# Flow-injection spectrophotometric determination of cadmium with PAN in DMF media

Khozan A. Haji

Chemistry department, college of education science, University of salahaddin, Erbil, Iraq (Received 10 / 6 / 2007, Accepted 12 / 1 / 2008)

#### Abstract

Determination of  $Cd^{2+}$ by spectrophotometric method with flow injection analysis was studied using PAN as a reagent in DMF media .  $Cd^{2+}$  was determined spectrophotometrically in pH 9 (The buffer produced from NH<sub>4</sub>OH,CH<sub>3</sub>COONH<sub>4</sub>) and  $\lambda$ max 550nm using PAN as a reagent in DMF, Beer-Lambert low was obeyed in the range (0.05-2 mg/l) with detection limit was 0.04 mg/l ,  $\epsilon$ =5.4\*10<sup>4</sup>L/mol.cm .Precision and accuracy of the method were studied (S.D=1\*10<sup>-3</sup> ,%E=-0.18-+2.56) and interferences of dominant cations were studied . The method converted to flow injection analysis in pH 8.5 the range became (0.5-8 mg/l) in the same  $\lambda$ max , solvent and reagent ,detection limit become 0.2 mg/l,  $\epsilon$ =1.2\*10<sup>4</sup>L/mol.cm . Precision and accuracy of the method was studied (S.D=0.28\_-3.6,%E=-2.17-+1.72) and interferences of dominant cations were studied . 90 sample was determined in one hour in FIA. This method could be applied to the rapid and simple determination of cadmium in real sample .

#### Introduction:-

The cadmium metal is very important, its very wide used (about three-fourth of cadmium is used in batteries especially Ni-Cd batteries -)<sup>[1]</sup>.Thin film of cadmium may be applied by electro-plating ( or ,less importantly, by vaccum deposition, dipping or spraying) to ferrous metal surfaces to retard corrosion<sup>[2]</sup>. The rather high cost may thus be worth while in special applications. Because of its great neutron-absorbing capacity, cadmium (especially the isotope <sup>113</sup>Cd ) is used in control rods and shielding for nuclear reactors<sup>[3]</sup>. Various methods used for determination of cadmium, including ICP-MS<sup>[4]</sup>, ion chromatography<sup>[5]</sup>, anodic stripping analysis<sup>[6]</sup>, electro thermal atomic absorption spectrometry<sup>[7]</sup> and spectrophotometry<sup>[8-12]</sup>. Many of these methods are time consuming or require complicated and expensive instruments or the determination occurs in a solvent some times the complex will be precipitated in high concentration level

. In our study , the determination of cadmium was spectrophotometrically performed in DMF media .

## **Experimental:-**

#### Apparatus:-

#### -Flow injection system:-

Fig.1 shows a schematic diagram of FIA system used for spectrophotometric determination of  $Cd^{2+}$ .

a. Peristaltic pump (Watson-Marlow type 202 U, multichannel) was used to propel the buffer and reagent solutions.

b. Injection valve is a 6-way loop valve with various sample loops, used to inject the sample into the buffers carrier stream.

c. Detector, LKB Bio chrom Ultrospec II 4050 UV-Visible sprctrophotometer with a flow cell of 10mm oath length made of quartz .

r. Recorder, LKB 2210 2-channel.

- A Philips ion-selective meter PW 9415 used for pH measurements.

Same spectrophotometer used for batch method with quartz flow cell.

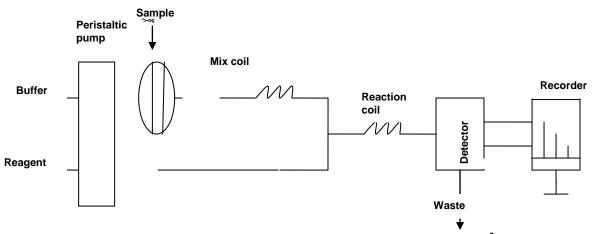



Fig.1:- Schematic diagram of spectrophotometric determination of Cd<sup>2+</sup>by flow injection system.

