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Abstract

The main purpose of this paper is to introduce and study fixed point (F.P) under a
contractive condition satisfying Geraghty-type by using the concept of partial
Hausdorff metric spaces. Our results improve and unify a multitude of (F.P) theorems

and generalized some recent results in partial metric spaces (P.M.S).
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1. Introduction

In (1969), Nadler [1] proved the multivalued version of Banach contraction principle
(B.C.P). where he extended (B.C.P) from case single-valued map to case multivalued map by
using the concept Hausdorff metric. In (1992), Matthews [2] introduced the notion of the (P.M.S)
as a generalization of metric space in which each object does not necessarily have a zero distance
from itself, where it was a very useful to study of denotational semantics of dataflow networks.
This notion was so useful to solve some hardness of the domain theory. in (1994), Matthews [3]
extended (B.C.P) to (P.M.S). Thereafter, several authors proved some (F.P) theorems using these

concepts see for instance [4-11].

In (2012), Aydi et al. [12] introduced the notion of a partial Hausdorff metric. Where they
proved the existence of (B.C.P) for multivalued maps in complete (P.M.S). Thereafter, several
authors proved some (F.P) theorems using this concept [13-17]. In this paper, we prove (F.P)
theorem in the setting of (P.M.S) by using a partial Hausdorff metric. Our results generalized and

extend some of the known results.

2. Preliminaries:

We recall some basic definitions and results in P.M.S which are needed in this paper.

Definition (2.1) [2][3]

Let M be a nonempty set , then a partial metric on M is a function p: M T W
(where R” is the set of all nonnegative real number), such that the following axioms hold for all
m,n,reM.

(pm) m=n< p(m,m)= p(n,n)= p(m,n), (separation axiom)
(pm,) 0< p(m,m)< p(m,n), (non-negatively and small self — distance)
(pm;) p(m,n) = p(n,m), (symmetry)

(pm,) p(m,n) < p(m,r)+ p(r,n)— p(r,r), (triangular inequality)
Then (M, p) is said to be a P.M.S.

It is clear if p(m,n) =0 then from (pm,) and (pm,) it follows that m=n But the
converse not hold in general sees [2].

It is remarkable that for each partial metricp on the set M, the functions
d,p":M > R are defined by

d,(m,n)=2p(m,n) — p(m,m) — p(n,n).
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p"(m,n) =max{p(m,n) — p(m,m), p(m,n) — p(n,n)}
=p(m,n) —min{p(m,m), p(n,n)}
are ordinary metricson M .

Each partial metric pon M generates a T, —Topology z(p)on M whose base is the
family of the open p —ball{B_ (m;&),me M, & >0}, where
B,(m,&)={ne M : p(m,n) < p(m,m) + &}, forall me M and &£ >0.

Example (2.2) [3][5]

(1) The pair (R, p,), i=1,2 where
p,(m,n) = Max{m,n} vm,n e R*
p,(m,n)=d(m,n)+aVmneR" and & =0, isaP.M.S.
2 Letp:MxM >R McR"
p(m,n) =min{m,n} Vm,ne M < R"
Since (pm,) is fail if m>n. Thus, (M, p) is not P.M.S.

Definition (2.3) [3][9]
1- A sequence{qg }in a PMS (M,p) is said to be converge to the
pointq e M < limp(q.q,)=p(9.q).
2- A sequence {q, }in a P.M.S (M, p) is said to be Cauchy <> lim p(q,,,q,) be exists
(and is finite).
3- AP.M.S(M, p)is said to be complete if every Cauchy sequence{q,} in M converges,
with respect to 7(p), to apoint g e M suchthatp(q,q)= lim p(,.q,,).

Lemma (2.4) [3]

Let (M, p)bea P.M.S. Then

1- A sequence {0, }is Cauchy in a P.M.S if and only if {q,}is a Cauchy in a metric
space (M, d ),

2- AP.M.S (M, p)is complete if, and only if , a metric space (M ,d ) is complete .In

addition, limd ,(q,,,q) =0 < p(9.,q9) =limp(q,,q)
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Lemma (2.5) [11]
Let (M,p)be a PMS. , If {g,}cM,g,—>gq a n—oow

and p(q,q) =Othenlimp(q,,,r)=p(q,r).

