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Abstract 

In this study, a time stepping Taylor Galerkin/pressure correction finite element 

scheme  is employed to treat incompressible Newtonian flows. 

In this context, Navier-Stoke partial differential equations have been used to describe 

the motion of the fluid. The equations consist of a time-dependent continuity equation 

for conservation of mass and time-dependent conservation of momentum equations. 

Examples considered include a start-up of Poiseuille, flow in a axisymmetric 

rectangular channel for the Newtonian fluid. This test is conducted by taking a 

circular section of the pipe. The critical level of  number is investigated under the 

effect of various parameters. Moreover, the effect of viscosity variation and the 

boundary maximum axial velocity  that imposed at the inlet upon the 

solution is studied as well. In this manner, the findings reveal that, there is a 

significant effect from viscosity variation and  value on the level of  

number such that the extremely limit of  number that can be reached was around 

 with  and . In contrast, the results shown that the influence of 

viscosity variation was an opposite of what that was in the case of  number 

situation, where the high viscosity gave high level of density. The influence of 

geometry design on the level of pressure drop and pressure coefficient is covered in 

this article. 
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1. Introduction 

The solution of the system of differential equations governing the flow of Newtonian 

fluids, has attached some considerable attention in the field of computational fluid 

dynamics . For a simple shear flow, under constant pressure and temperature, 

Newtonian fluids exhibit a linear relationship between shear stress and shear rate 

through a constant viscosity. The behaviour of such fluids can be predicted on the 

basis of the Navier-Stokes differential equations. This system is presented by the mass 

conservation and momentum partial differential equations (see for example Bird et 

al.[1] for details). Numerically, a time stepping Taylor-Galerkin/pressure correction 

method  is implemented in current study. This approach is 

introduced by Townsend and Webster [2] to treat viscous incompressible flows of 

Newtonian and non-Newtonian fluids. The main difference of this method from other 

earlier mixed methods is that the velocity and pressure variables are disassembled. 

Basically, the separation idea of the problem variables is inspired from the 

investigation of Chorin [3]. Over the previous time, two essential trends have taken to 

treat such governing equations. First way has known as the fractional step method, 

which is favored by Gresho et. al. [4] and Donea et. al.[5]. In contrast, there is another 

trend that be used to solve the governing equations of flow based on the velocity 

correction approach (see Kawahara and Ohmiya [6]). The significant difference 

between the two methods is that for the former the separation of velocity and pressure 

is effected after the GFEM discretization of the differential equations, while for the 

final, it happens at the differential equation stage. 

On the other hand, the most suitable numerical technique within the finite element 

framework for solution of the differential equations is a time stepping Taylor Galerkin 

pressure correction  finite element scheme (for more details see Al-

Muslimawi [7]). This approach involves two methods, a Taylor Galerkin method and 

a pressure correction method. The Taylor Galerkin method is a two-step Lax-

Wendroff time stepping procedure (predictor-corrector), extracted via a Taylor series 

expansion in time (Donea [8], Zinenkiewicz et al. [9]). The pressure-correction 

method accommodates the incompressibility constraint to ensure second-order 

accuracy in time (see Hawken et al. [10], Aboubacar et al. [11]). Amazing attentions 

spent to treat the flow problems in the cartesian coordinates by using 
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 (see for example [7], [10], [12], [13]). In contrast, for treating 

the axisymmetric problems using this scheme is not easy, such that the studies around 

the such problems were limitted. Thus, we spent more a concentration on this type of 

interesting investigation. In this study, a  is employed to solve 

sets of differential equations. The novelty here is to study the effect of viscosity 

variation and the boundary maximum axial velocity  on the system solution 

that is taken to be steady state, incompressible, axisymmetric, and laminar, which has 

not been addressed by researchers previously. In this context, Poiseuille  flow 

along a two-dimensional planar straight channel under isothermal conditions is 

studied. The main results of the current study focused on determining the critical 

levels of Reynolds number , which also reoresents the excited issue of this study. 

Moreover, the geometry design reflected a significant effect on the level of pressure 

drop and pressure coefficient. 

