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Abstract 
In this study, we develope an improvement is made on the Steepest Descent algorithm, which is based on Aitken 

iterations. 

The proposed algorithm uses Aitken's steps for Accelerating the Steepest Descent algorithm and finds the min x* 

without using line search. we more precisely compare  the new proposed algorithm with the standard S.D. algorithm 

using few nonlinear test function.   

The numerical results are better than previous algorithm. 

1. Introduction:- 
The method of steepest descent is an algorithm of the 

type just described. It is defined by stipulating that dk 

should be the negative gradient of f at xk. It turns out that 

this negative gradient points in the direction of the 

residual, g(x)=b-Axk. In the actual programming of this 

algorithm, the successive vectors x0,x1,….,xn need not be 

saved; the current x-vector can be overwritten, The same 

remark holds for the direction vectors d0,d1,…. . , Then 

the method of steepest descent is one of the most 

fundamental procedures for minimizing a differentiable 

function of several variable in optimization. Recall that a 

vector dk is called a direction of descent of a function f at 

x if there exists  0  such that )()( xfdxf   for 

all )1,0( , [1]. Inparticular, if 

  0
0







/)()(lim xfdxf  then d is a direction of 

descent. The method of steepest descent moves along the 

direction d with ||d||=1, which minimizes the above 

limit,[1]. 

The following lemma shows that if f is differentiable at x 

with a none zero gradient, then ||)(||/)( xgxg  is 

indeed the direction of steepest descent. For this reason, 

in the presence of differentiability, the method of steepest 

descent is sometimes called the gradient method,[2]. 

2. Preliminaries 
Lemma (2.1): 

Suppose that 'n RR:f   is  differentiable at x. Suppose 

that 0)(xg . Then, the optimal solution at the problem 

to minimize )d;x(f '  subject to ||d|| < 1 is given by 

||)(||/)( xgxgd  ; that is ||)(||/)( xgxg  is the 

direction of steepest descent of f at x. ,[3]. 

2.2 Summary of Steepest Descent Algorithm 

Given point x, the steepest descent algorithm proceeds by 

performing a line search along the direction 

||)(||/)( xgxg ; or, equivalently, along the direction 

g(x)- . The summary of the method is given by: 

2.2.1 Initialization step:- 

Let 0  be the terminal scalar. Choose a starting 

point x1, let k=1, and go to the main step. 

2.1.2 Main step:- 

If ||)(|| kxg , otherwise, let )( kk xgd  , and let 

k
  be an optimal solution of the problem to minimize 

)( kk dxf   subject to 0 . 

Let kkkk dxx 1 , replace k by k+1, and replace 

the main step. [4]. 

3. Rate of Convergence of the Steepest Descent 

Algorithm 
The foregoing analysis can be extended to a general 

quadratic function,[5] Gxxxbcxf
TT

2

1
)( ,  (1) 

The unique minimizer 
*x  for this function is given by 

the solution to the system bxG *   obtained by 

setting 0)x(g *  ,[5]. Also, give an iterate 
k

x , the 

optimal step length   and the revised iterate 
1k

x


 are 

given by 

k

T

k

k

T

k

gGg

gg
  and 

kk1k
gxx 


 ,[1]. (2) 

Now, to evaluate the rate of convergence, let us employ a 

convenient measure for convergence given by the 

following error function: 
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where we have used fact that bxG *  . Note that e(x) 

is different from f(x) by only a constant and equals zero 

if and if 
*

xx  . In fact, it can be show that 
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where   is the condition number of G. Hence 

  0)x(e
k

  at a linear or geometric convergence rate 

bounded above by    22
1/1  ; and so as before, 

we can expect the convergence to become increasingly 

slower as   increase, depending on the initial solution 

0
x ,[3]. 

The method of steepest descent is rarely used on this 

problem because it is too slow,[6]. 

In spite of its theoretical appeal, this algorithm often 

performs poorly, spending much time zig-zagging in 

directions that not to point toward the global minimum, 



and so the zig-zagging is an inveitable feature of this 

procedure. 