Lemma (2.6) [8]
Let (M, p) be a complete P.M.S. Then

@ 1fp(mn)=0=m=n
(ilif m=n= p(m,n) >0

Definition (2.7) [12]
Suppose that (M, p) be a P.M.S. suppose CB” (M) be the family of all nonempty closed

and bounded subsets of P.M.S (M, p). For all U,V eCB?(M) and meM, define
0,(V,U)=sup{p(v,U):veV} and 6,(U,V)=sup{p(u,V):ueU}
where p(v,U)=inf{p(\,u):ueU}.

The mapping H | :CB (M )xCB * (M ) — [0,+o0) defined by
H,(U.V)=Max{s,(V,U),5,U,V)}
is called the partial Hausdorff metric induced by p.
Proposition (2.8) [12]
Let (M, p) be aP.M.S. Then the following is holds; for all U,V ,W € CB"(M)

1) 6,U,U)=sup{p(u,u):uel};

2 o,U,U)<o,(UV);

® 0,UV)=0=UcV;

4) o,U,V)<s,(U ’W)+5P(W’V)_5v2\]:/ p(w,w).

Proposition (2.9) [12][13]
Let (M, p) be a P.M.S. Then the following is holds; for all U,V ,W € CB"(M)
@ H,UU)<H (UV);
(@) H,(UV)=H,(V,U);
(3) Hp(U V) < Hp(U W)+H ID(\N,V) —Lgva p(w,w) ;
@ H,UV)=0=U=V.
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The converse of (4) may not true in general as the following example

Example (2.10) [12]

Let M =[0,1] be endowed with a partial metric p: M xM — R" defined by
p(m,n) = Max{m,n}
From (1) of proposition (2.8), we have

H,(M,M)=5,(M,M)=sup{m:0<m<I}=1=0.
Lemma (2.11) [12]

Suppose (M, p)be a P.M.S, U,V €eCBP(M), h>1. Then for all ueU , there exist
v=v(u) eV suchthat p(u,v)<hH (U,V).

We remark that if U,V are compact then p(u,v)<H (U,V).

Lemma (2.12) [10]

Suppose (M, p) be a P.M.S and {q, }be a sequence of M such that lim p(q,.,,q,) =0.
n—oo

If {g,}is not Cauchy sequence in (M, p), then there exists &>0and two sequence
{m(k)},{n(k)} of positive integers, with m(k) < n(k), such that the following sequences

Py A TP @iy Tnys) B TP Ay 1090 ys)d ANA{P (@) 1,90 ))}  tend
to & as kK —+wo.

Remark (2.13)[18]
Let S denote the class of the functions f:[0,00) —[0,1) which satisfy the condition
pt)—>1=t >0
Main Results
Theorem (3.1)

Suppose (M, p) be a complete PM.Sand F:M — C(M) {C(M) is the family of all
compact subsets of M } be a multivalued map . Suppose that there exists S and L>0
such that forall m,neM ,

H, (Fm,Fn) < (M (m,n))M (m,n) + LN, (m,n) 1)

where
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M, (m,n) =max{p(m,n), p(m, Fm), p(n, Fn), [ p(m, Fn) + p(n, Fm)]}
N, (m,n) =min{p"(m, Fm), p“(n, Fn), p*“(m, Fn) + p*(n, Fm)}

Then F hasa (F.P) q,i.e. g€ Fq. Moreover p(q,q)=0
Proof:

Let g, € M be an arbitrary point, construct the sequence {q,}in M such that g, , € Fq,
foreach ne N

If p(q,,d,.,)=0 forsome ne N then q,=q,,, €Fq,. q, isa(F.P)of F.
Assume p(Q,,d,,,) >0 forall neN

