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INTRODUCTION 

Non-Prismatic members are used in many structural applications such as highway bridges, 

buildings, towers as well as in many mechanical components. However most of the past researches 

work have been neglected the effect of shear deformation, even though this effect is quite important 

and must be included in the analysis for the correct prediction of the response, especially in the 

lattice, trussed or open web structures that exhibit a relatively higher shear deformation than the 

solid and closed web structures. The effect of shear on tapered members is greater than that 

prismatic one
 (1)

.
 
 

 The phenomenon of elastic stability, or buckling, has given rise to extensive theoretical and 

experimental investigations. As important stability problem that has not received a proportional 

amount of research attention is that of the non-prismatic beam-column with lattice or batten build 

up members and / or tapered sections, taking into consideration the effect of shear.  

 S. Z. Al-Sarraf 
(2)

 described a method which permits a rapid determination of elastic critical 

loads (ignoring the shear effect) of structures having uniformly linearly tapered members. Modified 

stability functions for uniformly tapered beam-column having wide flange, box section and other 

cross-sectional shapes are developed. Approximate formulae for the modified stability functions, 

which are simple functions for prismatic members, have been presented. These formulae are exact 

for solid circular or square cross-section members and with good accuracy for other cross-section 

members. AL-Damerchi, H.T.N.
 (3)

, made a theoretical basis for the large displacement elastic-

plastic stability analysis of plane steel frames with linearly and nonlinearly tapered members. Exact 

and approximate modified stability functions were derived (ignoring the shear effect) for a wide 

range of tapered members. Later, S. Z. Al-Sarraf
 (4)

 studied the shear effect on the elastic stability of 

frames having prismatic members. Modified stability functions for prismatic beam-columns having 

any solid cross-sectional shapes, laced or battened built-up sections were developed in terms of 

shear flexibility and axial load parameter which make possible the rapid prediction of the elastic 

critical load of structures taking into consideration the effect of the shear force in the members by   

using a   hand-computing   method.  These    modified stability functions are simple functions of 

stability of prismatic members. The approximate formulas predict the accurate elastic critical load 

to within 1%.  

Also, H. A. Al-Qurashi
 (3)

 developed these approximate formulae for the modified stability 

functions for non-prismatic members (which given by S. Z. Al-Sarraf
 (2)

) including shear effect, 

which are simple functions for prismatic members including shear effect. Later, M.A.
 
Al-Fadul

 (5)
 

derived a new modified stability functions for non-prismatic members including shear effect. These 
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modified stability functions are exact (for build up structures) and accurate approximate using the 

finite difference method (for a wide range of tapered members). 

M. J. Iremonger
 (6)

 used the finite difference method to determine the buckling loads for 

tapered and stepped columns. The convergence towards the correct buckling load as the number of 

segment sub-division is increased may not be monotonic. It was concluded that, consistent and 

correct results can be obtained using only a small number of segment subdivisions coupled with 

extrapolation procedures.  

D. Polyzois and I. G. Raftoyiannis
 (7)

 present study deals with the stability behavior of web-

tapered beams subjected to bending loads.  According to the current AISC specifications, a tapered 

member is treated as prismatic with modified length and cross section identical to that of the tapered 

member’s smaller end. Modification factors are used to determine the modified length and also to 

account for the moment gradient within the unbraced length and the restraining effect for adjacent 

spans. In this study, these factors are evaluated via a finite-element analysis and compared to the 

ones proposed by the current specifications. The current design specifications for steel tapered 

beams are re-examined, and modifications that cover a wider range of geometry and loading cases 

are proposed.  

G.Ozay and A. Topcu
 (8)

, presented a more realistic and comprehensive static analysis 

technique for structures having non-prismatic members. A general stiffness matrix for non-

prismatic members that is applicable to Timoshenko beam theory was derived in the proposed 

method. The stiffness coefficients was determined for constant, linear, and parabolic height 

variations of members, employing analytical and (or) numerical integration techniques. Uniform, 

triangular, and trapezoidal distributed loads over the entire member or along any part of it, 

concentrated loads, moments at points on the member, and any of these load combinations are taken 

into consideration to determine the fixed-end forces. The accuracy of the proposed analysis 

technique was verified by comparing the results of the numerical examples with those obtained 

from the general analysis program SAP90 using a large number of sub elements. 

