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Abstract
The brittle nature of concrete leads to a brittle shear failure, which

the designers try always to avoid by making the flexural strength of the
member less than the shear strength. The addition of steel fibers to
concrete converts the brittle characteristics of concrete to a ductile one,
such fibers are uniformly distributed and randomly oriented throughout
the volume of the concrete. The steel fibers are suitable as shear
reinforcement especially in thin members such as slabs and thin webs,
where the use of shear reinforcement is not possible.

An incremental- iterative method which utilizes the equations of
equilibrium, compatibility of deformations and materials constitutive
relationships is employed to find out the complete response of beams
under increasing shear loads. The method gives detailed information
about the flexural and shear stresses in concrete, steel stresses, cracks
initiation and propagation and failure loads. The results obtained such as
failure load and failure pattern showed good agreement with some
published experimental results.
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Introduction:

Various studies have been carried out to enhance the
weak properties of concrete and cement mortar. In certain cases,
short pieces of steel fibers are used as reinforcement for
cementatious materials to prevent brittle fracture and improve
some of the weak mechanical properties. The composite exhibits
improved post-cracking tensile behavior which would increase the
shear strength of reinforced concrete members significantly.

The greatest difficulty in solving the problem of shear behavior
of SFRC (Steel Fiber Reinforced Concrete) beams is the large number of
parameters involved, such as, shear span to depth ratio, concrete strength,
reinforcement ratio, fibers content, fibers type and fibers aspect ratio.

To predict some properties of fibrous concrete or the behavior of
steel fibrous reinforced concrete members, empirical and semi- empirical
equations were proposed which may give a good approximation with
respect to experimental results. Concerning the shear strength of steel
fibrous reinforced concrete shallow beams, various methods have been
proposed (1-5) to predict the cracking and shear strength. These methods
take into account the influencing parameters, such as the concrete
strength, reinforcement ratio, shear span to depth ratio and the fibers
properties. These methods predict the shear strength at the onset of
cracking and at ultimate stage. Strains and stresses in steel and concrete
and cracks initiation and propagation cannot be traced by these methods.
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Tan et al. [6] presented an investigation on the behavior of steel
fibrous reinforced concrete beams subjected to increasing shear loads. The
cross-section of the beam is divided into a suitable number of concrete
and steel layers. For a given loading, the shear stress in each concrete
layer is estimated assuming constant shear flow across the beam section.
A trial value of the top and bottom longitudinal fiber strains x are
assumed and the longitudinal strain for each layer is then computed. A
trial value of the principal compressive strain d for a given layer and the
inclination of the principal plane  is assumed and the strains in each
layer is calculated using the following relations:

    x d r cos sin2 2 ...................(1)

    y d r sin cos2 2
..................(2)

     xy d r 2 sin .cos ..................(3)

where,  x and  y are the average strains in the x and y-directions
respectively (tension is positive),

 xy = average shear strain,

 d and  r are the average principal (compressive and tensile) strains,

respectively. From the above principal strains the stresses  d and  r

are computed using the following stress-strain relationships [6]:
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where   p o / , o is the strain at peak stress f َ◌c and  is a
softening coefficient to account for the softening phenomenon and is
taken as :


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 0 7. r

d

...............(6)

in which  r is the strain corresponding to the principal tensile stress
 r , which was calculated as follow:

crr E  for  r c r

.................(7)

cr is the cracking strain:

ccrcr Ef / ..………(8)

crf and cE are the cracking stress and elastic modulus respectively:
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ccr f33.0f 

..………..(9)

o
'
cc /f2E 

...............(10)

The post-cracking stress was calculated by using the following
formula which was proposed by Lim et al. [7]:
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where  
  r cr

0 005.
...................(12)

The stresses in the x and y-directions are then calculated as follow:

     x d r x fx  cos sin .2 2 ....................(13

     y d r y fy  sin cos2 2

....................(14)

where x and y are the reinforcement ratio in the x and y-directions
respectively, and xf and yf are the steel stresses in the x and y-directions
respectively. The angle  is recalculated from these stresses and new
principal strains and stresses are calculated again and this process is
repeated until the values of the strains, stresses and the angle  converge
to an acceptable degree of accuracy. The shear stress xy is then
calculated for each layer and element and the above steps are repeated



until the values of  xy converges. After the strain and stress values
converge, the section equilibrium is checked by summing the stresses as
follow:
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where M, F, V are the applied external moment, axial force, and shear
force, respectively, and a i , is the area of layer i and n is the number of
the layer. These steps are repeated for different values of the load to
obtain the complete response of the beam.

In this investigation a method of predicting the shear response is
proposed which is based on the equilibrium of forces, compatibility of
deformations, geometrical and material properties of the member. This
method gives a complete shear response with a detailed stress and strain
history in the beams. The method differs from that proposed by Tan et al.
[6]. The proposed method starts with the stresses and strains induced at
the cracking stage and updated in the subsequent loading stages
depending on the load level and convergence is attained in fewer
iterations.

