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1. Introduction 

The vibration signal is used for achieving the monitoring 

and identifying fault using the conventional signal processing 

approaches [1]. In healthy monitoring conditions, the 

measured signal is usually considered as stationary signal for 

the sequent analysis. Because of the noise and load fluctuation 

in defective state, non-stationary signal may be created in 

utmost actual conditions [2-5]. The cyclo-stationary method is 

an efficient tool for analyzing the non-stationery signal and it 

is applied to extract characteristic of signal, monitor state, and 

identify defect [6, 7]. Also, the signal of defected machine has 

non-stationary property, which delivers a possible 

improvement for cyclo-stationary method [8, 9]. Through the 

cyclo-stationary (CS) analysis, the important unseen 

characteristic info can be shown, and the various information 

represents the variable defect situations. 

Usually, the signal has periodic or multi-periodic statistical 

characteristics are denoted as “cyclo-stationary (CS)” or 

“periodic stationary". The rotary machine, that runs with 

rotational motion, will create periodic-signal at standard 

operational conditions and it begins to vibrate, when the faults 

or defects occur in rotary machine. The vibration signal 

generated in this case is denoted as a “modulation signal”. Its 

second-order statistics (mostly cyclic autocorrelation function, 

spectral-correlation-function, and spectral-coherency-

function) introduce the periodicity therefore it is observed as a 

cyclo-stationary signal [10]. Several papers dealt with using 

cyclo-stationary signal processes to diagnosis the vibration 

signals of intact and defected rotating machines [11-23]. For 

example, some researches dealt with the defect in gears such 

as [11, 15, 17 and 19]. On other side, the papers [12, 13, 14 

and 20] considered faults in bearing. The cyclo-stationarity 

signal processes were analyzed and discussed in papers [16, 

18, 21-23].        

Gardner et al. [24] introduced a brief literature survey 

dealing with cyclo-stationarity and discussed them from 

different fields. They used “spectral correlation approach” for 

analyzing cyclo-non-stationary vibration signals of rotating 

machines when the rotation speed is variable, also in [23, 25-

28]. 

On the other side, signals that exhibit a concealed 

periodicity associated with the angle of a shaft can be 

characterized as exhibiting cyclo-stationary in the temporal 

domain when subjected to constant speed operating 

conditions. Nevertheless, when subjected to different speed 

circumstances, the impulses associated with the rotating speed 

of the shaft exhibit a lack of cyclo-stationary over time, and 

the carriers associated with time no longer exhibit cyclo-

stationary in terms of angle. Therefore, these entities are 

characterized as nonstationary. The aforementioned 

characteristic is recognized as the definitive representation of 

the signal emitted by rolling element bearings when subjected 
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to different operational circumstances. Despite the absence of 

time or angle-cyclo-stationary in the signals, there is still an 

underlying periodicity present in the signal. 

The cyclo-non- stationary signals are analyzed by using the 

Frequency-Order SC (FOSC) method. To analyze cyclo-non- 

stationary signals, the Frequency-Order spectral-correlation 

(FOSC) method to shift the signal in the angle-domain. 

Otherwise, the signal can be resampled entirely in the angle 

domain to produce Order-Order spectral-correlation (OOSC) 

[23, 28]. Li et al. [29] used sparse code shrinkage algorithm to 

de-noise the measured signal to get enhanced results. Zhang et 

al. [30] controlled the involvement of each spectral frequency 

line for emphasizing the defect signature. Also, Smith et al. 

[31] developed a band selection tool to capture cyclo-

stationarity established on the strength of target cyclic 

frequency components in the spectrum of the log envelope. 

The spectral-correlation denotes the power distribution of 

the signal relating to the spectral frequency and cyclic 

frequency, while spectral-coherence is the weighted version of 

spectral-coherence and tends to magnify weak cyclo-

stationary signals and both are used to analyze cyclo-stationary 

signals. These methods are able to reveal hidden periodicities 

that are masked by stronger signals and random noise and they 

can be displayed in the bi-variable map such as frequency-

frequency, order-frequency, or order-order domains. The 

Enhanced Envelope Spectrum (EES) can be obtained by 

integrating the bi-variable over the spectral frequency. 

One reason for the restriction of cyclic spectral analysis is 

the high computation costs involved in the analysis of cyclo-

stationary signals. Generally, the spectral correlation may be 

costly to calculate in certain instances such that it becomes 

impractical to apply for quick troubleshooting and daily 

analysis. Several studies have been prepared to minimize 

computation costs. Roberts et al. [32] suggested the FFT 

Accumulation Method (FAM) and the Strip-Spectral-

Correlation Algorithm (SSCA) but the estimation error of this 

method is very high because of degradation of the statistical 

performance of the estimator [32]. The Strip-Spectral-

Correlation Algorithm offers some computational saving over 

the FFT Accumulation Method at the expense of a degraded 

signal-to-noise ratio of the output [32, 33]; and it needs huge 

memory, therefore it is used for to analyze small-sized signals 

only. 

Antoni et al. [34] estimated the spectral correlation using 

new suggested algorithm named the Fast-Spectral-Correlation 

(FSC) algorithm. Their new algorithm based on analyzing the 

Short Time Fourier Transform (STFT) lines around a certain 

spectral frequency to extract the Spectral-Correlation. Since 

they introduced this method, the Fast-Spectral-Correlation 

(FSC) has become a standard method for spectral correlation 

estimation in vibration field. 