#### -Reagents:-

All chemicals used were of analytical grade.

-Stock solution of  $Cd^{2+}$  (1000 mg/l) was prepared by dissolving 2.1032 gm of  $Cd(NO_3)_2$  in 1L of distilled water. Tha dilute solution prepared from the stock solution.

**-P**reparation of PAN [1-(2-pyridyl azo)-2-naphthol] solution 4\*10<sup>-3</sup>mol/l.

1 gm of PAN dissolved in DMF and the volume completed to 1L with the same solvent.

# A-Batch method:-

-Recommended procedure:-

The spectrophotometer was set at 550 nm .2ml of buffer solution [which produced from CH<sub>3</sub>COOH +CH<sub>3</sub>COONH<sub>4</sub> for acidic medium and NH<sub>4</sub>OH  $\rm CH_3 COONH_4$  for basic medium] mixed with 2ml of  $\rm Cd^{2+}$ solution (10 mg/l) this solution mixed with 2ml of PAN solution  $(4*10^{-4} \text{mol/l})$  the solution completed to 25 ml with DMF and the absorbanse was read for a complex Cd-PAN by a detector which was used in FIA system.

#### -Result and discussion:--Optimization:-

Table 1 shows the optimum conditions for the determination of  $Cd^{2+}$  by batch method. The optimum conditions summarized in Table 2 which show that we can determine high level concentration of Cd<sup>2+</sup>, 2mg/l.

Table 1 :- Optimum conditions for spectrophotometric determination of Cd<sup>2+</sup>with PAN in DMF media\*.

| Variable                   | 2                       | Measurements |       |       |       |       |       |       |       |         |       |
|----------------------------|-------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|---------|-------|
| pH of buffer               | pН                      | 2 to5        | 5.5   | 6     | 6.5   | 7     | 7.5   | 8     | 8.5   | 9       | 9.5   |
|                            | А                       | 0.000        | 0.010 | 0.015 | 0.030 | 0.035 | 0.150 | 0.300 | 0.331 | 0.331** | 0.331 |
| Volume of PAN              | V <sub>PAN</sub> /ml    | 1            | 2     | 2.5   | 3     | 4     | 5     | 6     |       |         |       |
| $(4*10^{-4} \text{mol/l})$ | А                       | 0.026        | 0.330 | 0.333 | 0.332 | 0.330 | 0.332 | 0.332 |       |         |       |
| Volume of buffer           | V <sub>buffer</sub> /ml | 1            | 2     | 3     | 4     | 5     |       |       |       |         |       |
|                            | А                       | 0.16         | 0.33  | 0.39  | 0.34  | 0.3   |       |       |       |         |       |
| Time                       | Time/min                | 0            | 5     | 10    | 15    | 30    | 60    | 120   |       |         |       |
|                            | А                       | 0.39         | 0.39  | 0.38  | 0.39  | 0.39  | 0.39  | 0.30  |       |         |       |

\*The order of addition don't effect on the absorbance.

\*\* Best value.

# Table 2:- Optimum conditions for spectrophotometric determination of Cd<sup>2+</sup> with PAN in DMF media by batch method.

| Parameter                                                                 | Value                                          |
|---------------------------------------------------------------------------|------------------------------------------------|
| pH                                                                        | 9                                              |
| Volume of PAN (4*10 <sup>-4</sup> mol/l)                                  | 2 ml                                           |
| Volume of buffer (CH <sub>3</sub> COONH <sub>4</sub> +NH <sub>4</sub> OH) | 3 ml                                           |
| Stability of complex                                                      | About one hour                                 |
| Molar of absorptivity                                                     | $5.4*10^4$ l.mol <sup>-</sup> .cm <sup>-</sup> |

# -The nature of the complex :-

The Cd<sup>2+</sup>-PAN ratio is established by Jobs method of

continuous variation . Fig.2 shows that the molar ratio of  $Cd^{2+}$  to PAN is found to be 1:2

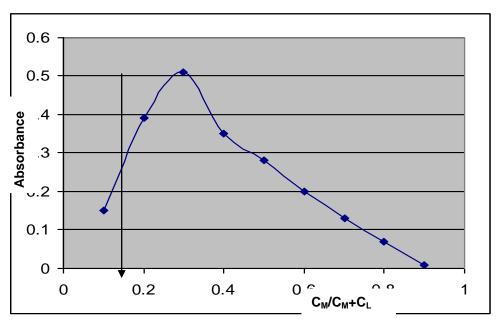



Fig2:-The nature of the complex Cd\_PAN.