2.  Mathematical Modeling   

The governing equations for incompressible Newtonian liquid, which consist of 

momentum and continuity equations in the absence of body forces, can be stated as:  

 

 

where, ,  and  are the velocity, pressure and density of fluid, respectively. Here, 

the extra stress tensor  is defined as  

 

Correspondingly, the rate of deformation  for general flows is expressed as,  

 

where  is the tensor transpose. In addition, the momentum equation (2) can also be 

expressed in the non-dimensional form as  
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Here,  is a Reynolds number, which is defined based on velocity , 

length  and density . Moreover,  is provided as the viscosity of fluid (for 

more details see [14]-[17]). 

Our study aims to introduce a study in incompressible lamnar axisymmetric flow; 

thus, the system of non-dimensional differential equations for incompressible flow 

with absent forces can be expressed in cylindrical coordinates as: 

Continuity equation  

 

Momentum equation  

 

 

 

Where,  and  are the velocity components in -direction, -direction and -

direction, respectively.  

3.  Numerical method 

In this study a  is utilized to treat the system of current 

differential equations. In this situation, the two-step Lax-Wendroff method is used to 

achieve second-order accuracy in both time and space. To explain the derivative of 

such method, consider a one-dimensional problem of the form:  

 

and using  

 

a second-order Taylor expansion of  around  results in the following expression  
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where, the superscript  denotes the time level. To obviate the explicit evaluation of 

the first derivative , a two-step Lax-Wendroff scheme is utilized to gain an . 

Therefore, the two-step Lax-Wendroff procedure over split time-step  

and  is   

 

 

In these equations, terms with  indicate evaluation at a specific time step. 

For non-dimensional incompressible Newtonian fluid equation (5) is written as: 

 

where . Then the fractional-staged formulations with 

non-dimensional parameters within each time-step may be given by:   

 

 

 

 

The summary of this method, the algorithm consists of three stages over each time 

; in the first stage contain two sub-stages. In the start , at , can 

computed a velocity component at half time step  by using the data raised at 

time . At , a velocity component  is computed from data that is found in 

stage 1a. At , the pressure difference over the time step is determined 

depending on the value of , which is evaluated from step 1b. Finally, the value 

velocity time  are calculated by using , and pressure difference . 
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For the finite element method, we introduce approximations  and  to the 

velocity and pressure respectively over finite dimensional function spaces. Hence we 

get;  

 

Such that  and  are the total number of nodes and the number of vertices only of 

the triangles, respectively. Here,  and  represent the vector of nodal values 

of velocity and pressure and  are their respective basis (shape or 

interpolation) functions. Similar forms apply for  and pressure difference. The 

domain  is partitioned into triangular elements with velocities computed at the 

vertex and mid side nodes, and pressure only at vertex nodes. For the shape functions, 

 are selected as quadratic basis functions and  as linear basis functions. 

The corresponding a  form of equations ((15a), (15b), (15c) and 

(15d)) may then be written in matrix form as (see [10]):   

 

 

 

 

Consequently, the above matrices in an coordinate system are defined as:   

1.  Mass Matrix,  

 

such that,  
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2.  Convective Matrix,  

 

where, 

 

 

3.  Momentum Diffusion Matrix,  

 

where,  

 

 

 

 

 

 

 

4.  divergence/pressure gradient matrix,  

 

 

5.  A pressure stiffness matrix  
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Furthermore, quadratic shape functions of the velocity components in cylindrical 

coordinates are used. These functions are given in the usual coordinates as: 

 

Obviously, the vector of interpolation functions can be expressed in the matrix form 

as  

 

In contrast, for pressure, the following linear shape function is used:  

 

Here, the vector of linear shape function is symbolized by . 

The three shape functions ,  and  of the cylindrical coordinates are defined as:  

 

Where  is the area of the element’s triangular and , , and  are coefficients. 

