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Abstract

The behaviors of structural waves (axial, shear and bending) are
studied in multi-material beams and single material plates using the
method of characteristics (MOC). The characteristics equations in one
dimensional problems are extended and derived to cover the two
dimensional problems and to make the method be applicable to study the
wave behavior in plates.

The results showed that the structural waves changed their forms
during their propagation in the multi-material beams and some reduction
is occurred in the natural frequency of the beam. The propagation of
structural waves in plates showed same behavior as in beams, so the
propagation in two directions can be separated and each direction can be
considered individually as one dimensional problem to simplify the
characteristics equations and saving the computing time and solution
techniques.
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waves and Vibration.



في البلاطات والعتبات المتعددة المواد) MOC(طریقة الخواص 

میرین حسن فھمي. د

أربیل–الكلیة التقنیة 

الخلاصة

axial, shear and(القص والانثناء ، تمت دراسة خواص الامواج الانشائیة المحوریة
bending ( أكثر من مادة واحدة في االبلاطات المكونة من مادة واحدة والعتبات المكونة من

حیث تم أشتقاق وتطویر ، )Method of Characteristics(بأستخدام طریقة الخواص 
وكذلك تطبیق ھذه الطریقة على المسائل ) Beams(معادلات الخواص للمسائل ذات البعد الواحد 

).Plates(ذات البعدین 

تغیر من أشكالھا ) قص والانثناءال، المحوریة(وأظھرت النتائج بأن الامواج الانشائیة 
خلال تقدمھا في العتبات المكونة من أكثر من مادة واحدة و یحصل بعض النقص في قیمة التردد 
الطبیعي للعتبة وأظھرت أیضا أن تقدم الامواج في البلاطات مشابھ للعتبات في كل أتجاه وبذلك 

ي العتبات لتبسیط معادلات الخواص یمكن معاملة المسائل ذات البعدین كأتجاھین منفصلین كما ف
.في البلاطات وأختصار زمن الحساب وتسھیل عملیة التحلیل

Notations:

A = cross section area of the beam.

C = speed of the axial wave.

Cs = speed of the shear wave.

E = modulus of elasticity.
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F, Q, M = axial force, shear force and bending moment at node (i) and
time (t1) in beams.

FX, FY = in-plane forces in x and y directions respectively at node (i) and
time (t1) in plates.

G = shear modulus.

h = plate thickness.

I = moment of inertia.

ks = shear coefficient.

MX, MY = bending moments about x and y axis respectively at node (i)
and time (t1) in plates.

MXY, MYX = twisting moments at node (i) and time (t1) in plates.

QX, QY = shear forces in xz and yz planes respectively at node (i) and
time (t1) in plates.

Q'L, V'L and ψ'L = shear force, shear velocity and angular velocities along
the line (PL').

Q'R, V'R and ψ'R = shear force, shear velocity and angular velocities along
the line (PR').

U, V, ψ = axial, shear and angular velocities at node (i) and time (t1) in
beams.

U = axial velocity = du/dt; u = axial displacement.

V = transverse velocity = dv/dt; v = transverse displacement.

ψ = angular velocity = dψO/dt; ψO = angular displacement.

∆O is the deflection at node (i) and time (t1).



∆L is the deflection at node (i-1) and time (t1).

∆R is the deflection at node (i+1) and time (t1).

∆x, ∆y = the finite difference intervals in x and y directions respectively.

ρ = density of the material.

υ = Poisson’s ratio.

Introduction:

The method of characteristics (MOC) is a widely used explicit
method of solution for hyperbolic differential equations [1-7]. It is
frequently used to model a variety of wave propagation phenomena.
Closed conduit, open channel and ground water flows have been
analyzed using this technique. Many workers have used the technique to
simulate wave propagation in different media. The method expanded due
to three reasons:

1- The possibility in reducing the partial differential equations to
straight forward ordinary differential equations.

2- It's mathematics in time – space coordinates, so it is suitable to use
for wave propagation problems.

3- The computer resources required are relatively small.
Because of the complexity of the wave form, some assumptions are made
to simplify the theoretical models. The most important assumptions in the
case of axial stress waves is usually that plane section remain plane, little
is known about the validity of this assumption during wave propagation.
The axial wave in elastic and prismatic members will propagate in
unchanged form while flexural waves do not propagate in an unchanging
form, because flexural waves consist of a combination of bending and
shear waves which propagate simultaneously, but at different wave
speeds.