B.K. Lee et.al 
(9)

, dealt with the elastica of shear deformable tapered columns. Non-directional 

differential equations governing the elastica of buckled columns and their boundary conditions 

including the effect of shear deformation were derived according to the Bernoulli-Euler beam 

theory. These equations were solved numerically to obtain both the elastica and the buckling load of 

the columns. The Runge-Kutta method was used to integrate the differential equations, and the 

Regula–Fabi method was used to obtain the unknown initial value of the elastica and buckling load, 

respectively. Three types of cross sectional shapes with both hinged ends and both clamped ends 

were considered in the numerical examples. 
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L.Jin-Jun and L. Guo-Qiang
 (10)

, established a generalized finite element for buckling analysis 

of tapered columns with various cross sections by using Chebyshev polynomial approach to the 

governing differential equation. The proposed formulation involved the effects of shear deformation 

and is therefore applicable to lattice columns. Buckling of a tapered lattice column, with respective 

lace bars and batten plates, was studied in the numerical example. The effects of shear deformation 

on the buckling loads of tapered lattice columns were specified.  

 

In the present study, the critical load for laced and solid non-prismatic members with linear 

and nonlinear taper taking into consideration the effect of shear are studied with different support 

conditions. 

 

SHEAR FLEXIBILITY PARAMETER OF TAPERED MEMBERS:                   

      The effect of shear on elastic stability analysis depends on the type of the structure whether it is 

open or closed web structure. The open web structure exhibits relatively higher shear deformation 

than the solid one. Therefore, a parameter which gives a sense about how much the effect of shear 

deformation will be occurred on this structure must be introduced. When this parameter has a large 

value, this means that the effect of shear defamation is high and vice versa. 

      The derivation of shear flexibility parameter for non-prismatic members is presented in this 

study as follows:                                                                                                           

  

  

••  SShheeaarr  FFlleexxiibbiilliittyy  PPaarraammeetteerr  ooff  SSoolliidd  TTaappeerreedd  MMeemmbbeerrss::  

      Depending on the derivation procedure produced by Lin and Glouser
 (8)

 derived for a solid 

prismatic member, can be used it here, to calculate the shear flexibility parameter for non-prismatic 

one and as follows:    

       Consider an element of length L, of a structural member as shown in Fig. (1), acted upon by 

axial force Q, shearing force V, and bending moment M.                                                                                                                       

       The deformation is separated into two parts; (1) bending, and (2) shear deformations. The 

change in the slope which produced by the bending in length (L) at end 2 is (see Fig. (2)): 

2EI

ML
L =φ                  (1) 

And the change in the slope which produced by the shear at end 2 is:�

                                                                                                                                                                                                                                

2V
GA

V
=γ �          (2) 
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ψ

�
�

�
�
�

�
=

a

x
dd x 2

 

Where: 

EI2, GAV2: are the flexural and shear rigidities of a tapered member at  end 2 as shown in  Fig. (2).                     

AV2: is the effective shear area at end 2, and equal to A2 /B2, which B2  is the shear shape factor at 

end 2. (see Table (1)). 

      Thus, within the length (L), depending on the ratio of change in the slope caused by the shear to 

that caused by the moment is defined as “shear flexibility parameter ”and it is equal to
(1,4)

:                                                                                                                            

2V

2

2
GA

P e=µ                (3) 

 , is the Euler load of end 2. Where pe2=
2

2

2 L/EIπ  

  

••  SShheeaarr  FFlleexxiibbiilliittyy  PPaarraammeetteerr  ooff  LLaacceedd  TTaappeerreedd  MMeemmbbeerrss  
((11,,55))

::  

      As it was mentioned previously, the open web structures exhibits a relatively higher shear 

deformation than the solid one, however there are many types of laced structural members may be 

catalogued according to five different lacing configurations as shown in Fig. (3).   