We claim {p(q,,q,,,)} is decreasing and tends to 0 as N — oo

By condition (1), we have

0< p(qn+2’qn+1) <H p(Fqn+1’ Fqn)
Sﬂ(Mp(qn+1’qn))|\/|p(qnﬁ—l’qn)—i_ LNp(qn+l’qn) (2)

Since

M, (4,.:,9,) = max{p(q,.,,d,), P(4,.., Fd,.,), P(d,, Fa,), [ p(a,, FA,.,) + P(d,.., Fa,)1}

M p (qn+1’ qn) = maX{ p(qm—l’ qn)’ p(Qn+1l qn+2)’ %[ p(Qn 1 qn+2) + p(qn+1’ qn+1)]}

Since 72[P(Gy, Gn.2) + P(Gnas Ohia)] < 720P(00: Gria) + P(Coa: G )]
M. (On.1:Gn) = MaX{P(Gy15Gn)s P(Gr 1 Gni)s 220P (0 Onia) + P(Apis G 2)IR

since Y[ P(0y: Gnia) + P(Giz: O 2)] < MaXLP(G1: 0 )s P(Gyis Gni)

M, (Gy.1,9) = Max{p(d, ., d,), P(Ani1 Gni2) }

N, (0.1,0,) = min{p"(d,.,, F,..), p"(d,, Fd,), " (0.1, FA,), (0, Fd,,0)}
=min{p”(ty.1, Gn2)s P (0 )y P Uiz Gra)s P (A, Gi2)}

Since p"(0,,;,0y,.,) =0 it follows that N (q,,,,q,) =0

If M p (qn+11 qn) = p(qn+1' qn+2) then

p(qn+1’ qn+2) <H p(Fqn’ Fqn+1) < ﬁ( p(qn+l’ qn+2)) p(qn+1’ qn+2) < p(qn+1’ qn+2)

m This asticle is an open access article distributed under
the terms and conditions of the Creative Commeons Attnibution-
MNonCommercial 4.0 International (CC BY-NC 4.0 license)
(http:/ / creativecommons.org/ licenses bv-nc/4.0/).

378




Basrah Journal of Science Vol. 38(3)373-386, 2020

Which is a contradiction

so M (Gy.1,9.2) = P(0,,1,,) it following

0 < p(qn+2 1 qn+1) S ﬁ( p(qn+1’ qn )) p(qn+1l qn) < p(qn+1’ qn) (3)
Hence the sequence{p(Q,.;,0,)}is decreasing and bounded below, thus it converges to some

a>0.Indeed a=0 . If we suppose a > 0. From (3) we have

Mgﬂ(p(qqu)) <1, VneN
p(qn+1’qn)

Which yields that lim £(p(q,.,,0,)) =1 and since S €S, we have
n—o0
lim p(q,,;,9,) =0, thatis @a=0 a contradiction to the assumption a >0
n—oo
Hence a=0 and lim p(q, ,,q,)=0.
n—o0

Now to show and {P(d).1,Unu.)3 {0, is a Cauchy sequence in (M, p),

suppose{q, }is not a Cauchy and by using lemma (2.11) there exists & >0 and two sequence
{m(k)},{n(k)}  of  positive integers,  with m(k) <n(k), such  that

P @) o)) TP @ny Gny) s P @rmy1:Aniy)d and LP (A kya:Gniyia) Htends
to & as k —> 0.

Putting in condition (1) M =(q,,, and N =, it follows that.