Consequentially, by using the theory of area coordinates for triangular elements, the 

mass matrix can be expressed as: 

 

 where,  

 

 

 The integrate by using the exact integral formula of  

 

 Now, we can to find the derivative form of shape functions as follows:  
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where,  

 

 

Also, the final diffusion matrix formula can be written as:  

 

 

 

 

 

 

 

 

 

Moreover, the element of convective matrix is defined as  
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Also, the divergence/pressure gradient matrix is defined as:  

 

 

Finally, the pressure stiffness matrix is given by  

 

4.  Problem specifications and boundary conditions 

Poiseuille flow through a two-dimensional axisymmetric straight channel was 

introduced in this study under isothermal conditions. Symmetry of the flow centerline  

is taken, permitting solutions to be sought over the upper, where the radial velocity at 

the centerline vanishes. For this purpose, three different triangular finite element 

meshes are implemented: a cross mesh of  elements, medium mesh of 

 elements, and fine mesh of  elements with the same length, as 

shown in Fig.1 (Typical finite element mesh characteristics are included in Table 1).  

Boundary conditions ( ): The setting of  of the present channel problem is 

laid as follows:   

(a) Poiseuille (Ps) flow is specified at the inlet with zero radial velocity . 

(b) No-slip  were applied to the top and bottom walls of the channels. 

(b) Zero radial velocity is applied and zero pressure is applied to the 

outlet of the channels. 
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Table 1: Mesh characteristic parameters 

Mesh Total Element Total Nodes Boundary Nodes Pressure Nodes 

Cross mesh (M1) 8 25 16 9 

Medium mesh (M2) 50 121 40 36 

Fine mesh (M3) 200 441 80 121 
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(c) fine mesh M3:  elements  

Figure 1: mesh pattern 

 

(a) Cross mesh M1:  elements 

 

elements  (b) Medium mesh M2:  
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5.  Numerical results 

The numerical results are computed for Newtonian flow through an axisymmetric straight 

channel by taking a circular cross section of the pipe. In this representation, three different 

triangular finite element meshes were used to present the numerical analysis results under 

different mesh convergence levels. The results are shown for , Crank-Nicolson parameter 

, tolerance criteria taken here as  and typical  is . The critical of  

are evaluated for three meshes and  varying between  and . In addition, the results concerned 

also with the rate of error convergence of the problem components under -variation. The exact 

solution for the problem under consideration with specific conditions has introduced to compare 

with the numerical results in velocity at the in fully developed flow area.  

Exact solution: For fully developed shear axisymmetric fluids through a circular channel, the 

solution in velocity can be computed analytically under specific conditions. In this case, for the 

axis of symmetry  and top wall , we have the dimensional velocity solution in the 

form  

 

where,  is the radial of the channel and  is the maximum velocity in the fully 

developed flow area, which is defined as [17] 

 

such that, , where  and  are the pressures at the outlet and inlet of the pipe, 

respectively, and  is its length. 

In our study, to compare the numerical results with the exact solution for fully developed 

velocity the simulation was implemented for  with applying same conditions. The profile 

of the analytical and numerical axial velocities in the fully developed flow (zone ) is 

presented in Figure 2. The numerical result is provided for fine mesh,  and , under 

imposing axial velocity corresponding to analytical expressions for fully-developed (42), with 

 set to . Findings show that, the obtained numerical results are given a perfect 
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agreement with available analytical solutions, which reflects the sufficiently of the 

  (see Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

In Figure 3, field plots are presented for the velocity and pressure for the fine mesh. As to 

be anticipated, a maximum level of velocity is displayed along the center line of the channel (  

units), and then decreases gradually by going to the above. Also, the level of pressure rise at the 

inlet of the tube reduces whenever closer to the outlet of the tube with a maximum around  

units. 

 

 

 

 

 

 

 

Figure 2: Cross-channel axial velocity profiles: fine mesh,  

Fig. 3:  Velocity and pressure fields: fine mesh,  
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The channel pressure distribution along the axis of symmetry for the cross mesh and fine 

mesh with fixed  and  is provided in Figure 4a. For the two meshes, a linear decline 

in pressure occurs throughout the center of the channel, after which the pressure reaches zero at 

the outlet of the channel. From this data, the pressure level is rise from  units with a cross mesh 

to around  units for fine mesh (almost double) at the inlet of the channel, and continuity with 

the same feature until they arrived to finish point. In addition, the pressure drop is plotted in 

Figure 4b for the fine mesh with . The profiles displayed that there is an 

insignificant effect of Re-variation on the pressure distribution over the channel, in spite of a 

slight change in the zone of  (as shown in the zoom section). The same situation 

appeared for cross and medium meshes (not shown). 