The parts of laced structural members consist of two main longitudinal elements, lacing (diagonal) 

elements, with or without strut (transverse) elements. The two longitudinal elements are connected 

in one, two or more planes  by  the  lacing  bars  and  strut  elements  which  serve  as web of the 

member. The shear flexibility parameter for laced non-prismatic members can be calculated as 

given in Table (2). 

    

NONLINEAR TAPERED MEMBER:                                              

      The derivation of the modified stability functions for a linearly tapered members including shear 

effect is presented by authors
 (5)

, using exact method for a laced members and accurate approximate 

method (finite difference method) for all shape factors of tapered members. For a member having 

nonlinear taper either in one or two directions as shown in Fig.(4), the same procedure which is 

used  by  Al–Damerchi 
(3)

, can be adopted here to include the effect of shear in the calculations, and 

as follows:                                         

The depth dx may be expressed by                                                                                                                                                                             

                                                                                     (4) 
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ψ
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a

b
dd
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a

b
u

/1 =ψ

a

b
u =

ψ/1
uu =

m

x
a

x
II

Ψ

�
�

�
�
�

�
=

2

m

x
a

x
II �

�

�
�
�

�
=

2

mm Ψ=

where:                                                                                    

a: is the distance of end 2 from the origin "o", point of zero depth (see Fig.(2)). 

d2: is the depth at end 2.  

From Eq. (4) the depth at end 1 can be obtained as:                            

 

 

                                                                                                                        (5) 

Where b is the distance of end 1 from the origin "o", and:                      

 

                                                                                                                                (6) 

 

Where u=d1 /d2.  

Equation (6) can be written as:                                   

 

                                                                                                                                      (7) 

 

 

Where u is the modified taper ratio and may be obtained as:           

                                                                                                                               (8) 

 
 

The moment of inertia of the cross-sectional area of a tapered member about the axis of bending 

may be expressed in the form:                                        

 

                                                                                                                      (9) 

 

 

Where Ix is the moment of inertia at distance x from the origin "o". Eq. (9) can be written as:                                       

 

                                                                                                                       (10) 

 

 

 

Where m is the modified shape factor and may obtained as : 

                        

                                                                      (11)     

Where m is the shape factor and may be obtained by using the following equation
 (2, 3)

;  

m= Log (I1 /I2) / Log (u)                                              (12)     

The effective cross-section area of a tapered member may be expressed in the form:                                                          

¯ 
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                                                                                                                    (13) 

  

Where Avx is the effective cross-sectional area at distance x from the origin "o". Equation (13) can 

be written as:                                                            

  

  

                                                                                                                         (14) 

  

Where � is the modified shape factor and may be obtained as:       

  

                                                                                                                                  (15) 

 

Where � is the shape factor and may be obtained by using the following equation
 (3, 5)

; 

 

� =log (AV1/AV2) / Log (u))                                     (16) 

 

Substituting Eq.(13) into the following equation; 

GA

V

dx

dy

dx

dy

Vx

xm +
−

=                                       (17) 

and equation (10) into the following equation; 

( )
�
�

	


�

�
+−�

�

�
�
�

� +
+

−
= −−−−−

2

2

21

2

2

2
11

dx

yd
xQ

dx

dy
xQ

L

MM
x

GA

a

EI

xM

dx

yd

Vx

ηηη
η

ηη                                      (18) 

 

yields the same solution of linearly tapered members
 (3, 5)

 but with the use of a modified shape 

factors and modified taper ratio. So, the modified stability functions for a nonlinear tapered member 

including shear effect can be obtained by using the stability functions for a linearly tapered member 

by using the modified shape factors (m) and (�) and modified taper ratio (u).                   

 

 

 

THE EFFECT OF SHEARING FORCE AND TAPERING RATIO ON THE CRITICAL LOAD FOR NON-

PRISMATIC MEMBERS:       

       When buckling occurs there will be shearing forces acting on the cross section of the member. 