P(Unys o) < H o (Flg1 Flgo)

< /B(M p(qm(k)—l’ qn(k)))M p(qm(k)—li qn(k)) + LN p(qm(k)—l’ qn(k)) (4)
Where

M (Gng-11 Gngey) = MEXLP (-1 G )s Pmoy-20 Fmy-2)s Py s Flngoy)s
7L P(A )10 Flagey) + P(@nys Flmgey-2)13

= Max{P (@ y2:9n))s Pl y1:9maey)s P oy Angeyin)s
7P (@)1 Anyen) T P @y Angey)Id
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N P (qm(k)—l’ qn(k)) = min{pw(qm(k)_p qu(k)—l)’ pw(qn(k)’ IZQn(k))’ pw(qn(k)’ qu(k)—l)l
P (Agey-2s Flng )}
= min{pw(qm(k),l, qn(k))’ pw(qn(k)! qn(k)+1)’ pw(qn(k) ! qn(k))a
P (Gny-1s Angrye) 3
since P (Gy iy Ungy) =0 it follows that N (G, ey-1 Gngiy) =0

Letting K — oo we get

mlyinTwM o Ao Ong)) =€ (5)

and since N (0, )11 Gy ) = O ,then from (4) we have

P(Any» Uiy 2)
M p (qm(k)—l’ qn(k))

<p(M p(qm(k)—l’qn(k))) <1 forall neN

Letting kK — oo we get

||<im BM [ (Grng11Gny)) =1, since S €S we have
liMM (0, 00017 Gngy) =0 Which is contradiction to (5).
kK—o0

Therefore {0, }is a Cauchy in (M, p).since (M, p) is complete it follow that {q,} converges
to JeM and

p(a.9) =lim p(a,,q) = lim p(q,.q,)=0 ()

Now we show that q € M isa (F.P)of F i.e € Fq
If p(q,Fq) >0 by using ( p,) and condition (1) we get

p(quq) < p(q’qn+1) + p(qn+1’Fq) - p(qn+l’qn+1)
p@,Fa)<p@.4a,,)+pr@,,Fa)<p@.q,,)+H, (Fa, Fq)
p@,F)<p@.q,,)+LsM(@,9)M  (@,,9)+LN (,,9) (7)

Where
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M, (a,,d) = max{p(d,,q), p(a,, Fa,) p(a, Fa), % p(a,, Fa) + p(a, Fa,)1}

N, (q,.q)=min{p"(q,,Fq,), p*(a,Fa), p"(d,, Fa), p“(a, Fa,)}
aS N — oo

limM, (a,.9) = p(a. Fa) (8)
!]EI]ONp(qn’q) :0

Letting N —> o0 in (7) we have
p(g, Fa) < B(p(a, Fa)) p(a, Fa) < p(d, Fg) Which is contradiction p(q,Fq) >0
Thus p(g,Fq) =0 and q € Fq hence q isa (F.P) of F.

By taking L =0 in Theorem (3.1), we obtain the following results.
Corollary (3.2)

let (M, p) be acomplete P.M.Sand F:M — C(M) be a multivalued map . Suppose that
there exists 3 €S such that forall m,ne M,

H, (Fm, Fn) < A(M,(m,n))M(m,n) (©)
where M, (m, n) = max{p(m,n), p(m, Fm), p(n, Fn), %[ p(m, Fn) + p(n, Fm)]}.

Then F has (F.P) ¢, Moreover p(q,q)=0.
If in Theorem (3.1) we put S(t) =4, 2 €[0,1). Then we have the following corollary.

Corollary (3.3)

Suppose (M, p) be a complete P.M.S and F:M — C(M) be a multivalued map.
suppose that there exists A €[0,1) and L >0 such that

H, (Fm,Fn) <AM(m,n) + LN (m,n) (10)
forall mneM , where

M (m,n) =max{p(m,n), p(m, Fm), p(n, Fn), ;[ p(m, Fn) + p(n, Fm)]}
N, (m,n) =min{p"(m, Fm), p*(n, Fn), p”(m,Fn) + p*(n, Fm)} '

Then F has (F.P) q,i.e. < Fq. Moreover p(q,q)=0
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We remark that in the case of single -valued mappings
Theorem (3.1) is a generalization of theorem (3) of M. Dinarvand [11]
Corollary (3.2) is a generalization of theorem (3.1) of Dukic et al [19]

Also, by taking L =0 in corollary (3.3) we obtain the Cric (F.P) theorem [20] in the setting of a
metric space.

