

included in the study. 
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