On other side, Borghesani and Antoni [35] suggested new 

faster method to reduce the computation cost but the method 

requires double the memory. The disadvantages of their new 

method are numerical instability, the inconsistent results 

depending on the cyclic frequency range. 

The Averaged Cyclic Periodogram method is one of the 

most important methods to compute spectral-correlation and it 

bases on the weighted overlapped segment averaging, which is 

applied in spectrum averaging [32, 37]. Despite ACP 

calculations can be accelerated by using power-of-two 

processing window length to calculate the Short Time Fourier 

Transform (STFT), the method computation cost is still very 

high due to the calculations of shifted STFTs for the whole 

range of cyclic frequency [32, 36]. In this work, the Fast 

Averaged Cyclic Periodogram method, that proposed by 

Alsalaet [36], is used to analyze the measured vibration signal 

of defected ball bearing. Experimentally, four types of defects 

in ball bearings are employed in this work (Outer Race Slot, 

Inner Race Slot, Ball Slot and Combined Defects). 

2. Theoretical background 

2.1. Vibration signal under constant speed 

Emerging defects in rolling bearings are generally resulting 

from a local material loss such as pitting, spalling, corrosion, 

rubbing, contamination in contact surfaces inner race, outer 

race, balls. If a rolling body touches the defect, impulse with 

short duration will generate and this impulse signal leads to 

excite several resonances of the bearing structural [36]. Duo to 

repeat of these impulses during bearing operation, a sequence 

of impulse responses, whose temporal spacing effects by the 

defect kind and bearing dimensions, will be generated. Also, 

this impulse responses series is probably amplitude modulated 

because of the transitory of the defect through the load zone. 

Normally, defects in outer race generate a uniform amplitude 

modulation for fixed outer race and existence of a radial load, 

while defects in inner race and rolling-element generate a 

periodic amplitude modulation at the period of the inner race 

and cage rotation respectively. 

According to the above considerations, the vibration signal 

is generally taken as a signal in time domain in this work is 

taken as Discrete vibration signal x(n), as shown in Fig. 1. 

 

Fig. 1 Vibration signal in time domain considering in this work. 

2.2. Cyclo-stationary signal processing 

If the rotational speed remains constant while acquiring 

data, it is expected that rotating mechanical components will 

produce periodic transient patterns that exhibit cyclic 

behavior. The transmission of these signals frequently include 

data regarding the operational status of machine components. 

Signal processing and feature extraction techniques are 

commonly employed to extract this information and 

subsequently analyze the health condition of the machinery. 

According to the principles of cyclo-stationary theory, the 

signals obtained due to rotation of equipment are described by 

considering the first and second orders of cyclo-stationary. A 

signal is considered to possess cyclo-stationary of order n 

when its statistical n-order moment exhibits periodicity with a 

period of N. To illustrate, a signal demonstrates first-order 

cyclo-stationary (CS1) when its first moment (i.e. mean value) 

is a periodic function that follows Equation (1). Conversely, a 

stationary signal maintains a constant mean value at all times 

[36]. 

𝑅1𝑥(𝑛) = 𝑅1𝑥(𝑛 +  𝑁) =  𝔼 {𝑥(𝑛)}                                        (1) 
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Where: 

𝑅1𝑥(𝑛) : First statistical moment. 

𝑥(𝑛) : Discrete vibration signal. 

𝔼 : Ensemble averaging operator. 

N : Period of periodic function. 

n : The variable of time. 

In the context of rotating machinery, the CS1 vibration 

signals can be described as periodic waveforms that are 

associated with components that are phase-locked with the 

rotor speed. These components may include issues such as 

shaft misalignment and spalling gears, etc. In contrast, a signal 

that exhibits cyclo-stationary of the second order (CS2) is 

characterized by periodicity in its second-order statistical 

moment [21]. Specifically, this pertains to statistical measures 

associated with energy intensity and flow. Instances of these 

signals encompass white noise signals that undergo amplitude 

modulation through a periodic signal. The instantaneous 

autocorrelation function effectively captures the 2nd-order 

statistics: 

𝑅2𝑥(𝑛, 𝜏 ) = 𝑅2𝑥(𝑛 +  𝑁, 𝜏 ) = 𝔼{𝑥(𝑛)𝑥(𝑛 − 𝜏)∗}

= 𝔼 {𝑥(𝑛 +  𝛽𝜏 )𝑥(𝑛 − 𝛽𝜏 )
∗
}              (2) 

Where: 𝛽 + 𝛽 = 1  

Typically, 𝛽 = 𝛽 = 0.5 at symmetrically autocorrelation-

function while = 0 , 𝛽 = 1  for asymmetrically 

autocorrelation-function [37].  

