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Abstract

In this study, we develope an improvement is made on the Steepest Descent algorithm, which is based on Aitken

iterations.

The proposed algorithm uses Aitken's steps for Accelerating the Steepest Descent algorithm and finds the min x*
without using line search. we more precisely compare the new proposed algorithm with the standard S.D. algorithm

using few nonlinear test function.

The numerical results are better than previous algorithm.
1. Introduction:-

The method of steepest descent is an algorithm of the
type just described. It is defined by stipulating that d,
should be the negative gradient of f at x. It turns out that
this negative gradient points in the direction of the
residual, g(x)=b-Axy. In the actual programming of this
algorithm, the successive vectors Xg,Xs,....,x, heed not be
saved; the current x-vector can be overwritten, The same
remark holds for the direction vectors dy,ds,.... . , Then
the method of steepest descent is one of the most
fundamental procedures for minimizing a differentiable
function of several variable in optimization. Recall that a
vector dy is called a direction of descent of a function f at
x if there exists & >0 such that f(x+Ad) < f(x) for

all1€(0,), [1]. Inparticular, if
I;irg[f(x+/1d)—f(x)]//1<0 then d is a direction of

descent. The method of steepest descent moves along the
direction d with |/d|=1, which minimizes the above
limit,[1].

The following lemma shows that if f is differentiable at x
with a none zero gradient, then —g(x)/| g(x)|| is
indeed the direction of steepest descent. For this reason,
in the presence of differentiability, the method of steepest
descent is sometimes called the gradient method,[2].

2. Preliminaries

Lemma (2.1):

Suppose that f:R" — R’ is differentiable at x. Suppose
that g(x) = 0. Then, the optimal solution at the problem

to minimize f'(x;d) subject to ||d|| < 1 is given by

d=—g(x)/[lg(x) |l that is —g(x)/|g(x)|| is the
direction of steepest descent of f at x. ,[3].

2.2 Summary of Steepest Descent Algorithm

Given point x, the steepest descent algorithm proceeds by
performing a line search along the direction
—g(x)/ || g(x) ||; or, equivalently, along the direction
- g(X) . The summary of the method is given by:

2.2.1 Initialization step:-

Let €>0 be the terminal scalar. Choose a starting
point x4, let k=1, and go to the main step.
2.1.2 Main step:-

If || g(X) |I< &, otherwise, let d, =—g(X,), and let

Kk be an optimal solution of the problem to minimize
f(x, +Ad,) subjectto A >0.

Let X,,; = X, +4,d,, replace k by k+1, and replace

the main step. [4].

3. Rate of Convergence of the Steepest Descent
Algorithm

The foregoing analysis can be extended to a general

quadratic function,[5] f(x):C+bTx+EXTGX, 1)
2

The unique minimizer X for this function is given by

the solution to the system GX =-—b obtained by

setting g(x")=0.[5]. Also, give an iterate X, the

optimal step length A and the revised iterate X
given by

kel are

T
p=-3d and x,, =x, ~21g, [11.0)

9. Gg,
Now, to evaluate the rate of convergence, let us employ a
convenient measure for convergence given by the
following error function:

e(x)=§<x—x*fe<x—x*): f(X)+%x*TGx* )

where we have used fact that G x” = —b. Note that e(x)
is different from f(x) by only a constant and equals zero
ifand if X = X . In fact, it can be show that

. ? a-1
6 G ggkk)(zkl)e g0 Ea +1;
where OL is the condition number of G. Hence
{e(xk)} — 0 at a linear or geometric convergence rate

(4)

iem

e(Xa) =1~ (

bounded above by (oc—l)2 /(a+1)2; and so as before,

we can expect the convergence to become increasingly
slower as OL increase, depending on the initial solution

X, [3]

The method of steepest descent is rarely used on this
problem because it is too slow,[6].

In spite of its theoretical appeal, this algorithm often
performs poorly, spending much time zig-zagging in
directions that not to point toward the global minimum,



and so the zig-zagging is an inveitable feature of this
procedure.

4. The Aitken's A® Acceleration Process:-
Suppose that g is differentiable in some open interval |

containing a fixed-point X of g and
lg"(X)KL<l.¥xel.

Furthermore, Let X € | and X.,, = g(x,) remains in
converges to X and
n=12,.. (5)

I. Then the sequence (Xn )

neN
| X, =X €L [ %o =X |,
n

| x, —x" < n=1,2,... (6)

L|X1_Xo|'

are satisfied. more over if

g(x)=0 onland x,#x", then e #0,vn>0
and the fixed-point iteration

X, =0(X,) is linearly converges,[7]. That is

e - o
lim " =g (x7), 0<lg’(x)<1 ()
n—w en
If ‘g'(x*) is close to 1 the convergence may be very
slow,[8]. In what follows we construct a  sequence

(X_n) N e N that converges faster to X ,[6]. By (mid

point theorem) there exists C_,, between X ., and X
such that

X ,—X =g(c,.)(X,.,—X), Solving for x°
we get

There exists C,,, between X ., and x? such that

Xna — X = g' (Cn+1)(xn+l - X*) 8

Solving for X" we get

X* _ X2 — Xn'+1 g.(cn+1)
1-9 (Ch)

If we replace

9'(Cn+1) ~ g(xn+l) - g(xn) _ Xni2 = Xnaa

Xng — X, Xy — X
(10)

n+1 n
In (10) we get the following approximation X to X

2
Tn: X, — [Xn+1_xn] n>0 (11)
X2 — 2Xn+1 + X,
Using the abbreviations
AX, =X, ; — X, k>0
A X = DXy = DXy = X = 2Xieq + X, K20
(12)
The process (11) can be written as

