

5-decomposition Matrix for the Projective Characters of the Symmetric Group S_{18}

Jenan Abd Alreda Resen Department of Mathematics, College of Sciences, University of Basrah, Basrah, Iraq Jenanabdalreda8@gmail.com

Doi 10.29072/basjs.2018108

Abstract

In this paper, we determine the irreducible modular spin characters of S_{18} , p=5 which is equivalent determine the decomposition matrix of S_{18} , p=5, this work is complete except two columns is still undetermined.

Keywords: AMS: 2010, 20c20, 20c25, 20c30.

Notation:

p.s.	The principle spin character.	
p.i.s.	The principle indecomposable spin character.	
m.s.	The modular spin character.	
i.m.s.	The irreducible modular spin character.	
d_i	The p.i.s. of S_n .	
D_i	The p.i.s. of S_{n-1} .	
$D_{n,p}^{(i)}$	The decomposition matrix of S_n for the prime p of the block	B_i .

1. Introduction

The theory of projective (spin) characters of the symmetric groups S_n data back to classical of Schur [1]. He showed the symmetric group S_n has representation group $\overline{S_n}$ of order 2n!, when $n \ge 4$ [2]. The irreducible characters for $\overline{S_n}$ of S_n called ordinary (modular) corresponding of characteristic of field is zero (p>0) [3]. The ordinary characters for $\overline{S_n}$ which are corresponding to the ordinary characters for S_n called the ordinary characters for $\overline{S_n}$, the remaining ordinary characters of $\overline{S_n}$ are called projective (spin) characters of S_n [2]. Yassen [4] has given the 5 – irreducible modular spin characters for S_n , $5 \le n \le 13$, Taban [4 – 6], has given the 5 – irreducible modular spin characters for S_n , where n = 14,15, respectively with one ambiguity when n = 15, Abdullah [7] has given 5 – irreducible modular spin characters for S_n , where n = 16 with one more ambiguity and Resan [8] found 5-irreducible modular spin characters of S_{18} .

2. Preliminaries

- 1. Any spin character of S_n can be written as a linear combination, with non-negative integer coefficients of the irreducible spin characters [9].
- 2. The degree of the spin characters $\langle \alpha \rangle = \langle \alpha_1, ..., \alpha_m \rangle$ is: $deg\langle \alpha \rangle = 2^{\left[\frac{n-m}{2}\right]} \frac{n!}{\prod_{i=1}^{m} (\alpha_i!)} \prod_{1 \le i < j \le m} (\alpha_i - \alpha_j) / (\alpha_i + \alpha_j)$ [10].

- 3. The values of characters $\langle \alpha \rangle$ and $\langle \alpha \rangle'$ differ only on the class corresponding to α on which they have values $\pm i \frac{n-m+1}{2} \sqrt[2]{(\alpha_1 \dots \alpha_m/2)}$ [2].
- 4. Let *H* be a subgroup of S_n . Then:
- i) If θ is a spin character of H, then $\theta \uparrow S_n$ is a spin character of S_n .
- ii) If θ is a spin character of S_n , then $\theta \downarrow H$ is a spin character of H [11].
- 5. Let p be odd. If n is odd and $p \nmid n$ or $p \nmid n-1$, then (n-1,1) and (n-1,1)' are distinct irreducible modular spin characters of degree $2^{[(n-3)/2]} \times (n-2)$ which are denoted by $\varphi(n-1,1)$ and $\varphi(n-1,1)'$ [4].
 - 6. Let p be an odd prime and let α, β be a bar partitions of n which are not p-bar cores. Then $\langle \alpha \rangle$ (and $\langle \alpha \rangle'$ if α is odd) and $\langle \beta \rangle$ (and $\langle \beta \rangle'$ if β is odd) are in the same p-block if and only if $\langle \alpha \rangle = \langle \beta \rangle$. If α be a bar partition of n and
 - $\langle \alpha \rangle = \langle \widetilde{\alpha} \rangle$, then $\langle \alpha \rangle$ (and $\langle \alpha \rangle'$ if α is odd) forms a *p*-block of defect 0 [3].

7. Let p be an odd prime and $\alpha = (\alpha_1, ..., \alpha_m)$ be a bar partition of n not a p -bar core. Let B be the block containing $\langle \alpha \rangle$. Then

i) If $n - m - m_0$ is even, then all irreducible modular spin characters in *B* are double.

ii) If $n - m - m_0$ is odd, then all irreducible modular spin characters in *B* are associate. (here m_0 the number of parts of α divisible by p) [11].

8. If C is a principal character of G for an odd prime p and all the entries in C are divisible by a non-negative integer q, then $(1 \setminus q)C$ is a principal character of G [11].

9. If C is a principal character of G for a prime p, then degC $\equiv 0 \mod p^A$, where $o(G) = p^A m$, (p,m) = 1 [6].

10. The number of inequivalent irreducible modular characters of G is always less than or equal to the number of inequivalent irreducible ordinary characters of G [12].