Now we give an example to support our main result. In this example there is a partial metric and
a contractive condition (1) satisfying the hypotheses of Theorem (3.1) but do not satisfy in the

setting of usual metric d.
Example (3.4)

Let M ={0,%,1}be endowed with partial metric space p:M *— R"defined by
p(0,0)=p(%2.%)=0
pAY=% p0.)¥)=% p(0)="%% p(2D)=%

andp(m,n)=p(n,m)for every m,neM , then (M ,P)is a complete partial metric
space.

Define F:M —C (M )suchthat F(0)=F (¥)={0}, F(1) ={¥%}

and let the map [ be defined by A(t)=% for all t>0. We shall show that for all

m,n € M the condition (1) is satisfied. For this, we have the following cases

H,(F»% F)=H_ (FO,F)=H ({0} F{}}) =p(0 %) =%
On other hands

M (0,2) = max{p(0,1), p(0,F 0), p(1, F1), 5[p(0,F1) + p(L F 0)]}
max{p(0,1), p(0,0), p(L. ), %2[P(0.72) + PLO)}={%4.0, %, 22l s+ %2l } =1

Then M p(O,l) =% and (M p(0,1))M p(O,l) =¥

Since LN (0,1) =0,we have S(M (0,1))M (0,1) + LN (0,1) = % and thus condition (1)

is satisfied.

(i)H,(FO,F %) =H , ({0},{0) =0< A(M ,(0,))M ,(0,0) + LN ,(0,0)
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(iii) For allm =n, m,n €{0,%,1} we have, Hp(Fm,Fn)zOThus all conditions of
Theorem (3.1) are satisfied. Hence 0 is a fixed point of F. On the other hand, the metric

d o induced by the partial metric p is given by

d,(m,n)=2p(m,n)—p(m,m)—-p(n,n)
d,(0,0)=d,(%2.72) =p(.1) =0

d, (2.0 =d,L%)=%

d, (0,))=d, (10)=%
d,(0,%)=d,(%.0)=%

Now, we show that Theorem (3.1) is not applicate in the setting of usual metric spaces. We have,

H (FO,F1)=H ({0},{2}) = max{sup{d , {0}, {2} Asup{d , ({72} {0D) }}
=d,(0.2) =%
M (0,1) = max{d(0,2),d,(0,F0),d (L F1),%[d,(0,F1) +d, (L FO)}
=max{d,(0,2).,d, (0{0}).d, (1.2}, %ld , (0.0)2}) +d,1L{OD]}
=max{%,0,%,%}= %
BM, (0.))M(0,2) = (%2)(%) =%

since LN, (0,1) =Othen H (FO,F1) > B(M (0,1)))M(0,1) + LN, (0,1)

m@ This asticle is an open access article distributed under 383
the terms and conditions of the Creative Commons Attnbution-
MonCommercial 4.0 International (CC BY-NC 4.0 license)

(http:/ / creativecommons.orgs licenses ‘bv-ne/4.0/).




Basrah Journal of Science Vol. 38(3)373-386, 2020

References

[1] S. B. Nadler, multi-valued contraction mappings, Pacific J, Math, 30 (1969) 475-488.

[2] S.G. Matthews, Partial metric topology, Research Report 212, Dept of Computer Science,
University of Warwick, (1992).

[3] S. G. Matthews, Partial metric topology, on General, Topology and Appl, Ann. New York,
Acad. Sci., 728 (1994) 183-197.

[4] M. C. Arya, N. Chandra and M.C. Joshi, A coincidence point theorem in partial metric space,
Ganita J., 68 (2018) 1-6.

[5] U. Y. Batsari, P. Kvmam and S. Dhompongsa, Fixed points of terminating mappings in partial
metric space, J. Fixed Point Theory Appl., 21 (2019) 21-39.

