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Abstract
A mathematical model to solve a scalar wave equation based on

weakly guiding approximation for multi-layer (or multi-step) optical
fibers is numerically carried out. The suggested numerical method is
suitable to any multi- layer index profile (including W-fiber and
conventional fiber) and sufficiently accurate if fiber materials for
successive layers have small index differences. The general
characteristics of multi-layer fiber such as cutoff wavelength and
dispersion are obtained employing this model.
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Introduction

Communication using optical fiber as transmission media has
become vast in evolving industries. The success of a given optical system
depends directly on the choice of fiber parameters; including geometrical
dimensions, material composition and the refractive index profile. All
influence the various linear and nonlinear fiber behaviors, and must be
carefully chosen in order to achieve optimal performance. The most
important fiber characteristics, which have to be found using some
numerical calculation, are fiber propagation constant, dispersion,
dispersion slope, cutoff wavelength and field distribution. Most
significant fiber feature is the ability to predict how any given fiber
parameters can be optimized versus a design goal, such that low (near-
zero) dispersion is obtained for a given wavelength range or at least at
some predetermined wavelength. The benefit of this work is dramatic
reduction of investment risk and time-to-market, rapid, low cost
prototyping, performance evaluation of various types of fibers before
actual manufacturing, assessment of parameters, sensitivities, tolerances
and how the changes of design parameters affect fiber characteristic. The
design of a single-mode optical fiber should have several conditions: low
transmission loss, single-mode and zero or small total dispersion over
wide-bandwidth. Employing refractive index profile with multi-layer
index is carried out in order to manipulate with such profile to achieve
inter-balance between waveguide and chromatic dispersion. Hence, a low
or near zero dispersion fiber are achieved. The wavelength dependence of
the refractive index defined by Sellmeier formula is given by the
following relation [1]:

where  is the operating wavelength, i, Ai (i =1,2,3) are the Sellmeier
coefficients whose measured values are available for number of silica–
based materials used for fiber fabrication [1].

Some Useful Parameters
The following fiber parameters are the most significant that are

frequently used when dealing with fibers in general and they are:

1-Normalized frequency (V)
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It is very useful parameter, which summarized all the important
characteristics of the fiber in single number. It can be used to determine if
the fiber will be in single mode or not at particular wavelength, also to
calculate the number of possible modes. Moreover, it can be used to
calculate the cutoff wavelength [2].

where d: is the core radius, nmax is the maximum refractive index of the
core while nclad is the refractive index of the outer cladding layer. It is
worth noting that if V  2.405, the fiber will be single mode at specific
wavelength.

2-Effective refractive index (neff)
It is a single number situated between the refractive index of the

core  (max. refractive index) and cladding refractive index, which
summarized the effect of both [1].

where β is the propagation constant and k is the wave number, k=2π/λ.

3-Propagation constant (β)
The wave is guided in a specific mode fiber if  () the “propagation

constant” satisfies:
knmax >  > knclad.

and the normalized propagation constant b is [3]:

The normalized propagation constant is in the range 0  b  1.

4-Cutoff wavelength (λc)
In general, the cutoff wavelength is the wavelength at which the

fiber will have the relation β=knclad. In case that the operating wavelength
is longer than the cutoff, the light waves will travel in the previous mode.
When wavelengths are shorter than the cutoff the light wave will travel in
bimodal dispersion. Note that wavelengths that makes (V) less than 2.405
(the cutoff wavelength) the light waves will travel in a single mode. The
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cutoff wavelength of any LP higher order mode can be calculated after
defining the fiber profile and determining the propagation constant [4].

5-Dispersion (D)
Dispersion is the spreading of light pulses such that a pulse may

join with the pulse behind, making recovery of reliable bit stream
impossible. As they travel down optical fiber, the result in distortion of
signal could take place. Since modal dispersion cannot occur in single-
mode fiber because it has only one mode, the major sources of dispersion
are material (or chromatic) dispersion and waveguide dispersion [5].
Total dispersion can be calculated by the numerical derivation of the
effective refractive index as a function of the wavelength. The dispersion
is calculated from the following relationship [6]:

6-Dispersion slope (second order dispersion)
Dispersion slope is the rate of change of dispersion with

wavelength [4]. In Wavelength Division Multiplexing (WDM) it is
desirable to have all the channels experience a similar dispersion
coefficient in order to reduce the costs associated with dispersion
management. For this reason fibers with reduced slope have developed

for multi–channel application. Such a fiber is called dispersion-flattened
fiber. The dispersion slope is calculated from the following relation:

The Suggested Model for Multi-Layer Fiber and the Numerical
Solution:

Consider an N-layer optical fiber of cylindrical shape consisting of
a central core region and several claddings, ai is the radius of the ith layer,
as shown in Fig. (1). All layers are assumed to be concentric, lossless and
their refractive indices are homogenous. The ith layer is referring to the
number of cladding layer, (i = 1,2,3… N; N: number of layers); r: is the
distance from core center.
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It is suitable to start from the homogenous vector wave equation
[2] to determine the required propagation characteristics in cylindrical
fibers:
where E is the electric field and H is the magnetic field.