The phenomena of wave propagation and the (MOC) are described by
different workers. Vardy and Al-Sarraj [1], applied the (MOC) to
simulate a coupled axial, flexural and torsional vibrations in single
structural members supporting discrete masses, they showed that this
method has useful advantages over the conventional analysis.

Plass [2] applied the (MOC) to solve the vibration of Timoshenko beam
for various types of support conditions and the results showed good
agreement with experimental data. Chou and Mortimer [3], applied the
(MOC) to study the elastic wave problem in different types of structures
(Timoshenko beam, plates, bars and sheets), and

Atkins and Hunter [4] considered the propagation of longitudinal elastic
waves around right angle corners in rods of square cross section, they
showed that the theoretical analysis based on the assumption that the
filament approximation is valid every where except in the vicinity of the
corner, the results found good agreement with the experimental
observations.

Al Mousawi [5], considered the effect of discontinuous in cross section
on the behavior of flexural wave in beams, the results showed good
agreement with the experimental works. Al-Sarraj and Al-Daami [6],
investigated the transient dynamic response of non prismatic structural
members, using the (MOC), they showed that the method is capable to
predict the natural frequency of vibration, the results showed good
agreement with that obtained by finite element method. Al-Sarraj et al.
[7], include non linear characteristics in the analysis of axially loaded
bar, using (MOC) and they showed that this method is suitable to
simulate the transient and dynamic behavior of axially loaded bar beyond
the elastic stage.

Peng [8 and 9], introduced an explicit acoustical wave propagator method
to investigate the flexural wave propagation and dynamic stress
concentration in a multi-stepped plate and one dimensional structures



with discontinuities. A new combined scheme with Chebyshev
polynomial expansion and fast Fourier transformation is used and
compared with Euler and exact analytical solution. Luangvilai et al. [10],
examined the propagation of guided lamb waves in fiber-reinforced
polymer bounded components, establishing the effectiveness of
combining laser ultrasonic techniques with a time frequency
representation to experimentally measure the dispersion curves of a
concrete components repaired with a fiber-reinforced polymer plate. Also
Komatitsch et al. [11] introduced a numerical approach for modeling
elastic wave propagation in two and three dimensional fully anisotropic
media based upon a spectural element method.

In the present study, the behaviors of structural waves (axial, shear and
bending) are studied in multi-material beams and single material plates
using the method of characteristics (MOC). The characteristics equations
in one dimensional problems are extended and derived to cover the two
dimensional problems and the method be applicable to study the wave
behavior in plates.

Formulation:

The propagation of uncoupled axial and flexural waves along one
dimensional prismatic elastic member has been discussed by Timoshenko
[12]. It is assumed that plane section remain plane in the case of axial
wave, but in case of flexural waves, the presence of shear waves cause
section to distort. The derivations of the characteristics equations are
given in [13], the final finite difference form of characteristics equation
are shown below:

1- Uncoupled axial – flexural waves:

Axial waves:



Along C=dx/dt    ; (FP – FL) – ρAC (UP – UL) = 0 ---

-----------(1)

Along C= – dx/dt; (FP – FR) + ρAC (UP – UR) = 0 ---

-----------(2)

Flexural waves – Lateral:

Along Cs=dx/dt    ; (QP – Q'L) – ρACs (VP – V'L) = – ρACs ∆x/2 (ψP +

ψ'L) ----(3)

Along Cs= – dx/dt; (QP – Q'R) + ρACs (VP – V'R) = – ρACs ∆x/2 (ψP +

ψ'R) ---(4)

Flexural waves – Angular:

Along C=dx/dt    ; (MP – ML) – ρIC (ψP – ψL) = – ∆x/2 (QP + QL)

-----(5)

Along C= – dx/dt; (MP – MR) + ρIC (ψP – ψR) = ∆x/2 (QP + QR)

-----(6)

Where:

C = speed of the axial wave = √E/ρ.

Cs = speed of the shear wave = √ks G/ρ.

ρ = density of the material.

E = modulus of elasticity.

G = shear modulus.



A = cross section area of the beam.

I = Moment of inertia.

F, Q, M = axial force, shear force and bending moment at node (i) and
time (t1) in beams.

