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Abstract :-  
The main aim of this paper is to compare five methods of finite difference schemes involving nine points formulas  such 

as truncations errors and averages , maximum and  minimum error. We have found that two of these  methods are more 

accurate. Moreover,  these schemes gives  better results than the other three schemes .  

1-  Introduction  :- 
One of  the most  basic  partial  differential  equation  we 

can examine  is the one dimensional  convection – 

diffusion  equation  [1]  
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Where  T( x , t )  is a scalar variable , x is the distance , t 

is the time  and u and   are positive constants. 

Equation (1) seems like a simple  partial differential 

equation at first glance, but when trying to approximate 

the solution of equation (1) numerically, we find that are 

large errors introduced into our approximate solution. 

Initial condition is  
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 The exact solution  is  
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We will compare the numerical solution with both of the 

exact solutions to determine the errors produced by the 

finite  difference approximation of equation (1) and  thus 

find the “ best ” scheme to solve this problem . 

2- Numerical Solution:- 
A uniform rectangular grid is superimposed on the 

domain as shown in figure (1). The mesh lengths in the  x 

and t direction are denoted by x and t respectively. 

We use the method of finite differences to find an 

approximation  
n

jT  to the solution  T at the ( j , n ) grid 

point , that is 
n

jT  is an approximation to ) t,  x( njT .      

 
Figure (1): The finite difference  grid 

 

In the method of finite difference the derivatives 

approximating the partial differential equation are 

approximated by " combinations " ( often differences )  

of value at grid points. 

 N (1) 0n   ,        tand    M ) (1 0j    ,   n  tnxjx j
 

It can be shown that the first and second derivative of  T 

at the point ), x ( j nt  of  eight- order [7] satisfies 
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since }8x)O{(n
jT the approximation is said to be 

eight-order accurate in x .  Replacing both derivatives 

in the  convection-diffusion equation gives a finite 

difference equation which is solved for the 

approximations n
jT  . 

3 - Upwind Differences with Nine-point scheme 

(US&9):- 
Using a forward difference approximation for the time 

derivative and a backward difference approximation for 

the spatial derivative and central difference 

approximation of eight - order equation (6) for the 

second derivative, to approximate equation (1) , we 

obtain a new formula for this method with nine-point 

(US&9) , as 
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where 
x

tu
c




  is courant number and the diffusion 

number 
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 , this is a fully explicit method as the 

“new”  value 1n

jT  is defined explicitly in terms of known 
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values at the time level ntt . to determine wether this 

scheme is  stable, the Fourier mode [3 , 5 , 6] 

xjkinn
j eGT  )( , where G is the amplification factor and 

1i  and k=0,1,…,N , is substituted into equation (7) 

, after some algebra we get  
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)(  Gxf  , kx cos  and the coefficients  
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equation (8) is stable  if 0)( xf  for all ,1[x 1], if 

x=0 then 0)0( f  for all ]11[
971

420
0 2ccs  for  

value 0 < c < 1 If x = -1 then 0)1( f  this scheme is 

stable for 
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where A=26.71085 , 

B= - 4 , D=4 , E=20.67302 , F=1.024455E-07, 

H=1.227018E-07 and I=-10.33651For all c > 0 and this 

scheme is unconditionally stable if  x = 1 for   all  s , c > 

0 . 

  4 – The Lax– Wendroff with Nine-point scheme 

(L-WS&9) :- 
The Lax–Wendroff scheme is another fully explicit 

scheme [6]. This scheme was developed by P.D. Lax and  

B.Wendroff, by using Taylor’s expansion 
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 from equation (5). Then equation (9) has the 

form 

where once again 
x

tu
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  is the courant number and 
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   is the diffusion number. The amplification 

factor of  the general Fourier mode  is 
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after some algebra we get equation (8) with coefficients 
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equation (8) is stable if 0)( xf  for all ,1[x 1] this 

scheme is stable for all s , c > 0 



                                                                    

5– The Leap-Frog  with Nine-point scheme (L-

FS&9) :- 
The leap-frog scheme adopts it’s name from the fact that 

it behaves in a similar manner to that of frog . It “leaps” 

from  one time interval to another in order to get a central 

time difference, and then spreads it’s “legs” to determine 

the space differences at the time level in between . This 

can be observed in figure  (2). 