The vibration signals associated with bearings are 

commonly denoted as (CS2), as they exhibit an underlying 

periodicity that is closely linked to the rotational speed of the 

shaft. In signal analysis processes, nth-order cyclo-stationary 

(CSn) refers to a signal that exhibits periodicity in its nth-order 

statistical moment. However, the signals having orders greater 

than CS2 are typically disregarded, like CS1 and CS2 

effectively capture the characteristics of interest in signals 

produced by rotating machinery. The sequential cyclic 

autocorrelation function has been observed to possess 

significant efficacy as a signal processing tool across various 

applications. In the case of signals derived from physical 

measures, like vibrations and acoustic signals, there are 

additional advantageous to utilize the corresponding 

frequency-domain-tool. The time-based autocorrelation-

function 𝑅2𝑥(𝑛, 𝜏 ) is a mathematical function that depends on 

(n) and (𝜏). The frequency-domain counterpart of the given 

function is dependent on: (1) the cyclic frequency, denoted as 

(α) which is associated with the modifying signal, and (2) the 

spectral frequency, denoted as (f) which is associated with the 

carrier signal. The Cyclic Spectral Correlation (CSC) is a 

computational technique that effectively characterizes the CS1 

and CS2 signals throughout the frequency-frequency domain 

[38]. The CSC can also be referred to the correlation 

distribution of the carrier and modulation frequencies of the 

signatures included in the signals, as described in equation (3), 

and Fig. 2 (b) shows the Cyclic Spectral Correlation (CSC). 

𝑆2𝑋(𝑓 , 𝛼) = 𝑙𝑖𝑚
𝑊→∞

1

𝑊
𝔼{ℱ𝑊[𝑥(𝑛)]ℱ𝑊[𝑥(𝑛 + 𝜏)]∗}

= 𝔼 {𝑋(𝑓 +  𝛽𝛼)𝑋(𝑓 − 𝛽𝛼)
∗
}                (3) 

Where: 

 𝑆2𝑋(𝑓 , 𝛼) : the spectral correlation functions. 

ℱ𝑊[𝑥(𝑛)] : Fourier transform of the signal 𝑥(𝑛) during a finite 

time interval 𝑊. 

 

 

 

 

Fig. 2 The vibration analysis using spectral correlation in frequency-

frequency domain. 

2.3. Application of ACP for evaluating of spectral correlation 

Assume signal with totally length (L) collected in interval 

of sampling 𝛥𝑡 = 1/𝐹𝑠. Given a symmetric processing 

window function of length Nw, Short-Time Fourier Transform 

(STFT) can be computed for a specific piece of signal in ith-

time. The values of 𝛥𝑡 and length Nw are provided in equation 

(4). The complex envelope or complex demodulate is a 

collective term used to refer to the STFT coefficient [32]. 
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𝑋𝑆𝑇𝐹𝑇(𝑖, 𝑓𝑘) = ∑ 𝑥(𝑖𝑅 + 𝑚)𝑤(𝑚)𝑒−𝑗2𝜋𝑚𝑓𝑘𝛥𝑡

𝑁𝑤−1

𝑚=0

                 (4) 

The symbol (fk) denotes the discrete frequency, which is 

equal to 𝑘 𝛥𝑓 =  𝑘 𝐹𝑠/𝑁𝑤, where 𝛥𝑓 is the frequency 

resolution, k is an integer, Fs is the sampling frequency, and 

Nw is the length of the tapering window denoted by w(m).  The 

variable R denotes the temporal displacement (measured in 

samples) between successive windows, or alternatively 

referred to as the decimation factor [32, 33]. The analysis of a 

signal is significantly influenced by the phase shift, making it 

crucial to adjust phase reference to initial point of signal [34]. 

𝑋𝑤(𝑖, 𝑓𝑘) = ∑ 𝑥(𝑖𝑅 + 𝑚)𝑤(𝑚)

𝑁𝑤−1

𝑚=0

𝑒−𝑗2𝜋(𝑚+𝑖𝑅)𝑓𝑘𝛥𝑡  

= X𝑆𝑇𝐹𝑇(𝑖, 𝑓𝑘)𝑒−𝑗2𝜋𝑖𝑅𝑓𝑘𝛥𝑡                            (5) 

The time smoothed cyclic periodogram, also known as the 

Averaged-Cyclic-Periodogram, is a highly effective estimator 

for spectral correlation. The Averaged-Cyclic-Periodogram is 

viewed extension of Welch's method, that use the averaging 

technique over brief overlapped periodograms in order to 

effectively compute the power-spectrum [39]. When the cyclic 

frequency α = 0, the output of the ACP aligns with Welch's 

estimator [37]. Equation (6) provides the expression for ACP 

in the context of asymmetric spectral correlation [34]. 

𝑆2𝑋(𝑓 , 𝛼) =
1

𝐾 || 𝑤 ||2 𝐹𝑠

∑ 𝑋𝑤  (𝑖, 𝑓) 𝑋𝑤  (𝑖, 𝑓 − 𝛼)∗

𝑘−1

𝑖 = 0

        (6) 

The spectral-correlation is described by Eq. (7) by STFT-

envelopes determining by FFT [34]. 

𝑆2𝑋(𝑓 , 𝛼) =
1

𝐾 || 𝑤 ||2 𝐹𝑠

∑ 𝑋𝑆𝑇𝐹𝑇  (𝑖, 𝑓) 𝑋𝑆𝑇𝐹𝑇 (𝑖, 𝑓

𝑘−1

𝑖 = 0

− 𝛼)∗𝑒−𝑗2𝜋𝑖𝑅𝑓𝑘𝛥𝑡                                           (7) 

Here, the variable K is defined as ( ) /wL N R R− + , 

representing the count of blocks shifted by R with each block 

having a length of Nw. The term ( )
1

2 2

0

wN

n

w w n
−

=

  =    denotes 

the power of the window function. It is important to note that 

when Nw is a power of two or a similar approach is used for 

any Nw, the STFT coefficients are determined by the FFT. By 

shifting the time-domain-signal, first will allow you to 

calculate the frequency shifted coefficients [34]. 

