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Abstract

In this paper a higher order finite layer formulation based on the
auxiliary nodal surface (ANS) technique for a free vibration analysis of
rectangular plates is presented. The free vibration analysis has been
performed using the generalized jacobi iteration method, thus finding the
natural frequencies and modes of vibration. In this study, authors consider
the effects of different types of material and dimensions of the plate on its
free vibration analysis.

Many examples have been studied to show the good performance
of the higher order finite layer with one ANS for free vibration analysis
of plate.
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Notation:

a             Length of plate

b             Width of plate

[B]          Strain matrix

[C]          Coefficient matrix for displacement function

c              Thickness of plate

[D]          Elasticity  matrix

E             Modulus of elasticity

{f}          Displacement function

h            Thickness of layer

m           Particular harmonic number

[M]        Mass matrix

r             Specified number of harmonic terms in x-direction

s Specified number of harmonic terms in y-direction

[S]          Stiffness matrix

Vector of nodal displacements
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x Global coordinate in length -wise direction

Xm Harmonic function in x-direction

y Global coordinate in width -wise direction



Ym Harmonic function in y-direction

z Global coordinate in thickness -wise direction

Eigen vector}{
ρ Mass per unit volume

ν Poisson's ratio

ω Natural frequency (rad/sec)

Introduction:

Due to scientific and technological development of engineering,
rectangular plates have been widely used in different engineering fields.
The rectangular plates are commonly used as structural components in
aerospace, mechanical, nuclear, marine and structural engineering [1].

A study on the free vibration analysis of plates should be made first
before the forced vibration analysis in order to investigate vibrational
characteristics of plate (fundamental natural frequency of plate) and to
prevent the resonance from occurring. The vibration behavior of structure
defined as special spectra consist of an infinite number of frequencies and
modes which can be found by knowing geometrical shape, mass
distribution, stiffness and boundary conditions of the plate [2].

For years, there has been a large amount of research work on the
free vibration analysis of plate structure. In 1970, Sinivas [3] developed a
three-dimensional linear, small deformation theory of elasticity solution
by the direct method for the free vibration of simply supported thick
rectangular plates. The free vibration of isotropic plates with various
types of boundary conditions, for three different aspect ratios was
investigated by Cheung and Chakrabarti [4] in 1972 by using lower order
finite layer technique. The resultant frequencies for the smallest
thickness/span ratio are close to that existing for thin plates, while



frequencies for higher thickness/span ratios tend to be of lower value. The
closed-form solutions are obtained in 1999 by Meunier and Shenoi [5] for
finding the natural frequencies of sandwich plate panels by using higher-
order shear deformation theory. Petrolito and Golley [6] in 2000 develop
a finite strip-element for the vibration analysis of thick plates. The
method uses a combined polynomial and trigonometric interpolation
scheme that enables all boundary conditions to be correctly treated. The
global equations are derived in the usual manner of the finite element
method, and natural frequencies of vibration can be found by solving a
linear eigenvalue problem.

In 2003, Sheikh et al. [7] analyzed the free vibration for both the
thin and thick plates. The solution depends on Reissner-Mindlin theory
by adopting a new type of triangular element with three nodes at corners,
three others at mid of the three sides and one internal node at the center of
element.

In the present study, a higher order finite layer with a second order
polynomial has been used for the free vibration analysis of plates. The
higher order layer produced by introducing an auxiliary nodal surface at
mid the distance between the upper and lower surfaces of the lower order
layer.

Finite Layer Method:

The plate was divided into a number of horizontal layers in the
direction of the thickness of a layer. These layers may be of lower or
higher order and for finite layer formulation the layers may be imagined
as nodes as shown in (Fig. 1). By selecting functions satisfying the
boundary conditions in two directions, the philosophy of the finite strip
method can be extended to layered systems. The resulting method is
called the finite layer method (FLM), and this method is useful for
layered materials, rectangular in plan form [8].