The critical load for a laced column is always less than for a solid column having the same cross-

sectional area and the same slenderness ratio l/r. This decrease in critical load is due to primarily to 

the fact that the effect of shear on deflections is much greater for a laced column than for a solid 

bar. The actual value of the critical load depends upon the detailed arrangement and dimensions of 

lacing bars. So, In the present study, the shear effect and tapering ratio on the critical load will be 

�

� � �

�
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discussed for uniformly tapered laced columns with m=2 for case No.1 to case No.3, nonlinear 

tapered laced columns with m=4 (Case No.4) with different support conditions, uniformly tapered 

built-up columns with deferent tapering ratio, and a frame with non-prismatic columns with m=3 

(Case No.6) as follows:   

                                                                 

••  CCaassee  11--  CCaannttiilleevveerreedd  TTaappeerreedd  BBeeaamm--CCoolluummnn::                                                                                                                                                

Consider the structure shown in Fig. (5). To find the elastic critical load of this structure of the 

sway mode, joint B is translated laterally by �B and rotated by �B. The end moments due to these 

deformations are:  

                                         

                                                                 (19) 

 

Where:                                                                                             

 

 are the exact modified stability functions including shear effect
 (5) 

. 

 

At the critical load �MB = �VB = 0. The load parameter �2 which makes the determinant of the 

stiffness matrix equation (19) vanish is the critical load parameter; 

                                                                                                    

                                                                                        (20) 

 

Then; the ratio of elastic critical buckling load (Pcr=�2*Pe2) to the Euler load of end 2 

(Pe2=
2

2

2 L/EIπ ) is the load parameter �2 can be drawing with shear flexibility parameter 	2 as 

shown in Fig. (8). 

                                 

••  CCaassee  22--  HHiinnggeedd  EEnnddss  TTaappeerreedd  BBeeaamm--CCoolluummnn::                                                              

      Consider the structure shown in Fig. (6). To find the elastic critical load, joint A and B are 

rotated by �A and �B respectively. The end moment due to these deformations are:                       

 

                                                                                                (21)�           
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�At the critical load the determinant of the stiffness matrix is reduced to:� 

                                                                                                                          (22) 

�� 

Then; elastic critical load of this member can be calculated using   Eq. (22) as in previous case. 

                            

  CCaassee  33--  FFiixxeedd--PPiinnnneedd  EEnnddss  TTaappeerreedd  BBeeaamm--CCoolluummnn::  

Consider the structure shown in Fig. (7).  To find the elastic critical load for thus structure, joint B 

is rotated by �B .The end moments of the member due to �B are:                                               

                          

                                                                                                                    (23) 

 

At the critical load MBA = 0 and it is equal to:                                    

                            (24) 

 

The load parameter �2 which makes the determinant of the stiffness matrix equation (24) vanish is 

the critical load parameter.    

          From Fig.(8) to Fig.(10), it can be noted that the effect of shear will reduce the critical load 

for cantilever tapered members by 77% for u=4 and 56% for u=2 when shear flexibility parameter 

	2 are increased (from 0 to 2), and this reduction become to be more rabid for hinged and fixed-

pinned members when the effect of shear force is included. 

      The lowering in critical force increases with the increasing of tapering ratio, so; this confirms 

that the effect of shearing force on non-prismatic member is greater than that of prismatic one. 

 

••  CCaassee  44--BBuucckklliinngg  ooff  NNoonnlliinneeaarr  TTaappeerreedd  CCoolluummnnss  ffoorr  DDiiffffeerreenntt  SSuuppppoorrtt  CCoonnddiittiioonnss::    

The elastic buckling load of non-linear tapered columns with three different ends conditions as 

given for cases No.1 to No.3 are studied. The value of the modified shape factor (m) is 4 (m=2 and 


=2) with different values for tapering ratio. The calculations procedures are same as in the cases of 

No.1 to No.3. The results are shown in the figures from Fig. (11) to Fig. (13). 