𝑋𝑆𝑇𝐹𝑇(𝑖, 𝑓𝑘 − 𝛼) = ∑ (𝑥(𝑖𝑅

𝑁𝑤−1

𝑚 = 0

+ 𝑚)𝑒𝑗2𝜋𝑚𝛼𝛥𝑡) 𝑤(𝑚)𝑒−𝑗2𝜋𝑚𝑓𝑘𝛥𝑡              (8) 

It is important to acknowledge that if frequency shifting is 

implemented on complete time-domain-signal (where n = 0, 1, 

2, 3, 4, ..., L) in order for preparing of the computation of the 

shifted spectrum, the resulted coefficients of Short-Time 

Fourier Transform (STFT) are adjusted for phase, rendering 

the term of exponential function in Equation (7) unnecessary.  

The utilization of this word becomes necessary in the 

context of block wise application of frequency shifting. 

Therefore, the spectral correlation utilizing the phase corrected 

Short-Time-Fourier Transform is expressed by: 

𝑆2𝑋(𝑓, 𝛼) =
1

𝐾 || 𝑤 ||2 𝐹𝑠

∑ 𝑋𝑆𝑇𝐹𝑇(𝑖, 𝑓)𝑋𝑆𝑇𝐹𝑇
𝐶 (𝑖, 𝑓 − 𝛼)∗  

𝑘−1

𝑖 = 0

(9) 

The phase-compensated Short-Time-Fourier-Transform 

(STFT), denoted as 
( ),C

STFTX i f −
, is expressed by the 

subsequent equation: 

𝑋𝑆𝑇𝐹𝑇
𝐶 (𝑖, 𝑓𝑘 − 𝛼)

= ∑ (𝑥(𝑖𝑅 + 𝑚)𝑒𝑗2𝜋(𝑖𝑅+𝑚)𝛼𝛥𝑡)

𝑁𝑤−1

𝑚 = 0

𝑤(𝑚)𝑒−𝑗2𝜋𝑚𝑓𝑘𝛥𝑡          (10) 

According to the literature, the Averaged-Cyclic-

Periodogram (ACP) has been identified as the utmost effective 

estimator [37]. The Averaged-Cyclic-Periodogram offers a 

high-resolution spectral correlation because to the ability to 

adjust the carrier frequency mesh 𝛥𝑓 by utilizing a large Nw, 

while simultaneously keeping an acceptable cyclic frequency 

resolution 𝛥𝛼 =  𝐹𝑠/𝐿. The ACP method entails the 

computation of the average of correlated STFT coefficients 

throughout the entire acquisition time T, which is equal to LTs. 

Here, to represents the interval of sampling. Conceptually, the 

averaging process is likened to low-pass filter having 

bandwidth of (1/T). Hence, the utilization of a decimation 

factor R enables the down sampling of complex envelopes 

while maintaining the integrity and dependability of the 

outcomes [33]. In order to optimize computing efficiency 

while minimizing cyclic leakage, multiple scholars have 

proposed setting the time shifting parameter R to a value more 

than 1 but less than Nw [37, 33, 40, 41]. When using the Hann 

or Hamming window, the value of R may be calculated as 

Nw/3, which corresponds to a 67% overlap. On the other hand, 

when using the half-sine window, the value of R can be 

determined as Nw/2, resulting in a 50% overlap. It is important 

to acknowledge that in cases when (f – α) is below zero, the 

equations (6), (7), or (9) can be utilized to compute the 

correlation between positive (f) and negative (f – α) 

frequencies. This case is commonly practice in the 

communication signal to uncover a characteristic related to 

twice carrier frequency, as outlined in references [42, 43]. 

Nevertheless, in the realm of mechanical-signal in vibration 

investigation, establishing correlation between negative 

frequencies is considered undesirable, as indicated by 

reference [34]. 

2.4. Evaluation of cyclic-spectral-coherence and improved 

envelope spectrum 

The analysis of the cyclic-spectral-coherence generates in 

map of bi-variables allows for the identification of unseen 

modulations, rendering it reliable method to distinguish cyclo-

stationary in vibration signals [34, 37]. To mitigate unequal 

distributions, it is possible to implement a whitening operation 

on the CSC. The Cyclic-Spectral-Coherence (CSCoh) is an 

expanded tool that characterizes the spectral correlations 

across a range of normalized values from 0 to 1. It is 

mathematically defined as Fig. 2(c) shows the Cyclic Spectral 

Coherence (CSCoh). 
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CSCoh(α, f) =
CSCx(α, f)

√CSCx(0, f)CSCx(0, f + α)
                            (11) 

The integration of both the CSC and CSCoh, bi-variable 

maps are performed with frequency-axis to yield a uniform 

spectrum. This integration process produces 1-D spectrum 

function, that is dependent on the cyclic frequency (α). The 

spectral frequencies to be integrated are characterized as 

including the entire accessible band, ranging (0-Nyquist) 

frequency. This integration yields spectrum which effectively 

captures totally modulations found in signal. Conversely, the 

band is characterized as the entity which optimizes the cyclic 

characteristic frequency of interest, whereas simultaneously 

reducing presence of background noise and other frequency 

components which could potentially obscure the desired 

frequency. By integrating over a specified band on the bi-

variable map, the detecting rate of distinctive frequency 

associated with the existing signal damage can be enhanced. 