Materials Constitutive Relationships:



The principal compressive stress  d is calculated by using the stress-
strain relationship proposed by Ezeldin and Balaguru [8] for fibrous
concrete:
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where

fc = cylinder compressive strength of concrete.

 po = strain corresponding to the peak compressive stress f َ◌c.

fc , = stress and strain values on the curve.

 = is a material parameter that can be calculated by using the
following equations:

926.0" RI7132.0093.1  for hooked fibers ……
(19a)

387.1" RI4818.7093.1  for smooth fibers ……..
(19b)
Nataraja et al.[9] proposed the same equation for crimped fibers, but with
the following value of " :

)7406.0(" RI93.15811.0  ……. (19c)

R.I. = reinforcing index of the steel fibers related to the weight
fraction of the fibers and is equal to fff d/l.w .

An equation proposed in Ref. [10] to calculate the ultimate
strain cu in compression is adopted in this study and it is as
follows:

fVcu 22953011  (microstrains)
……(20)
The tensile strength of steel fibrous concrete is enhanced more
than the compressive strength and the equation proposed by
Soroushian and Lee [11] is used in this investigation:

fff
3/1

fttf N.l.d.05.0N016.01(ff  )
…….(21)



Where '
tf =tensile strength of matrix or concrete (MPa)

fN =number of fibers per unit area and is equal to:

)2./( fdfVfN 

……….(22)
β =orientation factor (β=0.41 according to Ref.[12]) and Vf is the
volume fraction of fibers in concrete.

An equation for the strain at peak stress in tension is also
proposed in Ref. [11] for fibrous concrete and used in this
investigation:

)ldN35.01( fffttf   ………….(23)

Where t =matrix cracking strain = c
'
t E/f

A bilinear constitutive model was suggested in Ref. [11] as
shown in Fig. (1) to represent the tensile stress-strain curve of
steel fibrous concrete prior to the peak tensile stress as follows:
Path OA, elastic uncracked portion:

 .Ec ……. (24)

Path AB, initiation of micro-cracks,
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The post –peak tensile behavior of SFRC is controlled by pull-

out action of fibers. Fig.(1) represents the path CD of the stress –
strain relationship, which is derived on the basis of fracture energy
by Visalvanich and Naaman et al. [13] and adopted in Ref.[10]
and is given in the following form:
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where, fu is the post –cracking tensile strength and is given as:
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where u is the bond strength of steel fibers

An empirical expression of bond strength of steel fibers was
determined by Soroushian and Lee [11] and used in Ref.[10] and in this
study also.

  u Nf 2 62 00036. .
...........(30)
In order to include the effect of fiber shape a so-called (shape factor)
k f  10. [14-16] is incorporated into Eq. (30), then

  u fNf k 2 62 0 0036. .
...................(31)

 i = The tensile strain at the point considered
m = The limiting tensile strain; Fig.(1).
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G f = Fracture energy as derived in Ref. [13], and is equal to:
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h = average crack spacing [17]. In the present study the previous model
of stress-strain relationship of SFRC is replaced by a continuous function
as proposed in Ref. [18] and is given by:
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where

a, b, c and d are constants and  is the strain which corresponds to
stress  .



The constants are determined by using four points on the stress-strain
curve and these are represented by the points A, B, C and any point that
lies at the curve CD in Fig. (1). By solving four equations the constants
a, b, c, and d can be determined. Fig. (2) shows a typical tensile stress-
strain relationships using the last modification for different percents of
fiber volume fraction.
For concrete in biaxial tension-compression, the formula proposed in Ref.
[19] which takes into account the softening effect of tension on the
compression is used in this study:
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The Proposed Incremental-Iterative Method:

In this method the equations of equilibrium, compatibility of
deformations and the material constitutive relationships are used to trace
the behavior of reinforced concrete fibrous beams under predominate
shear. The method can be summarized as follows:

(1) The shear span is divided into a number of sections and the depth into
a finite number of layers.

(2) The cracking moment and the corresponding shear force is
calculated first. The corresponding strain and stress distribution
are found assuming:

(a) Plane sections before bending remain plane after bending.

(b) Normal stress distribution is linear in this stage.

(c) The shear stress distribution is calculated by using the following
equation:

Fig. (2)  Tensile Stress-Strain Relationship
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b.I
Q.V

xy  ……….(36)

where

V= applied shear force at the section considered,

Q= first moment of the area confined between the point
considered and the nearest face.

I = second moment of area and

b= width of section where the shear stress is calculated.

(d) The shear strain is calculated assuming elastic relationship between
shear strains and stresses:




xy
xy

G
 ...............(37)

where, G is the modulus of rigidity.

(3)The strains are then modified to satisfy the compatibility relationships
of Eqs.(1-3)

(4) The principal stresses  d and r are then calculated using the
proposed materials constitutive relationships.
(5) The normal stresses  x and  y are then integrated at each section to
calculate the internal moment Mi at each section.
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where,

 xj =concrete stress at the center of the layer j.

b = width of the section at the point considered

h = layer thickness



jy =distance from the center of the layer to the neutral axis.

n = number of layers.