#### -Calibration curve:-

Under the optimized conditions as in Table2, the calibration graph between concentration of  $Cd^{2+}$  (mg/l) against the absorbance of complex is linear in wide range

(0.05-2)mg/l of Cd<sup>2+</sup> with the following least square regression equation :-A=5.4\*10<sup>-3</sup>+0.48X

With correlation coefficient of 0.9999, the detection limit is 0.04mg/l, as shown in Fig3.

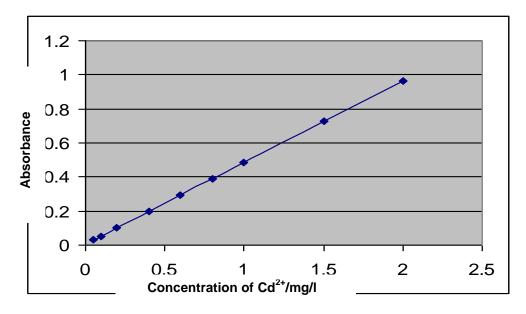



Fig.3:-Calibration curve for the determination of  $Cd^{2+}$  by batch method .

#### -Precision and accuracy:-

Table 3 shows the standard deviation S.D, relative standard deviation RSD and %E of the spectrophotometric determination of (0.1, 0.8 and 1.5) ppm of Cd<sup>2+</sup>under the

same optimum conditions. The results show that the method is reproducible, because the RSDis less than 2.5%.

| 1         |       | v                      |       |       |  |  |  |
|-----------|-------|------------------------|-------|-------|--|--|--|
| Conc./ppm | Α     | S.D                    | RSD%  | %E    |  |  |  |
|           | 0.052 | 2                      |       |       |  |  |  |
| 0.1       | 0.050 | 1.155*10 <sup>-3</sup> | 2.280 | +2.56 |  |  |  |
|           | 0.050 |                        |       |       |  |  |  |
|           | 0.390 | _                      |       |       |  |  |  |
| 0.8       | 0.392 | 1.155*10 <sup>-3</sup> | 0.295 | -0.18 |  |  |  |
|           | 0.392 |                        |       |       |  |  |  |
|           | 0.726 |                        |       |       |  |  |  |
| 1.5       | 0.724 | 1.155*10 <sup>-3</sup> | 0.159 | -0.18 |  |  |  |
|           | 0.724 |                        |       |       |  |  |  |

#### Table 3 :- The precision and accuracy of the batch method.

#### -Selectivity of the method:-

The effect of five important cations was examined on the determination of 0.8 mg/l of  $Cd^{2+}$  which illustrated in

Table 4, the studying show that the method is not selective method ,thus we try to determine  $Cd^{2+}$  by flow injection method

| Table 4 :- Effect of some interfering ions on | the determination of Cd <sup>2+</sup> by batch method. |
|-----------------------------------------------|--------------------------------------------------------|
|                                               |                                                        |

| Cations          | Conc./ppm | Α     | %E     |
|------------------|-----------|-------|--------|
| Co <sup>2+</sup> | 1         | 0.400 | +2.56  |
| Pb <sup>2+</sup> | 10        | 0.391 | +0.256 |
| Al <sup>3+</sup> | 10        | 0.389 | -0.256 |
| Zn <sup>2+</sup> | 1         | 0.398 | +2.05  |
| Cu <sup>2+</sup> | 1         | 0.396 | +1.54  |

# **B-Flow Injection Method:-**

# -Recommended procedure:-

The spectrophotometer of the FI system was set at 550 nm. The carrier stream of buffer solution (adjusted at pH

9) was pumped through a flow rate 1.5 ml/min and reagent  $(4*10^{-4} \text{ M of PAN in DMF})$  was pumped through a flow rate 1.5 ml/min too. The sample (2 ppm of Cd<sup>2+</sup>) of the 100 µl was injected by the injection valve. The

sample and buffer were mixed in 20cm coil, and this stream was mixed with reagent (PAN)in 60cm coil. A Cd-PAN complex was formed which passed through a flow cell, and then peak height of the complex was obtained graphically at the chart recorder.