The spectrum that is obtained from the frequency-frequency 

domain, as described by Equation (12), is referred to as the 

Improved Envelope Spectrum (IES). Figure 2(d) shows the 

improved envelope spectrum. 

IES(α) =
1

F2 − F1

∫ |CSCohx(α, f)|df
F2

F1

                                (12) 

2.5. Applying fast ACP to evaluate the spectral correlation  

The ACP approach has several benefits, one of which is 

that the time shift (R) is independent of the desired range of 

cyclic frequency. Therefore, the memory required remains 

constant independent of the highest cyclic frequency that has 

to be scanned. In addition, it should be noted that the approach 

is a reliable estimator of spectral correlation with a constant 

time-frequency resolution product [32,37]. Yet, the substantial 

computational requirement restricts its practical use. Alsalaet 

has presented a fast ACP approach for efficiently calculating 

the accurate ACP [36]. In the following discussion, the focus 

will be on the asymmetric SC with β values of 0 and 1. To 

provide a thorough understanding of the fast algorithm, 

Fourier transform frequency shifting will be demonstrated to 

provide a complete view of the approach. The act of 

multiplying the time-domain signal by the rotating vector 

exp(j2πf0) is widely recognized as being similar to shifting in 

the frequency-domain by f0, as written [44]. 

ℱ{𝑋(𝑡)𝑒𝑗2𝜋𝑓0𝑡} = ∫ 𝑋(𝑡)𝑒𝑗2𝜋𝑓0𝑡𝑒−𝑗2𝜋𝑓𝑡
∞

−∞

𝑑𝑡

= ∫ 𝑋(𝑡)𝑒−𝑗2𝜋(𝑓−𝑓0)𝑡
∞

−∞

𝑑𝑡 = 𝑋(𝑓 − 𝑓0)    (13) 

Figure 3 illustrates the impact of frequency shifting on the 

actual and imaginary components of the spectrum of a signal 

in real time. The spectrum of a real-valued signal in the 

negative frequency range is the complex conjugate of the 

spectrum in the positive frequency range. Shifting the 

frequency by f0 makes the whole spectrum in the frequency 

domain to change, like line (f − f0) is relocated to line (f). In 

the context of Discrete Fourier Transform (DFT), applying the 

operation of pre-multiplying the signal by exp( j2πΔf ) causes 

a shift of the whole spectrum by one line. This means that the 

frequency component fk -1 is relocated to fk. The Fast-SC of 

Antoni et al. [34] has previously used this. Alsalaet [36] is 

attempting to use the frequency shifting property once again in 

order to compute ACP in an additional intelligent manner. 

Given that the overall signal length L is much larger than Nw, 

it follows that the cyclic frequency resolution Δα is 

considerably finer than the spectral frequency resolution Δf. 

Each spectral frequency spacing consists of Nb cyclic 

frequency lines, (Nb) is calculated as L divided by Nw and may 

be rounded to the closest integer for the Fast ACP application. 

  
Real part spectrum Imaginary part spectrum 

Fig. 3 Frequency shifting of spectrum of measured time-domain signal [34]. 

Figure 4 displays a portion of an amplitude spectrum. The 

bold lines indicate the spectral frequency lines, while the 

lighter lines denote their α-shifted counterparts. The value of 

α is determined by the equation α = p Δα, where p may take on 

values of 1, 2, 3, and so on, up to Nb − 1. The (Nb Δα) line 

corresponds to the spectral line that precedes it. The primary 

concept behind the fast ACP approach is the computation of 

the shifted spectra only for the Nb lines of α. To determine the 

shifted component of a certain frequency fk beyond (Nb Δα), it 

may be derived from the previously shifted or unshifted lines. 

To illustrate, let's consider the task of calculating the 

component XSTFT (i, fk − α), where α = (Nb + q) Δα. In this case, 

it can be obtained by shifting fk − 1 by qΔα (since q is less than 

Nb), or by applying an appropriate phase correction to XSTFT (i, 

fk − 1 − qΔα). Assume that the total number of cyclic frequency 

lines is Na = αmax/Δα, then the computing advantage in 

calculating the shifted spectra is given by the ratio Na/Nb. 

Further discussion will be provided on how to improve the 

technique and determine the total computational advantage. 

 

Fig. 4 Spectral lines and shifted counterparts [34]. 

2.6. Implementation of Fast-ACP 

In this section, the procedure used to implement the Fast-

ACP algorithm is described. The following steps are used. 

 Set and compute the following parameters: Input (L) 

totally length and (Fs) sampling frequency. For Hann window, 

choice Nw and set R = Nw/3. Given (Δα = Fs/L), the total 

number of cyclic frequency lines (Na = αmax/Δα), the number 

of cyclic frequency lines in one spectral spacing is (Nb = L/Nw). 