 

 

 

 

 

 

 

 

The critical Reynolds number ( ) for the three meshes is illustrated in Table 2 under three 

levels of ,which applies for inlet flow. Here, an explicit comparison in 

, where the results show that the critical level was that of           , 

 and  for cross, medium, and fine meshes, respectively. The 

results reflect the effect of the size of the element on the level of Reynolds number. In addition, 

the critical Reynolds number ( ) for different settings of  is given in Table 3. From 

(a)                                                                                 (b) 

Fig. 4:  Pressure drop profiles on axis of symmetry: (a) cross mesh vs fine mesh, 

 (b) -variation, fine mesh and  
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the results, one can conclude that the level of  is noticeably affected by the inlet boundary 

maximum axial velocity, where decreases  leads to a larger level of . 

 

 

 

 

 

 

 

 

 

 

 

 

To see the influence of  that applied at the inlet of the tube on the level of the 

critical , Figure 5a demonstrates critical  profile as a function of viscosity . Here, 

the critical level of  is observed to decrease as the viscosity raises such that the maximum of 

 corresponds to the smallest viscosity, , which is consistent with the natural of 

the characteristic non-dimensional equation of Reynolds number . Moreover, one can 

observe that the level of critical  is increased as the  decreases, which reflect the fact 

of the effect of boundary inlet velocity on the critical. 

 

 

Table 2: Critical Reynolds number ( ) for three different meshes with  

 
Mesh Critical  ( ) 

Cross mesh (M1) 460 

Medium mesh (M2) 240 

fine mesh (M3) 65 

 

Table 3: Critical Reynolds number ( ) for different level of axial inlet 

velocities; cross mesh  

 
 

Critical  ( ) 

1 460 

1.5 300 

1.6 285 

1.7 160 

1.8 240 

2 220 
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Figure 6 shows the level of pressure distribution along the axis of symmetry for rising 

. For various , a rapid linear decline in pressure happens during the channel, 

after which the pressure value reaches sharply to zero at the end of the channel. For more 

illustration of the behaviour of flow, the profiles also provided that the maximum axial velocity 

at the entry of the channel needs a high level of pressure to achieve a fully developed situation. 

 

 

 

 

 

 

 

 

 

Fig. 5:  Critical Reynolds number  vs. viscosity. 

Figure 6: Pressure profile, cross mesh, -variation, ,  
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Geometry characteristic effect: to interrogate the influence of the channel length on the level 

pressure drop, the simulation was conducted using four different fine triangular finite element 

meshes, M3, M4, M5, and M6 with height  and various lengths , and  

, respectively, as shown in Figure 7.      
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L=4h

(M5) 

L=5h

(M6) 

Figure 7: Finite element mesh, (M3) L=2, (M4) L=3, (M5) L=4, (M6) L=5. 
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Pressure drop: In Figure 8, field plots are presented for pressure with  and fixed 

. As to be anticipated, a maximum level of pressure is displayed at the inlet of the 

channel, and then decreases gradually by going to the cone exit. The fields show that there is a 

significant effect of the channel length on the level of pressure, and the level of pressure rise as 

increase  to reach the high level with maximum around 40 units with . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, pressure drop is plotted in Figure 9 with  variation and , along the 

axis of symmetry. The profiles displayed that there is a significant effect of -variation on the 

Fig. 8: Pressure fields, -variation,  
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pressure distribution over the channel. In this context, the level of pressure drop is raised as  

increased, reaching a peak of 40 with . 

