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1. Introduction 

Von Kármán vortex is a complex phenomenon in fluid 

mechanics, seen in many places. Vortices rotate in opposite 

directions from object sides. Common examples of the 

phenomenon in civil engineering include the structural 

dynamics of skyscrapers, chimney stacks, the atmosphere 

around mountains, suspension bridges, marine engineering, 

which includes the vibrations of pipelines resting in the 

seabed, and ocean engineering, as shown in Fig. 1 [1]. 

 

 

Fig. 1 von Kármán Vortex around an island on the sea [2]. 

Many researchers have been investigated in this field as 

will be reviewed by the following survey.  

Gupta [3] introduced a new method to identify the vortex-

shedding parameters. A wind-tunnel tests on two objectives, 

the first was a circular cylinder and the second was two bridge 

decks configuration. The author estimated the response of 

vortex-induced by determining the model parameters from the 

experiments.  

Tapia and Chellali [4] developed a simplified model of 

Kármán Street by CFD simulations. They used this model to 

train neural network-based controllers of different robot fishes 

in order to control the frequency of fishes’ tail beat before 

releasing them into water. They deduced that frequency of 

fishes’ tail beat was well matched with Kármán Street. 

Thoraval et al. [5] studied the irregular splashing which 

result from impinging a drop on a liquid pool. They used 

super-speed video technology in conjunction with numerical 

simulations of high accuracy to display the irregular splashing. 

They reported that, at higher Reynolds numbers, an 

axisymmetric von Kármán vortex was shed from the free 

surface into the liquid. Ali et al. [6] Numerically investigated 

a flexible flap that generated vortices in an environment of 
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Abstract 

Van Kármán vortex street is considered an important phenomenon that accompanies fluid flow, especially when exposed to a certain barrier, 

as periodic vortexes occur on both sides of the body that rotate in two opposite directions. This phenomenon occurs in the atmosphere around 

mountains, oceans, seas, and islands. Also, this phenomenon makes it possible to induce a fluid flow around a specific body present in the 

flow path. In this study, a model for fluid flow around a cylinder of a certain diameter was taken, where the flow near the boundary layers of 

the cylinder surface moves slower than near the free stream. In addition, the pressure distribution was studied, and it was observed that there 

is a pressure gradient due to the difference in momentum at the surface of the cylinder in distant areas due to friction. The study area was 

divided into fine meshes with Fluent software, especially in the irregular areas. The simulation was implemented for Reynolds numbers Re = 

100 and Re = 1500 for incompressible flows. Consequently, the equations that do not depend on pressure are difficult to solve. Therefore, 

methods linking pressure and velocity were adopted, where the pressure-velocity coupling simple method was used. The first-order forward 

difference scheme was adopted in representing the differential equations as a function of time when performing the simulation. From the 

steady state and upwards to Reynolds number Re = 100, it was observed that a twain of vortices appeared on the body at a certain speed range. 

When the state was changed from the stable state to the transitional state, the results changed, as the flow became asymmetric and unsteady 

due to vortex shedding phenomena, which led to the generation of vortexes in different ways. The U-Velocity curve was studied for two 

different cases, and the results showed a large discrepancy between the first order and the second order, where the second order had better 

behavior but required great effort to reach accurate results. Also, pressure-velocity was studied to satisfy mass conservation, and numerical 

techniques were used to compute the equations of Navier-Stokes in CFD, such as SIMPLEC, PISO, and SIMPLE. An acceptable convergence 

was not reached with the PISO; therefore, the SIMPLE method was adopted. The pressure gradient was drawn around the cylinder, where it 

was observed that the pressure was greatest at the front of the cylinder and its lowest value at the end. 
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laminar flow to improve the performance of some kinds of heat 

exchangers. They used a square cylinder in 2D domain like 

generate a von Kármán vortex street. They concluded that 

vortices generated by each individual flap will induce a motion 

perturbation on the close flap leading the oscillations to be 

self-sustained. Noor [7] performed a numerical simulation of 

different bluff body shapes, such as triangular, rectangular, and 

circular, to study the vortex-shedding phenomenon. The 

author observed that to obtain better performance, the vortex 

flow meter must have sharp corner to produce vortex shedding 

frequency with stable value. 

Wang and Alben [8] developed a numerical model to study 

the vortex streets dynamics when flowing in channel. The 

reverse and regular von Karmen streets with different 

geometries, Reynolds numbers (Re), and strengths were 

studied. They deduced that inflow vortex street was kept for 

the reverse von Kármán and changed for the regular street. 

They noticed for regular streets, that a transition to 

nonsymmetric dynamics is occurred when vortices are 

powerful, or (Re) rises, or vortex streets are extended vertically 

or compressed horizontally. Dol [9] conducted a turbulence 

investigation in a rotating circular cylinder wake in a free 

uniform stream to describe the vortex shedding patterns up to 

inhibition of the periodic vortex street of high-speed ratios. 

