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The main aim of this paper is to compare five methods of finite difference schemes involving nine points formulas such
as truncations errors and averages , maximum and minimum error. We have found that two of these methods are more
accurate. Moreover, these schemes gives better results than the other three schemes .

1- Introduction :-

One of the most basic partial differential equation we
can examine is the one dimensional convection —
diffusion equation [1]
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Where T(x,t) isascalar variable, x is the distance , t

is the time and uand & are positive constants.

Equation (1) seems like a simple partial differential
equation at first glance, but when trying to approximate
the solution of equation (1) numerically, we find that are
large errors introduced into our approximate solution.
Initial condition is
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With boundary conditions are
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The exact solution is
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We will compare the numerical solution with both of the
exact solutions to determine the errors produced by the
finite difference approximation of equation (1) and thus
find the “ best ” scheme to solve this problem .
2- Numerical Solution:-
A uniform rectangular grid is superimposed on the
domain as shown in figure (1). The mesh lengths in the x
and t direction are denoted by AXand At respectively.
We use the method of finite differences to find an

approximation Tjn to the solution T atthe (j, n) grid

T(x,t)= t>0 - (4)

point, that is T;" is an approximationto T (X, t,).
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Figure (1): The finite difference grid

In the method of finite difference the derivatives
approximating the partial differential equation are
approximated by " combinations " ( often differences )
of value at grid points.

X=JAx , j=0(1)M and t =nAt , n=0(1)N
It can be shown that the first and second derivative of T
at the point (X ;,t ) of eight- order [7] satisfies
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since TJU :o{(Ax)B}the approximation is said to be

eight-order accurate in A X. Replacing both derivatives

in the convection-diffusion equation gives a finite
difference equation which is solved for the

approximations Tj” .

3 - Upwind Differences with Nine-point scheme
(US&9):-

Using a forward difference approximation for the time
derivative and a backward difference approximation for
the spatial derivative and central difference
approximation of eight - order equation (6) for the
second derivative, to approximate equation (1) , we
obtain a new formula for this method with nine-point
(US&9), as
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where C:UAt is courant number and the diffusion
AX

number ¢ _ @ At this is a fully explicit method as the
(ax)?
“new” value T is defined explicitly in terms of known



values at the time level t:tn. to determine wether this

scheme is stable, the Fourier mode [3 , 5 , 6]
Tjn:(G)neiijx, where G is the amplification factor and

i=+/-1 and k=0,1,...,N , is substituted into equation (7)
, after some algebra we get
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where f(x) = |G|2 —1, x=cosk and the coefficients
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equation (8) is stable if f(x) <O for all X €[-1,1], if
x=0then f(0)<O0 forall g<s< @[1 ¢ ++1-c?]for
971

value 0 <c <1 Ifx=-1then f(-1)<O this scheme is
stable for

0<s£2—1A[—(Ec +1)+/(Ec +1)>~4A(Bc +D¢c?) ]

where A=26.71085 ,
B= - 4 , D=4 , E=20.67302 , F=1.024455E-07,
H=1.227018E-07 and 1=-10.33651For all ¢ > 0 and this
scheme is unconditionally stable if x =1 for all s,c>
0.

4 — The Lax— Wendroff with Nine-point scheme
(L-WS&)9) :-
The Lax-Wendroff scheme is another fully explicit
scheme [6]. This scheme was developed by P.D. Lax and
B.Wendroff, by using Taylor’s expansion
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where
Xj=]JAx and tp=nAt , j=0,£1,£2,.
The differential equation can be used to eliminate the t-
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and ot ., from equation (5). Then equation (9) has the
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where once again C:LM is the courant number and
AX

At s the diffusion number. The amplification

(A%)?
factor of the general Fourier mode is
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after some algebra we get equation (8) with coefficients
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equation (8) is stable if f(Xx) <0 forall X €[-1, 1] this

scheme is stable forall s, c >0
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5- The Leap-Frog with Nine-point scheme (L-
FS&9) :-

The leap-frog scheme adopts it’s name from the fact that
it behaves in a similar manner to that of frog . It “leaps”

n+1 L

from one time interval to another in order to get a central
time difference, and then spreads it’s “legs” to determine
the space differences at the time level in between . This
can be observed in figure (2).
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Figure (2): Calculation points for the leap-frog scheme with nine-points

The leap-frog scheme was developed using central
difference approximations for both the spatial and time
derivatives and eight-order centered difference

approximating for 02T equation (6). The derivation of
6x2

this scheme is below, substituting the central difference

approximations
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equation (1) and rearranging gives the scheme
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As can be seen by this equation , the leap-frog scheme is
an explicit scheme in that it has only one term involving
the new time level n+1. It dose however need a spatial
technique to begin evaluating the approximate to the
solution , as equation (11) involves the time levels n-1, n
and n+1. Initial condition as given in equation (2), is

used to determine the values of Tjo ,

however the problem is to obtain values for Tj”_l- This

can be done by using any one-step scheme [ 2] .