 

 

 

 

 

 

 

 

 

 

 

 

Pressure coefficient ( ): other finding of our investigation is the pressure coefficient ( ), 

which is defined as: 

 

Where,  is the pressure at the channel inlet,  is the pressure at the channel outlet,   is the 

density, and  is the average velocity. Here, the pressure coefficient is studied for different 

setting of  and channel length . Consequently, Figure 10 illustrated the  as a function of  

with . The results reveal that, the level of  is increased as the length of channel 

raised as expected, while notable reducing is occurred as  increases, which is consistent with 

the results reported by Garrioch and James [18]. Due to the inertial effects dominated, one can 

observe that at high , the  curves tend to the lower limit, reaching to around 1 unit. 

 variation, - Pressure drop profiles on the axis of symmetry;9:  Fig. 
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6.  Conclusions 

In this study, the numerical simulation for laminna incompressible Newtonian fluid is 

achieved based on is the Taylor-Galerkin pressure correction method in a Cylindrical coordinate 

system. With the selected set of parameters, we commenced with a Reynolds number  and 

viscosity . In addition, the influence of the inlet boundary condition on the behavior of 

axisymmetric incompressible Newtonian flow was studied as well. The exact solution for the 

problem under consideration with specific conditions was introduced to compare with the 

numerical results in velocity at the in fully developed flow area. In this matter, an excellent 

accuracy of the solution appears compared with the exact solution. The critical level of  

number is investigated for three types of meshes, where we found that the maximum level 

appears with a cross mesh; this reaches around . In contrast, the impact of viscosity variation 

on the critical level of  number is also studied. In this situation, and as it is anticipated, we 

found that a high level of  number has occurred with a low level of viscosity. In addition, the 

Fig. 10: Pressure drop coefficient for -variation.  
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effect of the boundary maximum axial velocity  at the inlet of channel on the level of 

density and  number is investigated under -variation. In this status, we dedected that there is 

a significant effect of  upon the level of  number and density, such that was generally 

found that decreasing  increases  number and density. In the case of  number, one 

can see that the maximum  was around  with  and  units, while with 

the same value of  the density level reaches around  units with  units. 

Ultimately, the effect of channel length on the pressure drop and coefficient ( ) is presented as 

well. In this context, considerable impact is observed for varying of the channel length on the 

both pressure drop and pressure coefficient. 
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باستخدام طريقة تايلر كالركن لتصحيح الضغط   المحورية  النيوتونية  الأنابيب  تدفق محاكاة

 للعناصر المحددة

  2 المسلماويعلاء حسن           1احسان عقيل فاضل

 .قسم الرياضيات, كلية التربية للعلوم الصرفة, جامعة تالبصرة 1

 .قسم الرياضياتلعلوم, ا, كلية جامعة تالبصرة 2

 

 المستخلص

لمعالجة التدفق النيوتووو ي ريوور المضووغوط.   تايلر كالركن لتصحيح الضغط للعناصر المحددةفي هذه الدراسة تم استخدام طريقة  

لوصف حركة السوائل وتتكوووه هووذه المعووادلات موون معادلووة الاسووتمرارية ومعادلووة  افير ستوك في هذه الحالة تستخدم معادلات 

الزخم المعتمدة على الزمن ولتوضيح الدراسة تم اخذ مثال تطبيقي في  ظووام الاحوودا يات الكرويووة لتوودفق داخوول قنوواة. اه دراسووة 

المستوى الحرج لعدد رينولدز كا ت واحدة من النقاط الاساسية في هذه الدراسة كذلك الحال في دراسووة تووا ير السوورعة العظمووى 

 576التي تسلط في مدخل القناة على مستوى عدد رينولدز حيث وجد اه اعلووى مسووتوى يمكوون اه يصوول لوول عوودد رينولوودز هووو 

. كذلك تم دراسة تا ير تغير اللزوجة على عوودد رينولوودز حيووث تووم ماوواهدة  تووائ  مغووايرة لمووا ،  عندما  

 فووي الضووغط ومعاموول الضووغط ا خفاض مستوى على الهندسي التصميم تأ ير تغطية  تمت  حصل في حالة تغير السرعة العظمى.

 .البحث هذا
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