U, V, ψ = axial, shear and angular velocities at node (i) and time (t1) in
beams.

U = axial velocity = du/dt; u = axial displacement.

V = transverse velocity = dv/dt; v = transverse displacement.

ψ = angular velocity = dψO/dt; ψO = angular displacement.

FP, QP, MP = axial force, shear force and bending moment at node (i) and
time (t2) in beams.

UP, VP, ψP = axial, shear and angular velocities at node (i) and time (t2)
in beams.

FL, QL, ML = axial force, shear force and bending moment at node (i-1)
and time (t1) in beams.

UL, VL, ψL = axial, shear and angular velocities at node (i-1) and time (t1)
in beams.

FR, QR, MR = axial force, shear force and bending moment at node (i+1)
and time (t1) in beams.

UR, VR, ψR = axial, shear angular velocities at node (i+1) and time (t1) in
beams.

ks = shear coefficient depends on the cross section shape [14].

Q'L, V'L and ψ'L = shear force, shear velocity  and angular velocities along
the line (PL') as shown in Fig.(1).



Q'R, V'R and ψ'R = shear force, shear velocity  and angular velocities along
the line (PR') as shown in Fig.(1).

2- Coupled axial – flexural waves: in case of coupled axial and flexural
waves, the MOC equations in finite difference form are shown below
[13]

Axial waves:

Along C=dx/dt    ; (FP – FL) – ρAC (UP – UL) = ρI (ψP ψO – ψL
2) -

-----------(7)

Along C= – dx/dt; (FP – FR) + ρAC (UP – UR) = ρI (ψP ψO – ψR
2) -

-----------(8)

Flexural waves – Lateral:

Along Cs=dx/dt    ; (QP – Q'L) – ρACs (VP – V'L) = – ρACs ∆x/2 (ψP +

ψ'L) ------(9)

Along Cs= – dx/dt; (QP – Q'R) + ρACs (VP – V'R) = – ρACs ∆x/2 (ψP +

ψ'R) ---(10)

Flexural waves – Angular:

Along C=dx/dt;(MP – ML)–ρIC (ψP–ψL) = – ∆x/2 (QP + QL) + (FP +

FL)(∆O – ∆L)/2 ------(11)

Along C= – dx/dt;(MP–MR)+ρIC (ψP–ψR) = ∆x/2 (QP + QR) + (FP +

FR)(∆O – ∆R)/2 ------(12)



Where:

∆O is the deflection at node (i) and time (t1).

∆L is the deflection at node (i-1) and time (t1).

∆R is the deflection at node (i+1) and time (t1).

The value of parameters along the line (L' and R') shown in Fig.(1) are
obtained by using interpolation between grid points, using three type of
interpolations (x-wise), (t-wise) and (x – t wise). Goldberg and Wylie
[15], show that the (t-wise) interpolation method is the most accurate
method and need more space and storage in the computer in comparison
with (x-wise) interpolation method which is need less memory and less
accurate solution, so (t-wise) interpolation method is used in this study.

In this study the (MOC) in one dimension is extended to be
applicable on two dimensional problems such as plates, the
characteristics equations are derived using two dimensional elasticity



stress – strain relationships in (x and y) directions and plate equations [14
and 16]. The final finite difference form can be written as below:

Axial waves – x-direction:

Along C=dx/dt    ; (FXP – FXL) – K1 (UP – UL) – K2 (VP – VL) = 0

---------(13)

Along C= – dx/dt; (FXP – FXR) + K1 (UP – UR) + K2 (VP – VR) = 0

---------(14)

Axial waves – y-direction:

Along C=dy/dt    ; (FYP – FYL) – K2 (UP – UL) – K1 (VP – VL) = 0

------(15)

Along C= – dy/dt; (FYP – FYR) + K2 (UP – UR) + K1 (VP – VR) = 0

-----(16)

In which: K1= ρhC/(1-υ2), K2= υ K1, (υ) is the Poisson’s ratio and (h) is
the plate thickness. And assuming the wave speed in x and y directions
are equal.