      From the previous figures, it can be noted that the effect of shear will reduce the critical load for 

the same behavior of previous cases. So; it can be seen that the shearing force and tapering ratio has 

the same behavior on linear and nonlinear tapered members. 

 

� �
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••    CCaassee  55--BBuucckklliinngg  ooff  BBuuiilltt--UUpp  CCoolluummnnss::  

    A uniform cantilevered structure comprised of four circular chords tied together by horizontal 

and diagonal lacing as shown in Fig. (14) has been chosen as an example. The critical load was 

calculated for this structure, both in the absence of shear and with shear effect included. 

      In order to show the effect of tapering ratio on the value of the critical load, this uniform lacing 

column is tapered for a depth ratio (u = 1.5, 2, 2.5 and u=3) and for the same volume as shown in 

Table(3). Again, the critical loads are calculated for these cases, both with and without shear effect. 

The results are summarized in Table (4). 

      From the results in Table (4) and Fig.(15), it can be seen that the effect of shear deformation can 

cause a significant reduction in the value of critical load, its about (63.315)% for prismatic columns 

and (64.7-65)% for non-prismatic columns. From another side the increasing in tapering ratio from 

1 to 2 and 3 lead to increase the value of the critical load by (20.89%) and (26.23%) in the absence 

of shear and (15.09%) and (21.45%) in the presence of shear respectively. 

      In general, if the cross-sectional areas Ab and Ad are small in comparison with the area of the 

chords, the critical load may be considerably lower than the Euler value. Thus a laced column may 

be considerably weaker than the solid column with the same EI, but since the amount of material 

used is less, the laced column may be more economical. 

 

••      CCaassee  66--BBuucckklliinngg  ooff  FFrraammee  wwiitthh  NNoonn--PPrriissmmaattiicc  MMeemmbbeerrss::  

      This problem has been studied by Al-Sarraf
( )3

 for computing the elastic critical load using the 

modified slope deflection method. In the present study the same method is used and the elastic 

critical load of the frame shown in Fig. (16) is to be found but with including the effect of shear by 

utilizing the stability functions of non-prismatic members including shear effect. 

      In this problem the beam is prismatic, whereas the stanchions are non-prismatic and the elastic 

critical load of the frame is calculated for m = 3,    u = 3 and KBB` / (K2) AB = 8. This example is 

solved for two values of shear flexibility parameter (µ2 = 0.5, 0.2) for stanchions and (µ =0.265, 

0.0454) for the beam.  

      To find the elastic critical load for (µ2 =0.5) for stanchions and (0.265) for beam, of  the sway 

mode, joint B is  translated  laterally  by �B and joints B and B` rotate by �B. The end moments and 

forces of the members due to these deformations are: 
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The equilibrium condition at joint B requires that: 
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      At the critical load �MB =�VB=0. The load parameter �2 which makes the determinant of the 

stiffness matrix equation (26) vanish is the critical load parameter. 

      By substitution the values of m, u, µ2 and KBB` /(K2)AB in Eq.(26) gives the stability criteria: 

 

( ) ( )
( ) ( )

ABAB2
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QCSS

CSS27536S
K

+−

+−+
=

.
                                                                                 (27) 

 

      The load parameter �2 making K vanish is found to be equal to (1.7431). 

The elastic critical load of the frame is: 

2P = 2(1.7431) (Pe2) =3.486 (Pe2) AB 

      From the results in Table (5), it can be seen that the effect of shear deformation can have a 

significant effect on the value of critical load of the frames having solid prismatic and non-prismatic 

members. This effect increased from (32.42 to 56.78) % with the increasing of the value of shear 

parameter from 0.2 to 0.5.  

 

CONCLUSIONS:  

Based on the results obtained in the present study, several conclusions may be drawn. These 

may be summarized as follows: 

1. The effect of shear deformation can play a major rule governing the behavior of the non-

prismatic open web-structure under static loads. The effect of the shear is depending on the 

value of shear parameter µ2 and tapering ratio u. 
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2. The exact stability functions that are derived by the authors are suitable for predicting the elastic 

critical buckling load including shear effect for structures having tapered lattice columns. 