The general form of the displacement function of a layer element is
given as a product of polynomials in the thickness direction and
continuously differentiable smooth series in the other two directions.



With the stipulation that such series (called basic functions) should satisfy
the boundary conditions at the edges of the layer thus a three-dimensional
problem is reduced to one-Dimensional problem.

For a layer element the generalized displacement functions can be
constructed as [9, 10]:
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Where )(),(),( yYxXxX nmm  and )( yYn


are the   basic

functions and their first derivative. )(),( zvzu mnmn and )(zwmn are the

interpolating functions. The )(xXm and )(yYn are used in the expression

for u and v respectively, because the relationships )/( xwAu  and
)/( ywBv  in the linear plate theory are:-
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Where [C] represent the shape functions in the z-direction with the higher
order finite layer (corresponding to the layer with an auxiliary nodal
surface):
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Where the unknown parameters:

mnkmnimnjmnkmnimnjmnkmni WWVVVUUU ,,,,,,, and

mnjW represent the amplitudes  of  the corresponding quantities at the
surfaces i,k and j respectively.

Plate Idealization



(Fig. 1) Finite Layer Method

The simply supported layer is by far the most important and useful
for such a layer element the generalized displacement functions in
equations (1) can be taken as:
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In which:

a = Length of layer

b = Width of layer

r, s = Number of harmonic in x, y direction respectively.

The generalized displacement functions (1) for a layer can be written in a
concise notation as:
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Where [N] combines together the series and the shape functions:

 
 
  

















mn

mn

mn

mn

W
V
U

W }{

...........(7)

The strain-displacement relationship is:
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Where [B] matrix is referred to as the generalized strain matrix.

The stress-strain relationship is:
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Where [D] is the elasticity matrix of the material for the particular layer
under consideration which can be isotropic or orthotropic.

Derivation of the Stiffness Matrix:

The standard formula for the stiffness matrix is [9, 10]:

dzdydxBDBS pq
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Where mnpqS ][ is the generalized stiffness matrix which has the
following expanded form:
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For a simply supported case owing to the othogonality of trigonometric
series, the terms of the series can be decoupled and may be solved
separately.



Derivation of the Consistent Mass Matrix:

As it has been mentioned, the displacement function of any layer
has the form as in equation (6):

nmmnpq YXCN .][][ 
........…...(12)

Thus the consistent mass matrix for a layer is developed as:
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Where ρ is the mass per unit volume.

For a higher order layer element mnN][ can be written as follows:
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Free Vibration Analysis:

The general matrix differential equation of the system under
dynamic equilibrium is:

………(16)
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Where {W} represents the nodal global degree of freedom. [M] , [A] and
[S] are the mass, damping and stiffness matrix of the structure,
respectively;

}{


W and }{

W are the acceleration and velocity amplitude vectors

respectively. The load factor {F} represents the nodal loads.

By making {F} zero in equation (16), the equation of free vibration of the
undamped plates is:

……………(17)

0}]{[}]{[ 


WSWM

The standard eigen value formulation of problem is therefore:
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Where 2
mn is an eigenvalue and }{ W is the corresponding

eigenvector. The generalized Jacobi Iteration is employed for solving
equation (18) to determine the natural frequencies and their
corresponding mode shapes.

Many computer programs in FORTRAN language have been developed
to solve numerical problems in free vibration analysis for rectangular
plates. The original programs are those provided in 1991 by Majeed [10]



who used it in static analysis for rectangular plates. These programs are
suitable for dynamic analysis of rectangular plates which have different
boundary conditions.

Numerical Examples:

In order to demonstrate the capability and efficiency of the
formulation presented and the reliability of the higher order finite layer
with one auxiliary nodal surface in dealing with free vibration analysis of
plates, typical examples have been studied.