 

 

 
       

Figure (2): Calculation points for the leap-frog scheme with nine-points 
  

The leap-frog scheme was developed using central 

difference approximations for both the spatial and time 

derivatives and eight–order centered difference 

approximating for 
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  equation (6). The derivation of 

this scheme is below,  substituting the central difference 

approximations 
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equation (1) and rearranging gives the scheme   
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As can be seen by this equation , the leap-frog scheme is 

an explicit scheme in that it has only one term involving 

the new time level n+1. It dose however need a spatial 

technique to begin evaluating the approximate to the 

solution , as equation (11) involves the time levels n-1, n 

and n+1. Initial condition as given in equation (2), is 

used  to determine the values of  0
jT  ,   

however the problem is to obtain values for 1n
jT .  This 

can be done by using any one-step scheme [ 2] . 

 However the more accurate the scheme the better the 

final approximation to the solution will be. Taking this 

into consideration we used the Lax-Wendroff scheme 

which we found earlier to more accurate then of upwind 

scheme. Using Fourier analysis , the amplification factor  

satisfied the quadratic 
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  where )(xf as equation (8) with coefficients 

which can only occur if ]1,1[x  we get three cases 

the first if x=0 then 0)0( f . For all 

1  3360
403

3316320
0 2  cs   for  all c > 1 . The 

second and third case if  x=-1 and x = 1 then 0)1( f  

and  f ( 1 ) < 0 for all s , c > 0 . 

6– The second order explicit upwind with Nine-

point scheme :- 
As the name would suggest , the second order explicit 

upwind scheme is developed using upwind 

approximations of  both the spatial and time derivatives,  

after substituting these  into equation (1) as  
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 rearrangement gives the second-order explicit upwind 

equation  as  
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  . As it uses only the 

known time level n to calculate the approximation at time 

n+1 . Fourier analysis was used to examine the stability 

and errors introduced by the second order explicit 

upwind scheme. We again see that )(xf as equation 

(8) with coefficients 
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 equation (8) is stable if 0)( xf  for all ,1[x 1] 

this scheme is stable for all s , c > 0  

7– The (1,2,9) two – point explicit with Nine-

point scheme :- 
The (1,2,9) two-point explicit method was obtained by 

Noye [4] using centered - differencing  for the space  

derivative at ),
2

1( nj   for the time derivative and  

eight- order centered difference to approximate 
2

2

x

T



  

at  ( j , n-1 ). This leads to the (1,2,9) two-point explicit 

method 
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. As can be deduced from 

the name , the (1,2,9) two-point method only involves 

one point on the new time level , implying it is in fact an 

explicit method that uses three time levels. This can be 

observed in figure (3)  bellow. 

 
 

Figure (3):Calculation points for (1,2,9) two-point explicit method 
 

After completing the Fourier analysis as for the previous 

methods, it is found that ( 1,2,9) two-point explicit 

method has an amplification factor of  
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 equation (8) is stable if 0)( xf  for all ,1[x 1] 

this scheme is stable for all s , c > 0.  

8– The Treatment of Adjacent Points of 

Boundary :- 
If we use the finite difference schemes involving nine-

point difference formulas to solve equation (1) and if  

j=1,2,3 and m-1,m-2,m-3 then equations (7), (10), (11), 

(12) and (13) will contain points out of the nodal 

network. suggest in this case the treatment such that the 

value of the function at the points on the boundary of  

network is equal to the average  of the nearest two points 

. That is 

j-4 j-3 j-2 j-1 j j+1 j+4 j+2 j+3 
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9– Numerical  Test :- 
In this section we will discussed the numerical results 

which get from test the schemes using to solve transport 

equation (1), as accurate order to these schemes and 

average absolute error (Average error ), maximum 

absolute error (Max. error ) and minimum of T (Min. 

error ). The effects of numerical diffusion are seen in 

the following numerical test applied to the methods just 

described . The one-dimensional transport equation (1) 

was solved on   10  x  with initial condition (2) and 

the boundary conditions (3) using   

0.01 x  ,  0.1c   ,   0.6u  ,   0.0006  ,   006.0   and 

s=0.1, 0.01 respectively with 2.00 x  . When the 

numerical solution was compared with the exact solution  

(4) at t=1 the results from these numerical test are 

summarized in tables (1) and (2) and if equation (1) 

solved on 90  x  using 0.0005 , 005.0 and 

0.002,   0.025 x   ,  0.4c  ,   8.0 u and  0.01 ,  1.0s  

and 0.04 respectively with 10 x  and t=5 such that the 

results from these numerical test are summarized in 

tables (3) to (5) , we discussed in table (6) the truncation 

error of these methods. Compute the  results on a 

Pentium III . 