-Result and discussion:--Optimization:- Table 5 shows physical and chemical optimization for the flow injection method , the method summarized as optimum conditions in Table 6 . Several types of buffer and organic solvents are studied , the results show that the best buffer is  $(NH_4OH+CH_3COONH_4 \text{ in pH8.5})$  and the best solvent is DMF.

 Table 5 :- Physical and chemical optimization for Spectrophotometric determination of Cd<sup>2+</sup> with PAN in DMF media by flow injection method.

| Optimize parameters | Variables        |                              |         |      |      | Me   | easure | ments |               |      |    |
|---------------------|------------------|------------------------------|---------|------|------|------|--------|-------|---------------|------|----|
| 1                   | Reagent flow     | ml/min                       | 0.5     | 0.75 | 1    | 1.25 | 1.5    | 1.72  | 2             |      |    |
|                     | rate             | p.h*/mm                      | 15      | 18   | 22** | 20   | 20     | 15    | 10            |      |    |
|                     | Buffer flow rate | ml/min                       | 0.5     | 0.75 | 1    | 1.25 | 1.5    | 1.75  | 2             |      |    |
| _                   |                  | p.h/mm                       | 15      | 20   | 27   | 25   | 22     | 20    | 15            |      |    |
| Physical            | Mix coil length  | Length/cm                    | 0       | 10   | 20   | 30   | 40     | 50    |               |      |    |
| hys                 |                  | p.h/mm                       | 12      | 18   | 27   | 25   | 20     | 10    |               |      |    |
| Id                  | Reaction coil    | Length/cm                    | 20      | 40   | 50   | 60   | 80     | 100   | 120           |      |    |
|                     | length           | p.h/mm                       | 10      | 15   | 20   | 27   | 30     | 35    | 30            |      |    |
|                     | Sample volume    | Volume/µl                    | 25      | 50   | 75   | 85   | 100    |       |               |      |    |
|                     |                  | p.h/mm                       | 15      | 20   | 28   | 30   | 35     |       |               |      |    |
|                     | Buffer solution  | pH                           | 3-<br>7 | 7.5  | 8    | 8.5  | 9      | 9.5   | 10            | 10.5 | 11 |
| ical                |                  | p.h/mm                       | 5       | 20   | 28   | 37   | 35     | 35    | 30            | 25   | 15 |
| Chemical            | [PAN]            | [PAN]/M*10 <sup>-</sup><br>3 | 0.1     | 0.4  | 0.8  | 1    | 1.5    | 2     | 2.5           |      |    |
|                     |                  | p.h/mm                       | 30      | 38   | 45   | 47   | 49     | 50    | Not<br>stable |      |    |

\*p.h=Peak height.

\*\*Best number.

# Table 6 :- Optimum conditions for Spectrophotometric determination of Cd<sup>2+</sup> with PAN in DMF media by flow injection method.

| Parameter               | Value                                                 |
|-------------------------|-------------------------------------------------------|
| Λmax                    | 550nm                                                 |
| Sample                  | 2 ppm Cd <sup>2+</sup>                                |
| [PAN]                   | 0.8*10 <sup>-3</sup> M                                |
| Flow rate of reagent    | 1 ml/min                                              |
| Flow rate of buffer     | 1 ml/min                                              |
| Length of mix coil      | 20 cm                                                 |
| Length of reaction coil | 100 cm                                                |
| Sample volume           | 100 µl                                                |
| pН                      | 8.5                                                   |
| Buffer type             | NH <sub>4</sub> OH+CH <sub>3</sub> COONH <sub>4</sub> |

#### -Calibration curve:-

According the optimized conditions as in Table6 the calibration graph concentration of  $Cd^{2+}$  (mg/l) against the peak height in mm is linear in the range (0.5-8)mg/l of

 $Cd^{2\scriptscriptstyle +}$  with the following least square regression equation A=0.998+22X

And the correlation coefficient is 0.9999, as shown in Fig.4 the detection limit is 0.2 mg/l  $Cd^{2+}$ .