3. The modified stability functions for nonlinear tapered member including shear effect can be 

obtained by using the stability functions for a linearly tapered member but with using the 

modified shape factors ( m ) and the modified taper ratio (u ). 

4. Inclusion the effect of shear deformation in the calculation of critical load can result in a 

significant reduction in the value of the critical load for both prismatic and non-prismatic laced 

columns. The average ratio of reduction is (63.315%) and (64.7 to 65) % for prismatic and non-

prismatic laced columns respectively.  

5. In the structures having prismatic and non-prismatic solid columns with short lengths, the effect 

of shear deformation can have a significant effect on the value of critical load, its about (32.42 

to 56.78) %.  
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Table (1) Typical Values of Shear Shape Factor for Solid Member
 (5)

. 

 

Shear shape factor (B) Type of section 

1.2 Rectangular cross section 

1.11 Circular cross section 

� 1.2A / Af = (1.4 - 2.8) I – Section bent about minor axis 

� A / Aw = (2 - 6) I – Section bent about major axis 

 

Where; 

Af = area of 2-flanges. 

Aw = area of the web. 

A = total cross-sectional area. 

 

Table (2) The Governing Equations of Shear Flexibility Parameter  

for Laced Members 
(5)

. 

 

Where; 

�: is the angle of tapered.    

: is the angle between the horizontal and diagonal bars. 

I2: is the moment of inertia with respect to end 2.�� 

Ad, Ab: are the cross sectional areas of diagonal and batten bars respectively. 

Ld, Lb, Lc: are the lengths of diagonal, batten and cord between hinges respectively.      

L: is the total length of the tapered member.  
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Tapering 
ratio (u) 

d1(in) d2 (in) � Ac (in
2) Ab (in

2) Ad(in
2) 

1 58 58 54.0578 30.76 1.0 1.50 

1.5 69.6 46.4 54.4162 30.76 1.048 1.506 

2 77.333 38.667 55.0801 30.76 1.10 1.52 

2.5 82.857 33.142 55.8033 30.76 1.155 1.532 

3 88 28 56.6977 30.76 1.22 1.55 

(P2) 

Pcr  with shear 

Present Study 

(P1) 

Pcr  without 
shear Ref. (3), µ 

= 0 

(P1-P2/P1) 

% Reduction due 
to Shear  

µ2 = 0.5 
3.486 

(Pe2)AB 
8.067 (Pe2)AB 

56.786 

µ2 = 0.2 
5.451 

(Pe2)AB 32.428 

Tapering 
ratio (u) 

Shear 
parameter 

(µ2) 

(P2) 

Pcr with 
shear (Kips) 

(P1) 

Pcr without 
shear (Kips)  

(P1- P2) / P1 

% 
Reduction 

due to shear  

1 6.9038 12195.515 33244.580 63.315 

1.5 4.1326 13353.151 37967.303 64.829 

2 2.7443 14036.842 40192.663 65.076 

2.5 1.9513 14476.725 41129.984 64.802 

3 1.3529 14812.330 41965.483 64.703 

Table (4) Effect of Shear Deformation on the Critical Load for  

the Column of Case No. 5. 

 

Table (3) Properties of  Cantilevered Laced Column of Case No. 5. 

Table (5) A Comparison Between the Results Obtained by the Present Study with Shear 

Effect and Ref. (2) without Shear Effect for Case No. 6. 
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Fig. (1) Element of a Structural Member under; (A) Bending (B) Shear.           

  Fig. (2) Tapered Beam Column Element             �     
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   Fig. (3) Five Different Lacing Configuration for Laced Structural Members��� 

(A) Pratt-Bracing ,(B) X-Bracing ,(C) Diamond Bracing ,(D) Howe Bracing,  

and (E) Warren Bracing 
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Fig. (4) Nonlinear Tapered Beam – Column Element.   
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Fig. (15) The Effect of Shear and Tapering Ratio on the Critical Load 
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Fig. (16) Geometry and Loading Conditions for the Frame in Case No. 
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