The author established that Kármán Vortices shedding in the 

generated wake was amended by rotating of the cylinder. Heil 

et al. [10] analyzed the 2D flow past a circular cylinder to 

explain the alterations in the field of vorticity topology that 

resulted in the creation of the von Kármán vortex. They 

demonstrated that as Reynolds number increases, the points of 

vortices formation and vanishing move fast downstream and 

upstream, respectively. Dai et al. [11] the investigation focused 

on the inhibition of vortex shedding, considering two key 

parameters: the width ratio of the splitter plate and the height-

to-diameter ratio of the cylinder, as well as the length. They 

deduced that the splitter-plate supplied an effective and 

feasible procedure for vortex hindrance at a high Re, and the 

degree of inhibition can be greatly increased by an optimum 

configuration. Morast [12] used multi-layer perceptron and 

convolutional neural networks (CNN) to analyze the different 

structures formed in von Kármán vortex street in order to 

determine Reynolds number that governing the fluid flow 

system. The author concluded that deep learning algorithms 

(neural networks) can be learn the parameterization of Navier-

Stokes equations from von Kármán vortex street and foresee 

the object locations. Greco et al. [13] used a synthetic jet 

technology represented by a slot in the rear of an open wind 

tunnel to discuss the von Kármán vortex behind a cylinder. The 

effects of dimensionless frequency and momentum coefficient 

on behavior of von Kármán Street were studied. Ghazijahani 

et al. [14] conducted echo state networks in order to predict the 

velocity fields in von Kármán vortex street by aiding of 

Particle Image Velocimetry (PIV) data. Maches et al. [15] 

investigated the stability and existence of von Kármán vortex 

street consisted of regular clusters similar to polygonal-shape 

represented by spatially periodic vortices. They captured the 

infinite vortex streets stability by using a point-vortex model. 

Alzabari et al. [16] used the simulation of large-eddy to 

investigate the turbulent flow created by a horizontal cylinder 

on the free surface, which was increasingly shallow with ratios 

of submergence-to-cylinder diameter between 0.5 and 2.1. 

Keeler and Crowdy [17] achieved a new exact solution to 

the problem of steadily traveling with the 2D vorticity of water 

waves. 

In the present study, the impact of a high Reynolds number 

(Re) on the field of flow of the von Kármán vortex and 

hydrodynamic instability will be investigated. 

2. Methodology 

The unsteady flow of a fluid over bluff bodies results in a 

repeating pattern of swirling vortices, which causes a von 

Kármán vortex. The flow near the boundary layers in a circular 

cylinder moves slower than the flow near the free stream. The 

flow momentum near of the cylinder surface is low because 

the viscous effects create a pressure gradient. Pressure gradient 

regions cause the separation of flow at points along the body. 

When flow separation occurs, the flow changes into swirling 

eddies, creating a wake region, as shown in Fig. 2 [18]. 

 

Fig. 2 Boundary layer around cylinder. 

The vortices start to form in the laminar flow at a low 

Reynolds number between 5 and 40, and when increases above 

40, the wake becomes unstable and vortex shedding starts to 

appear. One vortex becomes larger relative to another. When 

the bigger vortex gets powerful enough, the opposing vortex is 

drawn over the weaker one, where vortex A rotates clockwise, 

while the opposite vortex B rotates counterclockwise. The 

vortex B will not allow further supply of vortices to the vortex 

A, leading to shedding the vortex A. Following vortex A, a 

new vortex, namely vortex C, will form on the same side, 

which will get rid of vortex B. Every time, this process will 

continue when one side sheds a new vortex, as shown in Fig. 

3 [19].  

 

Fig. 3 von Kármán Vortex development. 
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The dimensionless Strouhal number (St) describes the 

frequency of vortex shedding. The Strouhal number 

normalizes the frequency of vortex shedding (fs) with the 

cylinder diameter (D) and flow velocity (u). 

St = 
f
s
 D

u
                                                                                (1) 

With an increasing Reynolds number, the laminar flow 

undergoes a turbulent transition over 300-400, the vortex 

periodicity does not occur, turbulence develops, and thus the 

von Kármán vortex totally disappears. The vortex shedding 

appears at Re near 40, and the Strouhal number is at 0.1. The 

Strouhal number increases to 0.2 and stays constant when the 

Reynolds number increases [20]. 

1. Mathematical and Numerical Formulation 

The SIMPLE, SIMPLEC, and PISO algorithms commonly 

employ numerical techniques to compute the Navier-Stokes 

equations in the CFD, as shown in Fig. 4. 

 

Fig. 4 Flow chart for the SIMPLE, SIMPLEC, and PISO algorithms to 

compute the Navier-Stokes equations. 