 

table (1) :- Numerical results for 0.005    ,  0.4 c  ,   0.1s    

Method 
Average erroe  Max. erroe  Min. erroe  

UD&9 5.011106E-03 6.925240E-02 1.401298E-45 

L-W&9 1.130966E-04 1.633644E-03 -1.251412E-14 

L-F&9 1.369216E-02 1.177202E-01 -2.004039E-01 

Second-order 1.108074E-03 1.660281E-02 -7.973640E-04 

(1,2,9) 9.558598E-04 1.152104E-02 -8.247018E-17 

 

table (2) :- Numerical results for 0.0005    ,  0.4 c  ,   0.01s    

Method 
Average erroe  Max. erroe  Min. erroe  

UD&9 4.700575E-03 1.563067E-01 -1.121039E-44 

L-W&9 6.996484E-04 2.557443E-02 -7.333943E-03 

L-F&9 9.421433E-04 3.466838E-02 -7.286977E-12 

Second-order 3.988415E-03 1.009401E-01 -5.49270E-02 

(1,2,9) 9.558616E-04 3.540678E-02 -7.049166E-04 

 

table (3) :- Numerical results for  0.002    ,  0.4 c  ,   0.04s    

Method 
Average erroe  Max. erroe  Min. erroe  

UD&9 5.471174E-03 1.071656E-01 -7.006492E-45 

L-W&9 2.594909E-04 5.834609E-03 -1.605737E-05 

L-F&9 9.521303E-04 1.800804E-02 -5.530100E-19 

Second-order 2.039599E-03 4.408810E-02 -1.755445E-02 

(1,2,9) 9.558600E-04 1.816010E-02 -3.193723E-08 

 

 



                                                                    

table (4) :- Numerical results for 0.006    , 0.1 c  ,   0.1s    

Method 
Average erroe  Max. erroe  Min. erroe  

UD&9 1.578436E-02 6.386578E-02 8.052027E-09 

L-W&9 7.676445E-06 3.284216E-05 4.181190E-10 

L-F&9 UNSTABLE UNSTABLE -17.355400 

Second-order 2.231248E-03 7.847250E-03 7.391824E-10 

(1,2,9) 7.163336E-03 2.101240E-02 5.858156E-10 

 

table (5) :- Numerical results for 0.0006    ,  0.1 c  ,   0.01s    

Method 
Average erroe  Max. erroe  Min. erroe  

UD&9 2.990734E-02 2.388063E-01 -2.633555E-24 

L-W&9 5.685376E-04 5.552202E-03 -7.513975E-05 

L-F&9 1.750695E-03 1.367477E-02 -1.821688E-44 

Second-order 1.514816E-02 1.221100E-01 -5.551219E-02 

(1,2,9) 8.409956E-03 6.548887E-02 -3.664358E-04 

 

table (6) :- Truncation error 
Method Truncation error 
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10 – Conclusion 
Looking at table (6) we see that the first two schemes are 

first order accurate. As discussed in the text the Lax-

Wendroff scheme gives a more accurate approximate 

solution than does the Upwind scheme. Looking at the 

next three second  order accurate schemes. The only way 

to determine the most accurate scheme is therefore via 

the truncation errors . Comparing  the ( 1 , 2 , 9) two – 

point explicit scheme has approximately half the 

truncation error of the second order explicit upwind 

scheme, implying the (1, 2, 9) two – point explicit 

scheme is more accurate. So from the five methods 

discussed throughout this project, the two most accurate 

are  the Lax – Wendroff  method and the ( 1 , 2 , 9) two – 

point explicit method . 
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 الملخص
أ الة نخ  الهدف الأساسي من  ذن ا الث نو ذنم المةابين  ثن   امنب مسنال ل من  مسنال ل الحبمةنا  الم ندد  م المنقنمي  تن   اليةنا  النسنخ م لن  من  يا  ن  ا ن

 T (MinimumT )متنرب نةب نل دنددد لدبان  ال نباب  م  |Maximum |error مكثنب ة من  م لةن  للا نأم  |Average |errorمالة م  الم لة  لمعدل الا نأ 
 ثأ  مثيا  م  ذ ه الأسال ل كاي  مكثب دة  م مد   ينائج  ا د  مةابي   مخ الأسال ل  الثلاو الأابى . ديد الزم  اليهائي مةد ماديا

  

 