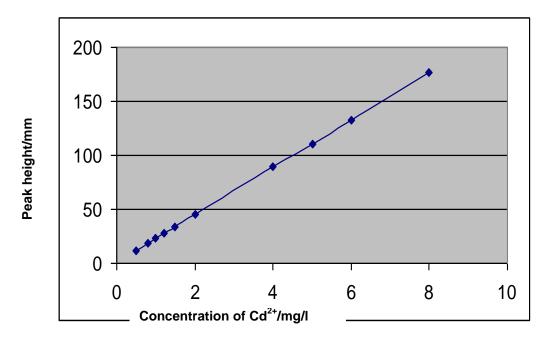



Fig.4:-Calibration curve for the determination of Cd<sup>2+</sup>by flow injection method

#### Precision and accuracy:-

Table 7 shows the standard deviation S.D, relative standard deviation R.S.D and %E of the flow injection spectrophotometric determination of (0.8,2 and 8) mg/l

of  $Cd^{2+}$  under the same optimum conditions SD=(0.28-3.6), RSD=(1.5-2.1, %E= (-2.17\_+1.72).The result show that this system is suitable for determination of  $Cd^{2+}$  in real sample.

Table 7 :- The precision and accuracy of the flow injection method.

| Conc.<br>of<br>Cd <sup>2+</sup><br>ppm | p.h/mm             | S.D    | RSD%  | %E    |
|----------------------------------------|--------------------|--------|-------|-------|
| 0.8                                    | 18.5<br>18<br>18.5 | 0.2886 | 1.574 | +0.90 |
| 2                                      | 45<br>46<br>47     | 1      | 2.174 | -2.17 |
| 8                                      | 177<br>175<br>170  | 3.605  | 2.072 | +1.72 |

#### -Effect of interferences :-

The interfering effect of various cations on the determination of 2 mg / 1 of  $Cd^{2+}$  were investigated under

the optimum conditions given in Table6 are shown in Table8  $% \left( {{{\rm{Table6}}} \right)$ 

# Table 8 :- Effect of some interfering ions on the determination of 2ppm of Cd<sup>2+</sup>by flow injection

method.

| Cations          | Conc./ppm | p.h/mm | %E    |
|------------------|-----------|--------|-------|
| Co <sup>2+</sup> | 10        | 47     | +4.44 |
| $Pb^{2+}$        | 50        | 46     | +2.22 |
| Al <sup>3+</sup> | 50        | 45     | 0.00  |
| Zn <sup>2+</sup> | 10        | 47     | +4.44 |
| Cu <sup>2+</sup> | 10        | 47     | +4.44 |

#### -Applications to real samples:-

After a given amount of  $Cd^{2+}$  was spiked in the solution containing some cations and anions ,recovery factor were determined using the calibration curve (to flow injection method) were found to be 101.31%. They are listed in Table 9. By these results we have concluded that this method could be applied to the determination of  $Cd^{2+}$ in real samples.