SIMPLE algorithm 

The algorithm of the semi-implicit method can be 

summarized in Fig. 5: 

 

Fig. 5 Algorithm of the Semi-implicit Method (SIMPLE).  

SIMPLEC algorithm 

The SIMPLEC is a modified version of the SIMPLE 

algorithm that follows the same steps and algorithm. As a 

result, momentum equations are modified to omit less 

significant terms from velocity correction equations than those 

omitted in SIMPLE. This adjustment aims to reduce the impact 

of neglecting velocity neighbor correction terms. Figure 6 

shows the implicit pressure-based scheme for the Navier-

Stokes equations (SIMPLEC). 

 

Fig. 6 The implicit pressure-based scheme for the Navier-Stokes equations. 

PISO algorithm 

The Pressure-Implicit with Splitting of Operators (PISO) 

algorithm is an extension method for the SIMPLE algorithm. 

PISO has been successfully adapted for steady-state problems 

as well. This pressure-velocity calculation procedure uses two 

corrector steps and one predictor step to ensure mass 

conservation, as shown in Fig. 7. 

 

Fig. 7 The algorithm Pressure-Implicit with Splitting of Operators (PISO). 
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The governing Navier-Stokes equations are considered in 

a two-dimensional system of flow and are written for 

turbulence flow. Thus, the Reynolds Averaged Navier Stokes 

(RANS) equations are used. The governing equations that 

describe the problem are written as [21]: 

Conservation of mass: 

∂ui̅

∂xi

 + 
∂ui̅

∂y
i

 = 0                                                                                 (2) 

Conservation of momentum:   

∂ui̅

∂t
 + uj̅

∂ui̅

∂xj

 = −
1

ρ
(

∂p

∂xi

) + ϑ (
∂

2
ui

∂xj
2

) −
∂uí uj́̅̅ ̅̅ ̅

∂xj

                             (3) 

The flow assumed is incompressible; therefore, the Mach 

number is lower than 0.3, and the solution of the governing 

equation is missing the independent equation for pressure. 

Thus, the pressure-velocity coupling SIMPLE method is used 

in order to link pressure and velocity. 

The equations 2 and 3 have been solved with the finite 

volume method, featuring a second-order upwind spatial 

discretization. The unsteady simulation used the second-order 

implicit method. 

The time derivative is discretized by applying the first-

order forward difference scheme. From Taylor expansion: 

Uj
 n + 1 ̅̅ ̅̅ ̅̅ ̅̅  = Uj
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∂
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(
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(
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j
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−
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j
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(
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 n̅̅ ̅̅

∆t
 + O(∆t)                                                  (4) 

The advection part of the momentum conservation can be 

discretized as the time derivative part (local acceleration). 

(
∂U̅

∂x
)

j

n

=
Uj + 1

 n̅̅ ̅̅ ̅̅ − Uj
 n̅̅ ̅̅

∆x
 + O(∆x)                                                     (5) 

The pressure gradient is discretized as the previous part. 

1

ρ
(
∂P

∂x
)

j

n

= 
1

ρ
 
Pj + 1

 n − Pj − 1
 n

2∆x
 + O(∆x2)                                          (6) 

Discretization of diffusion equations in the second-order 

finite difference in space by a centered scheme. 

From Taylor expansion: 
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Summing the previous equations. 
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The discretized equation can be written as follows:  

Conservation of mass: 

(
∂U̅

∂x
)

j

n

=
Uj + 1

 n̅̅ ̅̅ ̅̅ ̅ − Uj
 n̅̅ ̅̅

∆x
 + O(∆x)                                                   (10) 

Conservation of momentum: 
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The discretization with the finite volume method could be 

done as follows: 

(
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j
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1
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The resulting system of linear algebraic equations is not 

tridiagonal because we have 6 unknown variables, and thus 

direct methods are more suitable, for example, Guess-Jordan 

elimination or the LU factorization method. 

The flow is characterized in a Cartesian coordinate system 

with two dimensions (x, y), where the x-axis is aligned with the 

direction of the inlet flow and the y-axis is parallel to the axis 

of the cylinder. 

The mesh should be able to catch all the flow details behind 

the cylinder. The size of the computational domain is 60D × 

25D with the cylinder circle at a distance of 10D from the inlet 

of the domain. The boundary layers are defined so that the inlet 

is located at 10D from the cylinder, while the outlet is placed 

at 50D from the cylinder. The cylinder diameter is D = 0.1 m, 

as shown in Fig. 8.  
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The following assumptions have been adopted:  

• The inlet velocity U in the computational domain is 

uniform. 

• For the domain walls, the no-slip condition is applied, 

Uwalls = 0. 

• The flow Reynolds number is 100. 

 

Fig. 8 Mesh boundary conditions. 

It is important to get accurate results in the simulation. 