(6) The external moment at each section is compared with the internal
moment; if they differ by more than 3%, the neutral axis and the strain
distribution are updated (modified) to satisfy again the equilibrium and
compatibility conditions for flexure.

(7)The shear stresses  xy are also integrated to calculate the internal
shear force:
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(8) If the internal shear intV differs by more than 3% of the external shear
Vext ; the shear stresses and strains are modified accordingly. The  strains
and stresses are recalculated and steps (3- 8) are repeated until
convergence is achieved at all sections.

(9) Another load increment is applied and the stresses and strains are
updated as follow:
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k
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M
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1
1

. ……….(40)

where

 k k/ = is the current stress/strain of the kth load increment;

 k k 1 1/ = stress /strain of the previous load increment.

Mk = external moment of the kth load increment at a certain section.

M k 1 =external moment of the previous load increment at a certain
section.



(10) The shear stresses and strains are updated as follows:
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where

 xy k xy k( ) ( )/ = shear stress / strain of the  p o load increment;

 xy k xy k( ) ( )/ 1 1 = shear stress/ strain of the previous load increment;

Vk = external shear of the kth load increment.

V k( )1 = external shear of the previous load increment.

Discussion of results:

The proposed method was applied to fifteen fibrous reinforced
concrete beams tested previously [2, 3, 5] and whose details are
shown in Table (1). The average value of the Calculated to the
experimental shear strength was 0.968 with a coefficient of
variation of 9.4 %.

Table (1) Details of Beams and Results Obtained by using the
Proposed Incremental- Iterative Method
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Pa a

1 3 15
0

19
7

22
5

2.0 .75 29.9 0 396
2.8
8

3.03 1.05
3

2 2 75 13
7

15
0

2.5 .75 31.4 79 158 2.1
5

2.2 1.02
4

3 3 15
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5

2.8 .75 33.4 0 591 2.9
1

2.05 0.70
4
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2.8 .75 29.9 0 591 2.2 2.04
7

0.93
0
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7

22
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2.8 .75 29.9 0 384 2.0
3

2.03
1

1.01
0
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3.6 .5 29.1 0 396 1.5
2

1.42 0.93
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7 3 15
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2.8 .5 29.1 0 396 1.7
8

1.73
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0.97
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4

1.00
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10 2 75 13
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2.66 0.97
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2
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1.5 .75 53 0 400 5.4
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1

2.97 0.87
1

15 5 10
0

28
0

30
0

2.5 .75 53 0 560 3.2
2

3.3 1.02
5

Fig.(3-a) shows the steel stress variation along the shear arm
for three load levels. The figure shows the logical increase in the
steel stress with increasing load, the figure also shows cracks
initiation at the zone of high bending moment followed by
propagation upwards and then initiation of the inclined shear
cracks.

Figs. (4, and 5) show the longitudinal concrete stress contours
at three load levels and the stress distribution at two sections also
within shear span zone for beam No. (1). The figures show the
increase of the stresses with increasing load. The neutral axis
remains nearly at the same position and the concrete stresses are
approximately linear unlike the flexural failure where the neutral
axis rises with increasing load and the concrete stresses reach their
ultimate values.

(a) Variation of steel stress with load.
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Fig.(3-a) shows the steel stress variation along the shear arm
for three load levels. The figure shows the logical increase in the
steel stress with increasing load, the figure also shows cracks
initiation at the zone of high bending moment followed by
propagation upwards and then initiation of the inclined shear
cracks.

Figs. (4, and 5) show the longitudinal concrete stress contours
at three load levels and the stress distribution at two sections also
within shear span zone for beam No. (1). The figures show the
increase of the stresses with increasing load. The neutral axis
remains nearly at the same position and the concrete stresses are
approximately linear unlike the flexural failure where the neutral
axis rises with increasing load and the concrete stresses reach their
ultimate values.

(a) Variation of steel stress with load.



(b) Crack Pattern variation with load.
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Figs. (6, and 7) show the shear stress contours at three load
levels and the shear stress distribution at two sections of beam No.
(1). The figures show the increase of the shear stresses with
increasing load and give the approximately parabolic distribution
of the shear stresses.



Fig. (6) Shear Stress Contours at Loads 11.77, 47.08, 82.4 (kN).

Fig. (6) Shear Stress Contours at Loads 11.77, 47.08, 82.4 (kN), for Beam No. (1).
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Conclusions:
The proposed incremental- iterative method with the adopted

convergence criterion which employs the equations of
equilibrium, compatibility of deformations and material
constitutive relationships simulate the behavior of fibrous
reinforced concrete beams with predominant shear and gives
reliable stress distribution, crack propagation, failure load and
failure pattern. The method may be extended to deep beams by
taking into account the nonlinear strain distribution due to the
noticeable shear deformation.
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