4. The Aitken's 
2  Acceleration Process:- 

Suppose that g is differentiable in some open interval I 

containing a fixed-point  x*
 of g and 

IxILxg  .|)(|
* . 

Furthermore, Let Ix
0
  and )( nn xgx 1

 remains in 

I. Then the sequence  
Nnn

x


 converges to 
*x  and 

||||
**

xxLxx
n

n  0
,         n=1,2,...    (5) 

||||
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 ,           n=1,2,...         (6) 

are satisfied. more over if  

0)x(g '   on I and *

0
xx  , then 0n,0e

n
   

and the fixed-point iteration 

)x(gx
n1n




 is linearly converges,[7]. That is 
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If )(
*'

xg  is close to 1 the convergence may be very 

slow,[8].  In what follows we construct a    sequence 

)x(
n

Nn  that converges faster to 
*x ,[6]. By (mid 

point theorem) there exists 
1n

c


 between 
1n

x


 and 
*x  

such that 

)()(
*'*

xxcgxx nnn   112 ,  Solving for 
0

x  

we get 

There exists 
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c


 between 
1n

x


 and 
0

x  such that  

)()(
*'*

xxcgxx nnn   111  (8) 

Solving for 
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In (10) we get the following approximation 
n

x  to 
*x  
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Using the abbreviations 

01   kxxx kkk ,  

02 121

2   kxxxxxx kkkkkk ,   

(12) 

The process (11) can be written as  
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which is known as the Aitken's 
2  method. It can be 

proved, with the above assumptions, that the sequence 

 
Nnnx


 converges to 

*x  faster than  
Nnnx


. That is 
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 (14) 

Theorem on Aitken Acceleration:- 

Let   Nnnx   be a sequence of number that converges to 

a limit 
*x . Then the new sequence 

0,
2 12
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Convergence to x
* 
  faster than  

Nnn
x


 if  

  **
xxcxx nnn  1

 with 1|c|   and 

0lim
n

n
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Indeed     0 **
/ xxxx nn

 an n .   (17) 

Proof:-  

Define the error sequence 
*

nn
xxh  . 

The start calculation reveals that  
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It is now clear that   00 


nn
n

hxx /lim ,[7]. since in 

Equation the numerator converges to 0 and the 

denominator converges to  2
1c  , which is not 0,[2]. 

5.  A New approach to Accelerate the Steepest 

descent direction:- 
In this section we present a modification of Steepest 

descent using Aitken method. We compute 

kkkk dxx 1  where 3k  , and applying 

Aitken method to compute 
1k

x


 (where 3k ) without 

line search. 

It should be noticed that the Aitken method can be used 

to accelerate any linearly convergent sequence regardless 

of its origin. And we have in this new algorithm 

accelerate the steepest descent from linear rate 

convergence to superior linear convergence. 
 

6. Out line of the algorithm: 

Step (1):- set x1 is initial point,  ,k=1 

Step (2):- if ( 3k  ) then compute 
kk gd   

Step (3):- find 
k

  to minimize  kkk dxf   

Step (4):- put kkkk dxx 1  



Step (5):- if  |||| 1kg  go to step (10) 

Step (6):- set k=k+1 and go to (2), else go to (7) 

Step (7):- compute 
 

 kkk

kk
kk
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Step (8):- if 3kg  stop 

Step (9):-   k=k+1 

Step (10):- stop. 
 

7. Numerical results:- 
The comparative tests involve well known standard test 

functions with different dimensions where 

1000n2  . All the results are obtained using double 

precision on the (Pentium-computer),[9],[10]. 

All programs are written in FORTRAN language and for 

all cases the stopping criterion is taken to be 
5

1k
101||g|| 


 . 

Table (1) gives the comparison between the standard 

steepest descent algorithm and the new algorithm. This 

table indicates that the new algorithm is better than the 

standard steepest descent algorithm in about 34% NOI 

and 31% NOF. 

8. Conclusions:- 
In this study we have modified SD direction by 

accelerating this direction using Aitken steps. The new 

search direction converges faster than the standard SD 

direction. 