Flexural waves – Lateral x- direction:

Along Cs=dx/dt    ; (QXP – Q'XL) – ρhCs (VP – V'L) = – ρhCs ∆y/2 (ψYP +

ψ'YL) --------(17)



Along Cs= – dx/dt; (QXP – Q'XR) + ρhCs (VP – V'R) = – ρhCs ∆y/2 (ψYP +

ψ'YR) --------(18)

Flexural waves – Lateral y- direction:

Along Cs=dy/dt    ; (QYP – Q'YL) – ρhCs (UP – U'L) = – ρhCs ∆x/2 (ψXP +

ψ'XL) ------(19)

Along Cs= – dy/dt; (QYP – Q'YR) + ρhCs (UP – U'R) = – ρhCs ∆x/2 (ψXP +

ψ'XR) -------(20)

Flexural waves – Angular x- direction:

Along C=dx/dt; (MXP–MXL)–(MYXP–MYXL) = –

∆x/2(QXP+QXL)+∆y/2ρIC(ψXP–2ψXL+ψXO) -----(21)

Along C= –dx/dt; (MXP–MXR)+(MYXP–MYXR)=∆x/2(QXP+QXL)–

∆y/2ρIC(ψXP–2ψXR+ψXO) -------(22)

Flexural waves – Angular y- direction:

Along C=dy/dt; (MYP–MYL)–(MXYP–MXYL)=–∆y/2(QYP+QYL)+∆x/2 ρIC

(ψYP–2ψYL + ψYO) ----(23)

AlongC= –dy/dt; (MYP–MYR)+(MXYP–MXYR)=∆y/2(QYP+QYL)–∆x/2 ρIC

(ψYP – 2ψYR + ψYO) -----(24)

Where:

∆x, ∆y = the finite difference intervals in x and y directions respectively.



FX, FY = in-plane forces in x and y directions respectively at node (i) and
time (t1) in plates.

FXP, FYP = in-plane forces in x and y directions respectively at node (i)
and time (t2).

FXL, FYL = in-plane forces in x and y directions respectively at node (i-1)
and time (t1).

FXR, FYR = in-plane forces in x and y directions respectively at node (i+1)
and time (t1).

QX, QY = shear forces in xz and yz planes respectively at node (i) and
time (t1).

QXP, QYP = shear forces in xz and yz planes respectively at node (i) and
time (t2).

QXL, QYL = shear forces in xz and yz planes respectively at node (i-1) and
time (t1).

QXR, QYR = shear forces in xz and yz planes respectively at node (i+1)
and time (t1).

MX, MY = bending moments about x and y axis respectively at node (i)
and time (t1) in plates.

MXP, MYP = bending moments about x and y axis respectively at node (i)
and time (t2).

MXL, MYL = bending moments about x and y axis respectively at node (i-
1) and time (t1).

MXR, MYR = bending moments about x and y axis respectively at node
(i+1) and time (t1).

MXY, MYX = twisting moments at node (i) and time (t1) in plates.



MXYP, MYXP = twisting moments at node (i) and time (t2).

MXYL, MYXL = twisting moments at node (i-1) and time (t1).

MXYR, MYXR = twisting moments at node (i+1) and time (t1).

Results And Discusions:

In this study, the (MOC) is applied on beams with two or more
material and the method is extended to be applicable on two dimensional
problems such as plated. A cantilever beam, subjected to a suddenly
applied axial load, the load is applied to an initially unloaded member at
time zero for beams with one, two and three different material as shown
in Fig.(2). And the beam cross section area A=25 mm2, Moment if inertia
I=10000 mm4, length L=1m, material density ρ=8000 kg/m3.

The following variations of materials are considered:

1- E1 = E2 = 200 GPa (steel).
2- E1 = E2 = 70 GPa (aluminum).
3- E1 = 70 GPa and E2 = 200 GPa. The beam divided into two equal

parts.
4- E1 = 200 GPa and E2 = 70 GPa. The beam divided into two equal

parts.
5- E1 = E3 = 200 GPa and E2=70 GPa. The beam divided into three

equal parts.
6- E1 = E3 = 70 GPa and E2=200 GPa. The beam divided into three

equal parts.