[6] N. Chandera, M. C. Arya and M. C. Joshi, Coincidence point theorems for generalized
contraction in partial metric spaces, Fixed Point Theory and Applications, Nova Science
Publishers, Inc. (2017)

[7] A. M. Hashim and A. F. Abd Ali, On New Coincidence and Fixed-Point Results for Single-
Valued Maps in Partial Metric Spaces, J. Basra. Researches (Sciences) 43 (2017) 130-136.

[8] E. Karapinar and I. M. Erhan, Fixed point theorems for operators on partial metric spaces,
Appl. Math. Lett., 24 (2011) 1894-1899.

[9] S. Romaguera. A Kirk characterization of completeness for partial metric spaces, Fixed Point
Theory Appl., 2010 (2010)1-6.

[10] V. L. Rosa, and P. Vetro, Fixed point for Geraghty-contractions in partial metric spaces, J.
Nonlinear Sci. Appl., 7 (2014)1-10.

[11] M. Dinarvand, Fixed point for generalized Geraghty contractions of Berinde type on partial
metric space, Appl. Math E-Notes, 16(2016) 176-190.

[12] H. Aydi, M. Abbas and C. Vetro, Partial Hausdorff metric and Nadler’s fixed-point theorem
on partial metric spaces, Topology and Its Appl., 159(2012) 3234-3242.

[13] M. Abbas, B. Ali and C. Vetro, A Suzuki type fixed point theorem for a generalized
multivalued mapping of a partial Hausdorff metric space, Topology and Its Appl., 160(2013),
553-563

[14] J. Ahmad, A. Azam and M. Arshad, fixed point of multivalued mappings in partial metric
spaces, Fixed Points Theory and Appl., 316 (2013) 1-9.

[15] A. M. Hashim and A. F. Abd Ali, A Suzuki type fixed point theorem for generalized hybrid
maps on a partial Hausdorff metric space, Bas. J. Sci., 35 (2017) 51-60.

[16] A. M. Hashim, and H. A. Bakryi, Fixed point theorems for Ciric mappings in partial b- metric
spaces, Bas. J. Sci., 37 (2019) 16-24.

[17] T. Nazir, S. Silvestrov and M. Abbas, Common fixed point results of four maps in ordered
partial metric space, Wave Wavelets Fractals Adv. Anal., 2 (2016) 49-63

[18] A.M. Hashim and S. J. Abbas, Some fixed points of Single — Valued Maps and multivalued
Maps with their Continuity, Bas. J. Sci., 31 (2013)76-86.

m This asticle is an open access article distributed under 384
the terms and conditions of the Creative Commeons Attnibution-
MNonCommercial 4.0 International (CC BY-NC 4.0 license)

(http:/ / creativecommons.org/ licenses bv-nc/4.0/).




Basrah Journal of Science Vol. 38(3)373-386, 2020

[19] D. Dukic, Z. Kadelburg and S. Rad, Fixed point of Geraghty-type mappings in various
generalized metric space, Abst. Appl. Anal, 2011 (2011) 1-13

[20] L. B. Ciric, A generalization of Banach contraction principle, Proc. Amer. Math Soc, 45
(1974) 267-273

K _. T’ This asticle is an open access article distributed under 385
the terms and conditions of the Creative Commeons Attnibution-
\onComme:ml 4.0 I::ttm.xtuom.l{CC B‘I NC 4.0 license)




Basrah Journal of Science Vol. 38(3)373-386, 2020

QAJJJJJ@J\ g s sl sladl) ‘",é asdl) Basatia J) gall Baaluall adaadt) il Jdsa

L) 4 as) ) daa ba) adila daaa Jaf
o) Al sl RIS — il ) o

paldiond)

ARl i bt cnd aslaall LG Ay gabaiad Gl 1 Jl
Glia jue (B Ul e el as gy et A Lple Ulas Al 2l 2 sl g sialleliadd)
el el (s jial eliaill b paal) i) iany aent s aebiall Al

@ This asticle is an open access article distributed under
the terms and conditions of the Creative Commeons Attnibution-
MNonCommercial 4.0 International (CC BY-NC 4.0 license)

tp.t v licenses by-nc/ !

386

o o P