Table (1) Comparative performance of the two 

algorithms for the group of test functions. 
Test function N S.D. method New method 

NOI (NOF) NOI (NOF) 

Rosen 2 

4 
100 

1000 

20(35) 

24 (35) 
30 (50) 

40(55) 

4(14) 

4 (15) 
14 (31) 

20(39) 

Powell 2 

4 

100 
1000 

80 (170) 

80 (170) 

101 (241) 
104 (241) 

60 (127) 

69(121) 

71 (209) 
97 (211) 

Wood 2 

4 
100 

1000 

33(70) 

33 (75) 
44 (93) 

151 (202) 

26(56) 

26 (56) 
33 (70) 

106 (171) 

Cubic 2 

4 
100 

1000 

15(40) 

15 (40) 
13 (40) 

20(50) 

5 (20) 

10(35) 
13 (39) 

15(41) 

Dixon 2 
4 

100 

1000 

20(35) 
25(50) 

25 (55) 

41 (111) 

20(31) 
24(50) 

25 (55) 

38 (27) 

  914 (1858) 680 (1418) 

9. Appendix:  
1- Generalized Powell Function: 

   
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2- Generalized Wood Function: 
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3- Generalized Sum of Quadratics Function: 
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4- Generalized Dixon Function:  
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5- Generalized Rosenbrock Function: 
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6- Generalized Cubic Function: 
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7- Generalized Tri Function: 

     
 

  .;1x

,ixf

T

0

n

1i

22

i




  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 
[1] Biggs, M.C., (1973) " A Note of Minimization 

Algorithm which make use of Non-Quadratic 

properties of the objective function", Journal of 

institute of Mathematics and its Application (12),PP. 

337-338.  

[2]  Scales, L. E. (1985) "Introduction to Nonlinear 

Optimization" Macmillan, London. 

[3]  Bazaraa, M., Sherali, H. and Shetty,C.M.,(1993) 

"Non linear Programming Theory and application", 

New York, John Wiley and Sons, Inc. 

[4]  Ruessell, D., (1970) "  Optimization Theory ", New 

York, W.A. Benjamin Inc. 

[5] Rao, S., S., (1994) " Optimization Theory and 

Applications", Wiley Eastern limited . 

[6] Raydan, M. (1997) "The Barzilia and Borwein 

gradient method for the large scale unconstrained 

minimization problem", SIAM J. Optim., 7, 26-33. 

[7]  Kincaid David, D., cheney Wand . (2002) " 

Numerical Analysis Mathematics of scientific 

Computing 3
rd

 ed". 

[8] Bhatti, M.A.,(2000) " Practical optimization methods 

", New York : Springer-Verlag. 

[9]  Bazaraa, M.S. (2000)" Nonlinear Programming", 

England, Universities Press, London.  

[10] Dennis, J.E., Jr., and R.B. Schnabel, (1983 )," 

Numerical Methods for Unconstrained Optimization 

and Nonlinear Equations ", Englewood cliffs, NJ: 

preutice-hall

. 

 

 

 

 في الامثلية اللاخطية Aitken بخطوات  SD تعجيل خوارزمية 
 منى محسن محمد علي

 ، جامعة الموصل ، الموصل ، العراق كلية علوم الحاسبات والرياضيات،  قسم الرياضيات
 ( 0119/  3/   6، تاريخ القبول:   61/0118/  61) تاريخ الاستلام:  

 
 الملخص

 على الخوارزمية Aitken. حيث تم التعجيل بإدخال خطوات Aitkenذلك باستخدام خطوات و  Steepest Descentفي هذه الدراسة تم تحسين خوارزمية 
 Steepestلقد تم مقارنة الخوارزمية مع خوارزمية . والتخلص من حساب حجم الخطوة )حيث اننا لا نحتاج الى خط البحث( وكيفية حساب المتجهالمقترحة 

Descent على نتائج افضل من الخوارزمية السابقةلها حصلنا. و القياسية لعدد من الدوال اللاخطية. 

 