Compute the number of blocks (K = (L – Nw + R)/R).  
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 Initial spectrogram calculation: Employ Eq. (9) to 

eradicate further phase correction, and then compute and store 

the unshifted spectrogram  

XSTFT (i, fk), i = 0, 1, 2, …. (K–1) applying (FFT). 

 Compute of the shifted phase corrected spectra: For each 

block i, i = 0, 1, 2, …. (K–1), compute XC
STFT (i, fk − α), p = 1, 

2, 3, 4…. (Nb – 1), if α = pΔα by FFT next to shift signal in 

time-domain. 

 For each block i, correlate XSTFT (i, fk) and XC
STFT (i, fk − 

qΔα)∗, for the full spectral and cyclic frequency range if q = 1, 

2, 3, 4…. (Na). The shifted component at any cyclic frequency 

qΔα is estimated by:  

𝑆𝑆𝑇𝐹𝑇
𝑐 (𝑖, 𝑓𝑘 − 𝑞∆𝛼) = 𝑆𝑆𝑇𝐹𝑇

𝑐 (𝑖, 𝑓𝑘−𝑚 − 𝑝∆𝛼) 

If m = int(q/Nb) and p = mod(q/Nb).  

If k < m, correlation is terminated for avoiding the negative 

frequencies in vibration signals. for each change in (m)'s or 

jumping between lines, a phase correction of function 

exp(j2πiRNbΔα) must be used. For minimizing multiplications, 

the above correction linked with a variable XSTFT (i, fk) 

primarily and then gradually recalculated with each (m) 

transition. 

After merging the correlated components when i = 0, 1, 2, 

3, ……., (K–1), the results are corrected using Eq. (9) and K 

∥w∥2 Fs to calculate the spectral correlation. On other side, 

SCoh can be estimated using [37]. 

𝑆𝐶𝑜ℎ(𝑓, 𝛼) =
𝑆2𝑥(𝑓, 𝛼)

√𝑆2𝑥(𝑓, 0)𝑆2𝑥(𝑓 − 𝛼, 0)
 

Where S2X (f, 0) is estimated according to correlate XSTFT (i, 

fk) with its conjugate and S2X (f − α, 0) is estimated according 

to correlate XC
STFT (i, fk − α) and its conjugate. Figure 5 

illustrated the Fact ACP flow chart used in this work. 

 

Fig. 5 Fast ACP method used in this work [36]. 

3. Experimental work 

3.1. The machinery fault simulator (MFS) 

The Machinery Fault Simulator (MFS) is a device utilized 

for the purpose of examining the main symptoms of frequent 

machinery breakdowns in a way that is both efficient and 

straightforward. Each component is precisely machined to 

strict specifications in order to ensure smooth operation 

without any detrimental vibration signal interference. In a 

controlled environment, the machinery fault simulator can be 

considered an effective tool for obtaining knowledge in 

machinery faults diagnostics, since it allows for the additional 

effects of many defects either separately or in combination. As 

depicted in Fig. 6, the spectra quest MFS found in the applied 

laboratory of the department of mechanical engineering at the 

university of Basrah was used and it consists of a 1 Hp variable 

frequency AC motor accompanied by a programmable 

controller including a multi-featured front panel. The 

controller allows for rpm adjustment within a range of 0 to 

6000 rpm, allowing operation at various speeds. A tachometer 

equipped with an LCD display is employed for the purpose of 

measuring the rotational speed. A ¾ inch diameter steel shaft, 

equipped with a bearing loader weighing 11 pounds (5 kg) and 

two clamp collars for holding the bearing loader at the 

midpoint of the shaft. This arrangement is employed to apply 

loads and improve the spectrum amplitude of the system. Two 

split bracket bearing housings are designed to facilitate the 

process of changing experimental bearings. A flexible 

coupling is utilized to provide a connection between the motor 

and the shaft. An accelerometer of the B & K 4366 type, with 

a serial number of 0931214, was mounted to the experimental 

bearing housing. 

 

(1) Tachometer.                     (2) Electric motor.            

(3) AC-motor controller.         (4) Flexible coupling. 

(5) Normal bearing.                 (6) Bearing loader. 

(7) Experimental bearing.        (8) Data acquisition.       

(9) Accelerometer 

Fig. 6 Machine fault simulator components. 

3.2. Ball bearing used in this work 

In this work, a 1205 double-row self-aligning ball bearing 

manufactured by Koyo is utilized. This type of bearing 

provides the advantage of compensating for misalignment and 

shaft deflection, making it appropriate for applications with 

significant levels of vibration or misalignment [45]. Moreover, 

it is easily assembled and disassembled, which simplifies the 

process of introducing defects into specific components of the 

bearing without damaging its integrity. Figure 7 illustrates the 
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bearing in its assembled state. The frequencies associated with 

bearing faults, termed bearing characteristic frequencies, 

depend on the bearing's dimensions and specifications. Table 

1 shows the dimensions of the Koyo 1205 bearing along with 

the characteristic frequencies of its components (cage, inner 

race, outer race, balls). 

Table 1. Koyo 1205C3 bearing specifications [45]. 