Therefore, the refinement mesh structure is used around the 

cylinder, as shown in Fig. 9. One factor that affects the 

accuracy of the simulations is the convergence value, which is 

defined in the Fluent simulation software. It should be small 

enough to thrust the numerical calculations. In simulations, the 

convergence criteria were selected as 10-6. Simulations require 

fine meshes, especially in regions with high gradients. If the 

results change when the number of cells is changed while 

solving the simulation, it means that the mesh is not working 

properly. In this case, having 1,200,000 structured meshes 

resulted in an independent mesh. Time steps in various 

Reynolds numbers were computed using the current number, 

and the time steps that were less than this number were 

implemented in the software. When the Reynolds number is 

100, the time step is 0.1, and when the Reynolds number is 

1500, the time step is 0.05. 

 

 

Fig. 9 Region of fine simulation mesh with a high gradient. 

2. Results and Discussion 

The simulation started with steady-state and continued to 

transient conditions. The simulations were performed with two 

different Reynolds numbers: Re = 100 and Re = 1500. Figure 

10 shows the velocity field around the cylinder in the steady 

state. As this simulation was performed in a steady state, there 

are almost a pair of vortices in the back of the bluff body. 

 

Fig. 10 Steady-state simulation for Re = 100. 

When the steady-state simulations continue into the 

transition mode, the results will change. Figure 11 shows the 

transient results for Re = 100. Figure 9 shows the flow over the 

cylinder is not symmetric and steady. This is because of 

vortex-shedding phenomena, which cause the vortices to grow 

differently. The cylinder top and bottom form pairs of eddies 

alternately, creating vortex shedding as they travel to the wake 

region. 

 

Fig. 11 Transition simulation for Re = 100. 

Figure 12 shows the U-velocity profile along the centerline 

for two different simulations. Also, the graph shows there is a 

significant discrepancy between the first-order and second-

order results upstream, which affects the accuracy of the 

results. Second-order discretization is proposed, but more 

efforts should be made to be certain about the accuracy of the 

results. 
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Fig. 12 U-velocity profile along the centerline for Re = 100. 

Fluent Simulation software uses three different methods to 

couple pressure and velocity: SIMPLE, SIMPLEC, and PISO. 

In this work, SIMPLE and PISO were implemented. The PISO 

method did not converge for continuity equations, and as 

mentioned before, the SIMPLE method was used. Figure 13 

shows Pressure distribution over the cylinder, with maximum 

pressure at the front of the cylinder (angles 0° or 360°) and 

minimum in the back (90° or 270°). At any point on the surface 

of the cylinder, the fluid has two components: Pressure is 

normal to the surface, while shear stress is tangential. The 

tangential pressure gradient along the cylinder surface 

generates a vortex behind the cylinder. The flow momentum is 

quite low near the surface of the cylinder due to viscous effects 

[2]. Furthermore, the pressure tangential component of 

acceleration is another mechanism that affects the front and 

rear surfaces of the oscillating cylinder but not the upper or 

lower surfaces. When the cylinder accelerates downward, it 

produces fluxes of CW vorticity on the front face of the 

cylinder and CWW vorticity on the rear face of the cylinder. 

 

Fig. 13 Pressure distribution over the cylinder. 

Figures 14 and 15 show the drag and lift coefficients for 

the cylinder in different time steps for Re = 1500. When a 

vortex is dropped from the top, a low-pressure area is created, 

and the cylinder is subjected to the lift force. Another vortex is 

created after half a cycle at the bottom, leading to lift force 

changes. 

 

Fig. 14 Lift coefficient changes during time steps. 

 

Fig. 15 Drag coefficient changes during time steps. 

Figure 16 shows the velocity profile for two different 

turbulence models. Very close agreement downstream and at 

a short distance after the cylinder was observed. But in the 

wake region, the results were different. 

 

Fig. 16 U-Velocity profile for two different turbulence models. 

Conclusions 

Kármán vortex street is a phenomenon in fluid mechanics 

that occurs in a flowing fluid when it passes over a body. These 

vortexes occur alternately behind the body and are called the 

Kármán vortex street. 

In the current case, the body is assumed to be a cylinder. 

As the fluid passes over it at a certain speed, it is possible to 

deduce different shapes for the vortices emerging behind the 
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cylinder. Additionally, the formation of vortexes can be 

controlled by the Reynolds number. 

In this work, the flow around the cylinder was discussed 

theoretically. The governing equations were presented, and the 

model was simulated in Fluent software. Different parameters, 

such as pressure, U-velocity profile, drag, and lift coefficients, 

were investigated. Simulation of the flow with two turbulent 

models had very close results for u-velocity along the 

centerline. Regarding the accuracy of the results, although it 

was tried to increase the accuracy of the simulations, more 

efforts are needed to validate the results. 
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