The resulting axial force at the fixed end and displacement at the
tip are shown in figs. (3 and 4) for cases (1-4), while responses of cases
(5 and 6) are shown in figs. (5 and 6). The results show that the accuracy
of solution is achieved with (4) number of grids in axial waves and at
least (32) grids in flexural waves, so the number of grids used in the
analysis is (4) in axial waves and (32) grids in flexural waves. The axial
waves propagate in unchanged form in one material beam, while it
changed it's form in multi-material beams. Also the figure shows that
case (5) gives the same natural frequency as in case (1), the reduction in
the frequency is (4%) in case (3) and become (40%) in case (2 and 6),
while in case (4) the reduction become (52.3%). The natural frequency
(ωn) and time period (Tn) for all cases are shown in following table for
cantilever beam subjected to axial load:

Table(1) axial natural frequency (ωn) and time period (Tn) for
cantilever beam.

Case Description ωn
rad/sec

Tn
msec



1 E1 = E2 = 200 GPa. 7854 0.8
2 E1 = E2 = 70 GPa. 4646.8 1.35
3 E1 = 70 GPa and E2 = 200

GPa
7540 0.833

4 E1 = 200 GPa and E2 = 70
GPa

3744.5 1.628

5 E1 = E3 = 200 GPa and E2=70
GPa

7854 0.8

6 E1 = E3 = 70 GPa and E2=200
GPa

4692.8 1.34

The natural frequency of case 1 and 2 are exactly equal to that predicted
by analytical method given in [12] (ωn = π/2L √E/ρ ). In case (5) the
material of the beam (E=200 GPa) is changed to (E=70 GPa) on the beam
length (L/3), the natural frequency of the beam remains constant in
comparison to case (1), also In case (6) the material of the beam (E=70
GPa) is changed to (E=200 GPa) on the beam length (L/3), the natural
frequency of the beam close enough to case (2).

figs.(7, 8 and 9) show the dynamic response of the cantilever beam
subjected to shear force at the tip, using coupled axial and flexural
characteristics equations. The results show that the flexural waves
propagate in changing form in both one and multi-material members and
the t-wise interpolation method is necessary in the analysis to achieve the
required accuracy. Also showed that reduction in the natural frequency is
(17%) in case (3) and (38%) in case (4), while the reduction becomes
(41%) in case(2). The natural frequency (ωn) and time period (Tn) for all
cases are shown in following table for cantilever beam subjected to
transverse shear load:

Table(2) flexural natural frequency (ωn) and time period (Tn) for
cantilever beam.



Case Description ωn
rad/sec

Tn
msec

1 E1 = E2 = 200 GPa. 628.9 10
2 E1 = E2 = 70 GPa. 372 16.9
3 E1 = 70 GPa and E2 = 200

GPa
523.6 12

4 E1 = 200 GPa and E2 = 70
GPa

392.7 16

The natural frequency of case 1 and 2 are exactly equal to that predicted
by analytical method given in [12] {ωn = (1.875/L)2 √EI/ρA }.

The effect of beams with different materials on the propagation of
flexural waves is more than axial waves because the behavior and nature
of flexural waves are more complicated than axial waves. And the
flexural waves consist of two types of waves (bending and shear waves)
which propagate in the material with different speeds.

Figs. (10 and 11) show the dynamic response of fixed end reaction and
the deflection at the free end of a cantilever plate subjected to a suddenly
constant in-plane force in one direction, the plate is divided to 16
elements. The resulting response is exactly same as a cantilever beam.

Figs. (12 and 13) show the dynamic response of the in-plane force and
deflection at the center of the plate fixed at two adjacent edges and free at
the opposite two edges and subjected to a suddenly constant in-plane
force in two directions.

Conclusions:



1-The accuracy of solution is achieved with (4) number of grids in axial
waves, while it needs to at least (32) grids in flexural waves.

2-The axial waves propagate in unchanged form in one material beam,
while it changed its form in multi-material beams.

3-The flexural waves propagate in a changing form in both one and
multi-material members.

4-The t-wise interpolation method is necessary in the analysis to achieve
the required accuracy.

5-In axial waves and single material beams, the graphical response of
vibration shows the fundamental natural frequency only, while in flexural
waves and multi-material members, the graphical response shows the
higher frequencies in addition to the fundamental frequency.

6-The effect of multi-material on flexural waves is more than axial waves
because the behavior and nature of flexural waves are more complicated
than axial waves. And the flexural waves consist of two types of waves
(bending and shear waves) which propagate in the material with different
speeds.

7-In axial wave, the behavior of the beam is not changed when the
material of the beam is changed over a part of the beam equal to (L/3).
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