| Amount                | Foreign ion                                                   | Amount of | Measured           | %Recovery |
|-----------------------|---------------------------------------------------------------|-----------|--------------------|-----------|
| of                    |                                                               | foreign   | $Cd^{2+}/ppm(n=5)$ |           |
| Cd <sup>2+</sup> adde |                                                               | ion/ppm   |                    |           |
| d/ppm                 |                                                               |           |                    |           |
|                       | $Co^{2+},Zn^{2+},Cu^{2+}$<br>$Pb^{2+},Al^{3+}$                | 0.1       |                    |           |
| 0.8                   | $Pb^{2+},Al^{3+}$                                             | 1         | 0.818              | 102.30    |
|                       | $NO_3^-, Cl^-, F^-$                                           | 10        |                    |           |
|                       | $Co^{2+},Zn^{2+},Cu^{2+}$<br>$Pb^{2+},Al^{3+}$                | 2         |                    |           |
| 2                     | $Pb^{2+},Al^{3+}$                                             | 5         | 2.091              | 102.91    |
|                       | NO <sub>3</sub> <sup>-</sup> ,Cl <sup>-</sup> ,F <sup>-</sup> | 20        |                    |           |
|                       | $Co^{2+},Zn^{2+},Cu^{2+}$                                     | 5         |                    |           |
| 8                     | $Pb^{2+},Al^{3+}$                                             | 10        | 7.909              | 98.86     |
|                       | NO <sub>3</sub> <sup>-</sup> ,Cl <sup>-</sup> ,F <sup>-</sup> | 50        |                    |           |

Table 9 :- Determination of Cd<sup>2+</sup>by flow injection method in real samples.

#### References

- 1- http://www.webelements.com(seecadmium)
- 2- T. Kato, S. Nakamura and M. Mirita, Anal.Sci., 6 (1990) 623.
- 3- K. Lee and J. Ueom, Bull. Korean Chem. Soc., 22 (2001)514.
- 4- J. Staden and M. Matoetoe, Anal. Chim. Acta, 411 (2000) 201.
- 5- K. Cundeva and T. Stafilov, Anal.Lett., 30 (1997) 833.
- 6- S. Chakravarty, MK. Deb and RK. Mishra, JAOAC Int. 76(1993)604.
- 7- B. J. Aylett, (The chemistry of Zn,Cd and Hg ),1<sup>st</sup> edition , pergamon press 1973 ,P254.
- 8- S.K. Lee and SH. Choi, Bull. Korean Chem. Soc., 22 (2001) 463.
- 9- H. Hausenblesova, Z. Namkova and V. Suk, Microchem J, 26 (1981)262.
- 10- K. Uesugi and M. Miyawak, Microchem.J, 26 (1981) 288.
- 11- H. Xi -Wen and D. Poe, Talanta 28 (1981) 419.
- 12- J.H. Callahan and K.D. Kook, Anal. Che, 54 (1982) 59.

(تاريخ الاستلام: ١٠ / ٢ / ٢٠٠٧ ، تاريخ القبول: ١٢ / ١ / ٢٠٠٨ )

#### الملخص

تم وصف طريقتين تقليدية وحقن جرياني طيفي لنقدير الكادميوم الثنائي في المحاليل المائية والنماذج الحقيقية ، أعتمدنا على مفاعلة الكادميوم الثنائي مع الكاشف بان (PAN) في المحلول المنظم (المتكون من الامونيا والخلات الامونيوم )ذي دالة حامضية ٩ في الطريقة التقليدية و ٨,٥ في طريقة الحقن الجرياني في وسط DMF . تم قياس الناتج الملون عند ٥٥٠ نانو ميتر . تمكنا من تطبيق قانون بير –لامبرت ضمن مديات التراكيز ٥,٠ - ٢ و ٥,٠ - ٨ مايكروغرام /مللتر لتقدير الكادميوم الثنائي و بحدود كشف ٤٠.٤ و ٢,٠ مايكروغرام /مللتر وامتصاصية مولارية ٤.٤ أ - ٨ مايكروغرام ماللتر لتقدير الكادميوم الثنائي و بحدود كشف ٤٠.٤ و ٢,٠ مايكروغرام /مللتر وامتصاصية مولارية ٥.٤ أ لتر/مول.سم لكل من الطريقتين التقليدية و الحقن الجرياني على التوالي ز تم دراسة العوامل الفيزياوية والكيمياوية التي تؤثر على الطريقتين ، وطبقت الطريقة الحقن الجرياني بنجاح على تقدير الكادميوم الثنائي في بعض النماذج الحقيقية بدقة وتوافق جدين .