However the more accurate the scheme the better the
final approximation to the solution will be. Taking this
into consideration we used the Lax-Wendroff scheme
which we found earlier to more accurate then of upwind
scheme. Using Fourier analysis , the amplification factor
satisfied the quadratic
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solving for both roots we obtain
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where f (X) as equation (8) with coefficients
which can only occur if xe[-1,1] we get three cases
the first if x=0 then f(0)<0. For all

0<s£33‘1£220+3360 Je2—1 for all c >1. The

second and third case if x=-1and x =1then f(-1) <0

and f(1)<Oforalls,c>0.

6— The second order explicit upwind with Nine-

point scheme :-

As the name would suggest , the second order explicit

upwind scheme is developed using upwind

approximations of both the spatial and time derivatives,

after substituting these into equation (1) as
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rearrangement gives the second-order explicit upwind
equation as
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known time level n to calculate the approximation at time
n+1 . Fourier analysis was used to examine the stability
and errors introduced by the second order explicit

upwind scheme. We again see that f(X) as equation
(8) with coefficients
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equation (8) is stable if f(X)<O0 for allx e[-1,1]
this scheme is stable for all s, ¢ >0

7— The (1,2,9) two — point explicit with Nine-
point scheme :-

The (1,2,9) two-point explicit method was obtained by
Noye [4] using centered - differencing for the space
derivative at (i-%.m for the time derivative and

eight- order centered difference to approximate 527 )
0X
at (j,n-1). This leads to the (1,2,9) two-point explicit
method
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where . _uAt and s_g A . As can be deduced from
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the name , the (1,2,9) two-point method only involves
one point on the new time level , implying it is in fact an
explicit method that uses three time levels. This can be
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Figure (3):Calculation points for (1,2,9) two-point explicit method

After completing the Fourier analysis as for the previous
methods, it is found that ( 1,2,9) two-point explicit
method has an amplification factor of
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where f(x) as equation (8) with coefficients
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equation (8) is stable if T(X) <0 forallX e[-1,1]
this scheme is stable for all s, ¢ > 0.

8- The Treatment of Adjacent Points of
Boundary :-

If we use the finite difference schemes involving nine-
point difference formulas to solve equation (1) and if
j=1,2,3 and m-1,m-2,m-3 then equations (7), (10), (11),
(12) and (13) will contain points out of the nodal
network. suggest in this case the treatment such that the
value of the function at the points on the boundary of
network is equal to the average of the nearest two points
. That is
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9- Numerical Test :-

In this section we will discussed the numerical results
which get from test the schemes using to solve transport
equation (1), as accurate order to these schemes and

average absolute error (Average \error ), maximum

absolute error (Max. \error\) and minimum of T (Min.

‘ error\)- The effects of numerical diffusion are seen in
the following numerical test applied to the methods just
described . The one-dimensional transport equation (1)
was solved on 0 < X <1 with initial condition (2) and
the boundary conditions 3) using
«=0006 , 00006 ,u=06 , c=01, Ax=001 and

s=0.1, 0.01 respectively with X0 =0.2 . When the

numerical solution was compared with the exact solution
(4) at t=1 the results from these numerical test are
summarized in tables (1) and (2) and if equation (1)
solved on 0<x<9 using =0.005,0.0005and

0.002,u=08 ,c=04,Ax=0025 and s=0.1,001
and 0.04 respectively with Xg = 1 and t=5 such that the

results from these numerical test are summarized in
tables (3) to (5) , we discussed in table (6) the truncation
error of these methods. Compute the results on a

Pentium 111 .

table (1) :- Numerical results for s=0.1 , c=0.4 , «=0.005

Method

Average [erTOe| | Max. |erroe| | min. erroe|
UD&9 5.011106E-03 | 6.925240E-02 | 1.401298E-45
L-W&9 1.130966E-04 1.633644E-03 | -1.251412E-14
L-F&9 1.369216E-02 | L.177202E-01 | -2.004039E-01

Second-order | 1.108074E-03

1.660281E-02

-7.973640E-04

(1,2,9) 9.558598E-04

1.152104E-02

-8.247018E-17

table (2) :- Numerical results for s=0.01 , c=0.4 , & =0.0005

Method

Average [erTOe| | Max. |erroe| | min. erroe|
UD&9 4.700575E-03 | 1.563067E-01 | -L.121039E-44
L-W&9 6.096484E-04 | 2.557443E-02 | -7.333943E-03
L-F&9 0.421433E-04 | 3.466838E-02 | -7.286977E-12