Parameter Value 

Inner diameter 25 mm 

Outside diameter 52 mm 

Ball diameter 7 mm 

Bearing width 15 mm 

Number of balls 24 

Cage defect, FTF 0.41 × Shaft frequency 

Ball defect, BSF 2.5687 × Shaft frequency 

Outer race defect, BPFO 4.8907 × Shaft frequency 

Inner race defect, BPFI 7.1092 × Shaft frequency 
 

      

Fig. 7 Koyo bearing (1205C3) in its assembled condition. 

3.3. Types of experimental faults 

Artificial defects manufacturing is a widely used method 

of simulating defects in roller bearings for testing and analysis 

purposes, aiming to mirror real-world conditions. These 

fabricated defects can take different sizes and shapes. In this 

work, slots defects with 0.191 mm size are used. These defects 

are manufactured within each component of the ball bearing 

including the outer race, inner race, and balls as in Fig. 8. 

  
Outer race slot Inner race slot 

 
Ball slot 

Fig. 8 Types of defects in the used ball bearing. 

3.4. Experiment procedures 

In this work, four types of ball-bearing defects, 

manufactured within the individual components of the ball-

bearing such as the outer race, inner race, and balls as listed in 

Table 2 were used as the basis for collecting vibration data. 

This data was utilized for diagnosing defects using the spectral 

correlation technique under varying machine speed. 

A data acquisition device was used to collect vibration signals 

of generated by the Machinery Fault Simulator (MFS). The 

following steps are used in experimental procedure, see Fig. 9. 

1. Install a 5 kg disk was connected to the shaft to simulate 

load conditions, as illustrated in Fig. 6 of the test rig. 

2. Additionally, install two bushings were installed on the ¾ 

inch shaft ends to fix the ball bearings by compensating for 

the diameter difference between the shaft and the internal 

diameter of the bearing. 

3. Next, the operational settings for the data acquisition 

device (IDAC-6C) software interface were configured, as 

depicted in Fig. 10. 

4. Vibration data is then gathered for both constant and 

varying speeds for both normal and faulty bearings. 

Finally, the collected raw vibration data were processed 

using MatLab software to assess the condition of the 

bearings. 

 

Fig. 9 Laboratory experimental procedures flow chart. 

 

Fig. 10 Operation settings for IDAC-6C software interface. 
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Table 2. Total cases studied in this experimental work. 

Defect 
Type 

Defect 
Shape 

Defect Size 
(mm) 

Number 
of defects 

Varying speed 

range in 

Acceleration 

Case (R.P.M) 

Varying speed 

range in 

Deceleration 

Case (R.P.M.) 

Normal none none none 480-2040 --- 

Outer slot 0.196 one slot 480-2040 --- 

Inner slot 0.191 one slot 480-2040 --- 

Ball slot 0.196 one slot 480-2040 --- 

Compound slot 

outer: 0.196 

inner: 0.191 

ball: 0.196 

Three slots 480-2040 1800 - 660 

 

4. Results and discussion  

This paper presents the results and discussion of applying 

the spectral correlation technique, along with spectral 

coherence, and enhanced envelope spectra to analyze the real 

signals of ball bearings (specifically, Koyo 1205C3) under 

normal and defective (inner, outer, and ball) conditions. The 

data collected from the data acquisition device were processed 

using MatLab software (version R2022a) in both frequency-

order domain and order-order domain for varying speed, two 

cases of varying speed are considered, the first one is 

acceleration case, the speed increases from (480-2040) rpm, 

i.e. (8-34 Hz), while the second case is deceleration case, the 

speed decreases from (1800-660) rpm, i.e. (30-11 Hz). 

Firstly, the measured vibration and speed signals of 

acceleration and deceleration cases are illustrated in Figs. 11 

and 12. The increasing or decreasing rate of speed appears 

sharply in both vibration and speed signals. 

 

 

Fig. 11 Ball bearing signals in acceleration case (a) Vibration signal, and (b) 

Speed signal. 

Secondly, the bi-variables maps of the ball bearing in 

conditions (normal, outer slot: size 0.196 mm, inner slot: size 

0.191 mm, ball slot: size 0.196 mm) to estimate the 

characteristic frequencies and EES of acceleration case in 

frequency-order and order-order maps, and these frequencies 

and EES values are listed in Table 3 and 4. 

In the third step, the compound defects condition (outer 

slot: size 0.196 mm, inner slot: size 0.191 mm, ball slot: size 

0.196 mm) in acceleration and deceleration cases are measured 

and analyzed in this work. 

 

 

Fig. 12 Ball bearing signals in deceleration case (a) Vibration signal, and (b) 

Speed signal. 

Table 3. The first three estimated values of characteristic frequencies and 

EES in frequency-order domain. 

Bearing 

condition 
Normal 

Outer race 

defect 

Inner race 

defect 

Ball 

defect 

Cyclic 

Frequency 

(order) 

1 1.0000 4.8809 7.1189 2.5552 

2 2.0000 9.7642 14.2354 5.1082 

3 3.0000 14.6452 21.3570 7.6635 

EES 

1 0.0407 0.1249 0.2072 0.4430 

2 0.2455 0.4044 0.1507 0.3668 

3 0.0480 0.1038 0.1185 0.2472 

Processing time 

(minute) 
20.0733 22.0650 19.1183 21.0216 

 

Table 4. The first three estimated values of characteristic frequencies and 

EES in order-order domain. 