©)

2
X, =X —[izx—”],nzo(ﬂ)
X

n n
n

which is known as the Aitken's A> method. It can be
proved, with the above assumptions, that the sequence

(X converges to X faster than (Xn )neN . That is

n /neN

*

lim X=X _ 0 (14)

n—oo Xn —_ XJr
Theorem on Aitken Acceleration:-
Let (Xn )neN be a sequence of number that converges to

a limit X . Then the new sequence
2
— XnXpeo — X
X, = nn+2 n+2 n>0 (15)
Xpe2 = 2Xn+1 + Xn

Convergence to X~ faster than (Xn )neN if

Xy — X =(c+§n)(x_n— x*) with |cl<1l and
lim & =0- (16)

Indeed (X_n— x*)/(xn - X*):>O an N —00. (17)
Proof:-

Define the error sequence hn =X, — X
The start calculation reveals that

(x* +h, )(x* + hmz)— (x* + hM)2
(X +h,,)-2(x"+h,,)+(x +h,)
(18)
* hn hn+2 B h2

=X + n+l
hn+2 - 2hn+l + hn

se the hypothesis h.., =(C+J,,)h, to obtain
hn+2 = (C + 5n+l) (C + 5n) hn and
X_ X*_ hn(c+5n+1)(c+5n)hn_(C+5n)2h§

X, =

n

" “(c+6.,,)(Cc+8,)h —2(c+5,)h, +h,

_ (C_'_8n+1)(c—|-6n)_((‘:_’_Sn)2
"(c+8,.,)(c+3,)-2(c+8,)+1
It is now clear that lim (X_n— XO)/ h, =0.,[7]. since in

Nn—o0

Equation the numerator converges to 0 and the
denominator converges to (C —1)2, which is not 0,[2].

5. A New approach to Accelerate the Steepest
descent direction:-

In this section we present a modification of Steepest
descent using  Aitken method. We compute

Xy = X + 4, dk where K <3, and applying

(19)

Aitken method to compute X, , (where K)3) without

line search.

It should be noticed that the Aitken method can be used
to accelerate any linearly convergent sequence regardless
of its origin. And we have in this new algorithm
accelerate the steepest descent from linear rate
convergence to superior linear convergence.

6. Out line of the algorithm:

Step (1):- set xq is initial point, € k=1

Step (2):- if (K < 3) then compute d, =-g,

Step (3):- find A, to minimize f(x, + 4, d, )
Step (4):- put X, = X, + 4, d,



Step (5):- if || 9., ||< & go to step (10)
Step (6):- set k=k+1 and go to (2), else go to (7)

2
(a1 =)

Step (7):- compute Xisg = Xk — (x i x )
k+2 = 7 k+1 k

Step (8):- if gy, | <& stop

Step (9):- k=k+1

Step (10):- stop.

7. Numerical results:-

The comparative tests involve well known standard test
functions with different dimensions where
2<n<1000. All the results are obtained using double
precision on the (Pentium-computer),[9],[10].

All programs are written in FORTRAN language and for
all cases the stopping criterion is taken to be

19,4 [I<1x10°.

Table (1) gives the comparison between the standard
steepest descent algorithm and the new algorithm. This
table indicates that the new algorithm is better than the
standard steepest descent algorithm in about 34% NOI
and 31% NOF.
8. Conclusions:-

In this study we have modified SD direction by
accelerating this direction using Aitken steps. The new
search direction converges faster than the standard SD
direction.

Table (1) Comparative performance of the two

algorithms for the group of test functions.

Test function S.D. method | New method
NOI(NOF) | NOI (NOF)
Rosen 2 20(35) 4(14)
4 24 (35) 4 (15)
100 30 (50) 14 (31)
1000 40(55) 20(39)
Powell 2 80 (170) 60 (127)
4 80 (170) 69(121)
100 101 (241) 71 (209)
1000 | 104 (241) 97 (211)
Wood 2 33(70) 26(56)
4 33(75) 26 (56)
100 44 (93) 33(70)
1000 151 (202) 106 (171)
Cubic 2 15(40) 5 (20)
4 15 (40) 10(35)
100 13 (40) 13(39)
1000 20(50) 15(41)
Dixon 2 20(35) 20(31)
4 25(50) 24(50)
100 25 (55) 25 (55)
1000 41 (111) 38 (27)
914 (1858) 680 (1418)

9. Appendix:
1- Generalized Powell Function:

= y ()(4i—3_1O X4z 2) +5( 4|)2
i=1 +(X4i—2 — 2X,, 1) +10( Xaizg ~ Xy )4
X, =(3-10%--)".

2- Generalized Wood Function:

= iznllloo[(xmz B Xifg )2 ]+ (1_ X4iza )2
+ 9(X4i - X42i,1 )2 + (l— XfH )2 +10,{(X4i2 1)’ :l

+ (X4i - 1)2
2~ 1)2 (X4i - 1)1

3- Generalized Sum of Quadratics Function:

f=3(x -1,

i=1
. T
x, = (2;) .
4- Generalized Dixon Function:

=3 on ) +a-x ) 4

i=1

. T
X = (- L)
5- Generalized Rosenbrock Function:

= Shoofx, - f +a-x,. 7]
i=1l
=(-121--).
6- Generalized Cubic Function:

f =zn:£[00(X2i - fi ) (1 Xai l) ]’

i=1

+19.8(x, X, =(~3-1-3-1L--)".

n-1

b x|

i=1

X, =(-12%-)".
7- Generalized Tri Function:

=3 (ix ),

i=1

X, =(=1;--) .
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