Second-order | 3.988415E-03

1.009401E-01

-5.49270E-02

(1,2,9) 9.558616E-04

3.540678E-02

-7.049166E-04

table (3) :- Numerical results for

$s=0.04 ,c=0.4, o=0.002

Method

Average [erroe| | max. |erroe| | min. erroe|
UD&9 5.471174E-03 1.071656E-01 | -7.006492E-45
L-W&9 2.594909E-04 5.834609E-03 | -1.605737E-05
LF&9 9.521303E-04 | 1.800804E-02 | -5.530100E-19

Second-order | 2.039599E-03

4.408810E-02

-1.755445E-02

(1,2,9) 9.558600E-04

1.816010E-02

-3.193723E-08




table (4) :- Numerical results for s=0.1 , ¢=0.1, «=0.006
Method Average [erroe| | max. [erroe| | min. [erroe|
UD&9 1.578436E-02 6.386578E-02 | 8.052027E-09
L-W&9 7.676445E-06 3.284216E-05 | 4.181190E-10
L-F&9 UNSTABLE UNSTABLE | -17.355400

Second-order | 2.231248E-03

7.847250E-03

7.391824E-10

1,2,9) 7.163336E03 | 2.101240E02 | 5.858156E-10
table (5) :- Numerical results for s=0.01 , c=0.1, & =0.0006
Method Average [erroe| | max. |erroe| | min. [erroe|
UD&9 2.990734E02 | 2.388063E-01 | -2.633555E24
L-W&9 5.685376E-04 | 5.552202E-03 | -7.513975E-05
LF&9 1.750605E-03 | 1.367477E-02 | -L.821683E-44

Second-order | 1.514816E-02

1.221100E-01

-5.551219E-02

(1,2,9) 8.409956E-03

6.548887E-02

-3.664358E-04

table (6) :- Truncation error

Method Truncation error
UD&S9 22T

——(1 c)Ax—2+

OX

L-W&9 1 62T

-—C Ax—2 +-

2 OX

L-F&9

2
— (Az) (1_02)63-:|;+

15)4
Second-order 23
(AX) i-c )2- c)—;+
OX
(1,2,9) 2 53
_ M0 ya20 8
6x3

10 — Conclusion

Looking at table (6) we see that the first two schemes are
first order accurate. As discussed in the text the Lax-
Wendroff scheme gives a more accurate approximate
solution than does the Upwind scheme. Looking at the
next three second order accurate schemes. The only way
to determine the most accurate scheme is therefore via
the truncation errors . Comparing the (1,2, 9) two —

point explicit scheme has approximately half the
truncation error of the second order explicit upwind
scheme, implying the (1, 2, 9) two — point explicit
scheme is more accurate. So from the five methods
discussed throughout this project, the two most accurate
are the Lax — Wendroff method and the (1,2, 9) two —
point explicit method .



References

[1] AL-saif, AJ. and Mohammed, AJ.(1998) 'Finite
Difference Methods Involving Five-point Formula For
Convection — Diffusion Equation ~ Basrah, J. science, A,
Vol.16, pp.87-94.

[2] Buchanan , J.L. and Turner ,P.R. (1992) “ Numerical
Methods and Analysis “ U.S. naval Academy.

[3] Noye, B.j.(1981),”Numerical Solution of Partial
Differential Equations”. South Australia.North-Holland
[4] Noye, B.J. (1990) “Some Two-Point Three-Level
Explicit FDM’S for one-Dimensional “.Computational
Techniques and Applications ; CTAC-89 B.J. Noye and
W.L. Hogart ( editors) , pp. 349-356

[5] Mitchell ,A.R. and Griffiths, D.F. (1980), “The Finite
Difference Method in Partial Differential Equation
University of Dundee, Scotland .

[6] Smith , D.G.(1978),” Numerical Solution of Partial
Differential Equations Finite Difference Method”.
London.

[7] Al-Humedi, H.O. and AL-saif, A.J.(2002) Finite
Difference Scheme Involving Nine- point Formula For
Transfer Equation ~, Mustenseria J. science , A, Vol.13,
No. 4, pp. 59-75 (in Arabic).

uadlall

bl Uad als e el g il Tl g Aaaiall 5 Baaaall cligpall Calld (e calld G G A5)8a1 58 Cand) 138 (e ) gl
(MinimumT ) T shall da 3l ase i yaaaly Maximum |error| Usall 4allas 4e 15 Average lerror] Uaall Jaeal dallaall daglly
AT D L) g A e s ol el 5 A ST calS Gl o3 e ot o Laay 8, e el e