Example-1: Free vibration of a thin isotropic plate simply-supported
at all sides:

A thin plate simply-supported at the four edges is analyzed by the
higher order finite layer taking different aspect ratio (a / b). Natural
frequencies for the lowest six modes of vibration obtained and compared
with the results reported by Leissa [11] and presented in Table-1. The
properties of the plate are: a= 1 m, b= variable value, = 0.1660, E= 1.17
x 107 kN/m2, = 100 kN/m3, c= 0.01 m.

Table (1) Natural frequencies of simply supported thin isotropic plate

Aspect ratio (a/b)
MethodMode

No. 2.51.512/30.4

71.556432.076219.739214.256111.4487Leissa

1
71.400031.840019.734014.250011.4500Present

Study

101.163461.685049.348027.415616.1862Leissa2



100.9261.350049.264027.380016.1700Present
Study

150.511598.696049.348043.864924.0818Leissa

3
150.04897.6049.264043.8024.0500Present

Study

219.5987111.033078.956849.348035.1358Leissa

4
218.70110.530078.790049.264035.0830Present

Study

256.6097128.304998.696057.024441.7950Leissa

5
255.4300127.107098.460056.920040.9922Present

Study

Example-2: Free vibration of a square isotropic plate having
different boundary conditions:

In this example the frequency parameters ( Ea /)1(2 
) are to be found for a thick square plate with different boundary
conditions, the material and geometrical properties of the plate are as
following:

Length (a) = Width (b) = 250mm

Thickness (h) = 25mm

Density ( ) = 7850kg/m3

Modulus of Elasticity (E) = 2x105MPa

Poisson Ratio ( ) = 0.3

(Fig. 2), (Fig. 3) and (Fig. 4) show the comparison between the values
resulted from present method and those found by Lee [12].



(Fig. 2) Frequencies for the plate with fixed supports

(Fig. 3) Frequencies for the plate with fixed-simply-fixed- simply
supports



(Fig. 4) Frequencies for the plate with simply-fixed-simply- simply
supports

Example-3: Effect of the thickness of plate on frequency:

Results are presented in terms of the natural frequency
ω (rad/sec). The plate has the same material and geometrical properties in
the previous example except the thickness will be variable here.

In Figs. (5) and (6) the relation between the lowest natural
frequency and the thickness/span ratio (h/a) are illustrated for two plates
having different boundary conditions, the results are compared with the
available data computed for the same plates by Ref. (13).



(Fig. 5) Relation between the lowest natural frequency and
thickness/span ratio (h/a) for fixed all around isotropic plate



(Fig. 6) Relation between the lowest natural frequency and
thickness/span ratio (h/a) for (fixed-simply-fixed- simply supports)

isotropic plate

Example-4: Orthotropic plate:

In order to compute natural frequencies of a simply supported
orthotropic square plate. Elastic constants as that given by Srinvivas et al
1970 [3] are taken.
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06.42
068.42
0058.25
00081.84
00072.1587.86
00072.13.37160

Table (2) lists frequencies parameter of different modes obtained by
various methods.

Table (2) Frequency parameters of simply supported moderately
thick orthotropic plate with h/a=0.1

Sirivas
[3]

Kant
[14]

Qian [13]Present
Study

Method

Mode No.

0.04740.04740.04770.0451

0.10330.10330.10280.1002

0.11880.11880.12360.1203

0.16940.16940.17260.1704

0.18880.18880.18500.1875



0.21800.21810.21720.2346

0.24750.24760.24390.2457

0.26240.26250.27270.2738

0.29690.29690.30660.3009

0.33190.33190.33070.37210

Conclusions:

There were many advantages from using finite layer method
specially for analyzing the plates which compound from different layers.
The higher order finite layer method is used successfully to study the
vibration characteristics by finding the natural frequencies of a
rectangular plate subjected to different edge conditions. Computed
frequencies were found to agree very well with the corresponding results
available in the literature.

It is clear from the results that the natural frequency of the plate
will be increased by increasing the aspect ratio (a/b) and the plate
thickness.
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