Bearing 

condition 
Normal 

Outer race 

defect 

Inner race 

defect 

Ball 

defect 

Cyclic 

Frequency 

(order) 

1 0.9991 4.8768 7.1105 2.5531 

2 1.9983 9.7536 14.2237 5.1039 

3 2.9974 14.6329 21.3368 7.6570 

EES 

1 0.0385 0.1790 0.2122 0.4286 

2 0.1918 0.3952 0.1237 0.4312 

3 0.0459 0.1048 0.0977 0.2556 

Processing time 

(minute) 
14.594 16.7700 12.9431 15.9259 

 

Defects in a ball bearing are specific types of faults that 

occur within the particular component of the bearing. For the 

Koyo 1205 ball bearing, the Ball Pass Frequency Outer 

(BPFO) is expected to appear at 4.8907 times the rotating 

frequency, the Ball Pass Frequency Inner (BPFI) at 7.1092 

times the rotating frequency, and the Ball Spin Frequency 

(BSF) at 2.5687 times the rotating frequency. These specific 

frequencies are essential for detecting potential defects on the 

outer race, inner race, and rolling elements (balls) respectively, 

thus facilitating early diagnosis of defects. The results of the 

acceleration case in frequency-order and order-order maps are 

illustrated in Figs. 13 and 14. In comparison, Figs. 15 and 16 
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show the frequency-order and order-order maps of the 

compound defects condition in the deceleration case. These 

figures depict the diagnostic results of a bearing operating 

under compound defect conditions, with each figure 

comprising multiple subfigures representing different stages of 

signal processing and analysis. The enhanced envelope 

spectrum reveals the characteristic cyclic frequencies of the 

outer race, inner race, and ball defects and thus the bearing 

condition can be diagnosed. Figures 13-16 and Tables 3 and 4 

illustrate the appearance of peaks at the calculated (BPFO, 

BPFI, and BSF) values and their corresponding harmonics in 

the enhanced envelope spectrum under varying speeds. It is 

crucial to observe that within each spectrum, the presence of 

at least three harmonics indicates the presence of a fault, as 

shown by the experimental results. These findings demonstrate 

the effectiveness of the spectral correlation method in 

accurately detecting and diagnosing ball-bearing defects under 

varying machine speeds. 

 

 

 

 

Fig. 13 Vibration analysis of compound defects of ball bearing in 

acceleration case using spectral correlation in frequency-order domain. 

 

 

 

 

 

Fig. 14 Vibration analysis of compound defects of ball bearing in 

acceleration case using spectral correlation in order-order domain. 
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Fig. 15 Vibration analysis of compound defects of ball bearing in 

deceleration case using spectral correlation in frequency-order domain. 

 

 

 

 

Fig. 16 Vibration analysis of compound defects of ball bearing in 

deceleration case using spectral correlation in order-order domain. 

5. Conclusions  

In this work, Fast-ACP method was used to increase speed 

of analyzing and diagnosing the defects in ball bearing (Koyo 

1205C3 type) under varying speed condition. Four types of 

defects were studied, the slot in outer race with size 0.196 mm, 

the slot in inner race with size 0.191 mm, in ball with size 

0.196 mm in additional to compound defect. The machinery 

fault simulator (MFS) equipment was used to determine ball 

bearing defects using vibration signal analysis. Also, spectral 

correlation technique was employed to detect defects in ball 

bearings running at varying speed, along with spectral 

coherence and the corresponding Enhanced Envelope 

Spectrum (EES) in frequency-order domain and order-order 

domain. The following points can be concluded: 

1. The characteristic frequencies estimated by bi-variables 

maps of the ball bearing (Koyo 1205C3 type) under 

conditions (normal, outer slot: size 0.196 mm, inner slot: 

size 0.191 mm, ball slot: size 0.196 mm) are very close to 

that calculated in Koyo web (BPFO: 4.8907, BPFI: 7.1092, 

BSF: 2.5687). 

2. The applied method computation advantage increases as 

the cyclic frequency range increases and does not require 

large memory, making it suitable for low-memory 

platforms such as portable data collectors. 

3. The variable speed tests have shown that the OOSC 

provides comparable, if not better, results when compared 

to FOSC. This supports the inference that OOSC can 

successfully replace FOSC in analyzing cyclo-non-

stationary signals and hence gives a benefit to Fast-ACP. 

Abbreviations Abbreviations 

ACP                  Averaged Cyclic Periodogram 

FastACP           Fast Averaged Cyclic Periodogram 

FFT                   Fast Fourier Transform 

EES                   Enhanced Envelope Spectrum 

MFS                     Machinery Fault Simulator 

CS                     Cyclo-stationary 

CS1                   First-Order Cyclo-stationary 

CS2                   Second Order Cyclo-stationary 

FOSC                Frequency-Order Spectral Correlation 

OOSC               Order-Order Spectral Correlation 

FAM                 FFT Accumulation Method 

SSCA               Strip-Spectral-Correlation Algorithm 

FSC                  Fast-Spectral-Correlation 

STFT                Short Time Fourier Transform 

CSC                  Cyclic Spectral Correlation 

CSCoh              Cyclic-Spectral-Coherence 

DFT                  Discrete Fourier Transform 

BPFO               Ball Pass Frequency Outer race 

BPFI                 Ball Pass Frequency Inner race 

BSF                  Ball Spin Frequency 
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