By using the cylindrical coordinates (r,,z), the homogeneous vector
wave equation in cylindrical coordinates could be written as [1,2]:

q2 =(k2n2–β2)

 =  (r,) exp ( - iβz)
By adopting weakly guided approximation technique, the refractive
indices of the successive layers are nearly equal, and the longitudinal
field components (ez, hz) are very small compared to the transverse ones,
and then can be neglected. In this case the field inside the optical fiber are
quasi (TEM) (TEM: Transverse Electro-Magnetic), then the field can be
described as linear combination of scalar modes oriented along transverse
(x,y) plane. By adopting these approximations, it is possible to determine
the propagation properties inside the fiber, which lead to construct a set
of scalar equations with negligible error comparing with vector wave
equations and these equations describe the field expansion in the
successive circular strips of multi-layer fibers:
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Figure. (1) Geometry and dimensions of a cylindrical multi-layer optical fiber.

r

)zh,yh,xH(hor)ze,ye,xE(eeitherrepresents
_

the

b)( 70H2n2kH2
( 7 a )0E2n2kE2







Ai, Bi are constants (amplitude coefficients), J0, Y0, I0, K0 are the usual
zero order Bessel functions and Ф(φ) is a common term and will be
omitted from both sides of equations  (9), and

At origin r=0, Y0 Bessel function and K0 Bessel function must be
excluded from the solution because they are undefined at origin. At final
cladding layer, the solution is only K0 Bessel function. Other terms in the
equation (9b) are omitted. However, for the other layers (from second to
N-1 layer) the solution to be considered by equations (9) is a combination
of J0(uir) and Y0(uir) if ni>neff otherwise a combination of I0(uir) and
K0(uir) if ni<neff.

The tangential field component among the various successive
layers should be continuous, i.e. (r,) and its derivative / r are
continuous at the boundaries. Depending on this condition, it is possible

to write down the general relationship of the field and its derivative by
the following relation for the ith layer from equation (9a) and (9b):

M0(uir) is the Bessel function of 1st kind and it is equal to J0(uir); or
modified Bessel function of 1st kind and it is equal to I0(uir). N0(uir) is the
Bessel function of 2nd kind and it is equal to Y0(uir); or modified Bessel
of 2nd kind and it is equal to K0(uir).
Note the following special cases:

1. At the boundary between the core and 1st layer, equations (10)
become:

2. At the boundary between layer (N-1) and (N), equations (10)
become:

According to the set of equations (10,11 and 12) a system of (2N-2)
equations with
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(2N–2) unknowns will be obtained. Avoiding a trivial solution, the
determinant of coefficients for this system of equations must be equal to
zero. Hence normalized propagation constant for a given range of
wavelength and a specific mode for a given fiber will be obtained.

Numerical Results and Discussion

First of all, to demonstrate the validity of the method a step index
fiber (one layer) and W-type (two layers) are considered. Fig (2) shows
the results (which represent the dispersion versus wavelength) for these
two types of optical fibers. The accuracy of this method when compared
with [3] is less than 1%. since the propagation constant could be found
out, it is possible to calculate all the parameters of optical fiberFor multi-
layer fibers and here two types of theser fibers (two structures) will be
considered, four layers and five layers optical fibers. Fig. (3) shows the
refractive index profile and their dimensions of such fibers. The
normalized propagation constant varying with wavelength for these fibers
is illustrated in Fig. (4). The cutoff of the fundamental mode (LP01) and
the next higher mode (LP11) are determined by these curves. Fig. (5)
explains the normalized field distribution among the multi layers. The
dispersion and the dispersion slope are shown in Fig. (6) and Fig. (7),
respectively. A low dispersion over (1.4-1.6) μm band could be obtained
with reasonable flatness.
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Fig. (2) The variation of dispersion versus wavelength.
(a) Conventional fiber &(b) W-type
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Fig. (6) The variation of dispersion versus wavelength.
(a) Four layers &(b) Five layers.
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Fig. (7) The variation of dispersion slope versus wavelength.
(a) Four layers &(b) Five layers.
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Conclusion

A suggestion of mathematical  model to investigate the
transmission properties of multi-layer optical fiber based on scalar wave
equation is presented. These properties include cutoff wavelength,
dispersion and dispersion slope. The model is designed throughout an
effective mathematical representation of the concentric strips, which
correspond to multi-layer refractive–index fibers. The necessary software
programs to numerically calculating the various transmission properties
were written in Matlab Version 6.5.

The calculated of near zero dispersion due to the design of these
multi-layer fibers is very important for wavelength division multiplexing
(WDM). It is possible to achieve high performance design by
manipulating with the refractive index profile and fiber dimensions. This
proposed analysis would establish a wide base for manufacturing optical
fiber of multiple-layer structures, using the suggested mathematical
model.
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