11. If the decomposition matrix $D_{n-1,p} = (d_{ij})$ for S_{n-1} is know, then we can induced columns $(\psi_j \uparrow^{(r,\bar{r})} S_n)$ for S_n [12], these columns are a linear combination with non-negative coefficients from the columns of $D_{n,p}$ [12]. The inducing columns (we take only linear independent) form a matrix $R_{n,p}$ which is called approximation matrix to the decomposition matrix $D_{n,p}$ and the coefficients of $R_{n,p}$ is equal or large than the coefficients $D_{n,p}$ [12]. This known is technique for finding the approximation matrix to the decomposition matrix of the symmetric group S_n .

3. The Spin Blocks of S₁₈

The group S_{18} has 69 of irreducible spin characters and \overline{S}_{18} has 39 of $(5, \alpha)$ –regular classes, then the decomposition matrix of the spin characters of S_{18} , p = 5 has 69 rows and 39 columns [12].

By using (preliminaries 6), there are seven blocks of S_{18} for p = 5, these blocks are B_1 , B_2 , B_3 , B_4 , B_5 , B_6 , B_7 . Three of them of defect 0 which are B_5 , B_6 , B_7 . The blocks of defect 0 B_5 , B_6 , B_7 includes the spin character $\langle 11, 6, 1 \rangle$, $\langle 11, 6, 1 \rangle'$, $\langle 8, 6, 3, 1 \rangle^*$ respectively, these characters are i.m.s preliminaries (6). The spin characters contained in the block

 B_4 are: $\langle 12,4,2 \rangle$, $\langle 12,4,2 \rangle'$, $\langle 9,7,2 \rangle$, $\langle 9,7,2 \rangle'$, $\langle 7,5,4,2 \rangle^*$. The block B_3 includes the spin characters $\langle 14,4 \rangle^*$, $\langle 9,5,4 \rangle$, $\langle 9,5,4 \rangle'$, $\langle 9,4,3,2 \rangle^*$. The spin characters contained in the block

 $\begin{array}{l} B_2 \ \text{are: } \langle 17,1\rangle^*, \langle 16,2\rangle^*, \langle 15,2,1\rangle, \langle 15,2,1\rangle', \langle 12,6\rangle^*, \langle 12,5,1\rangle, \langle 12,5,1\rangle', \langle 12,3,2,1\rangle^*, \\ \langle 11,7\rangle^*, \langle 11,5,2\rangle, \langle 11,5,2\rangle', \langle 11,4,2,1\rangle^*, \langle 10,7,1\rangle, \langle 10,7,1\rangle', \langle 10,6,2\rangle, \langle 10,6,2\rangle', \langle 10,5,2,1\rangle^*, \\ \langle 9,6,2,1\rangle^*, \langle 8,7,2,1\rangle^*, \langle 7,6,5\rangle, \langle 7,6,5\rangle', \langle 7,6,4,1\rangle^*, \langle 7,6,3,2\rangle^*, \langle 7,5,3,2,1\rangle, \langle 7,5,3,2,1\rangle', \\ \langle 6,5,4,2,1\rangle, \langle 6,5,4,2,1\rangle'. \ \text{Finally, the principal block } B_1 \ \text{(the block which contains the character } \langle n\rangle) \ \text{ includes the other spin characters.} \end{array}$

4. The decomposition Matrix for the Block B_4 of Defect One All i.m.s. of the decomposition matrix for the block B_4 are associate (preliminaries 7) and $\langle \beta \rangle \neq \langle \beta \rangle'$ on $(5, \alpha)$ -regular classes (preliminaries 3).

Lemma (4.1): The Decomposition Matrix for this Block is $D_{18.5}^{(4)}$

Proof: When we inducing d_6, d_7 (see table 7) to S_{18} and take the inducing in the block B_4 we have k_6 , k_7 respectively. Now since $\langle 12, 4, 2 \rangle \neq \langle 12, 4, 2 \rangle'$, then k_6 must be split to c_{33}, c_{34} [15]. Also since $\langle 9, 7, 2 \rangle \neq \langle 9, 7, 2 \rangle'$, then k_7 must be split to c_{35}, c_{36} [12]. Now since $c_{33}, c_{34}, c_{35}, c_{36}$ are linearly independent and $c_i - c_j$ is not p.s. for S_{18} for all $1 \leq i, j \leq 4$, then the decomposition matrix for the block B_4 is given in table (1).

5. The Decomposition Matrix for the Block B_3 of Defect One In this block, we can calculate the decomposition matrix by the Braure tree.

Lemma (5.1): The Braure tree for the block B_3 is:

 $\langle 14,4 \rangle^* - \langle 9,5,4 \rangle = \langle 9,5,4 \rangle' - \langle 9,4,3,2 \rangle^*$

Proof: Since $deg\langle 14,4 \rangle^* \equiv deg\langle 9,4,3,2 \rangle^* \equiv -50$, $deg\{\langle 9,5,4 \rangle + \langle 9,5,4 \rangle'\} \equiv 50$ and by (r, \overline{r}) -inducing of p.i.s d_{23}, d_{25} of S_{17} (see table 6) to S_{18} we have $c_{31} = \langle 14,4 \rangle^* + \langle 9,5,4 \rangle + \langle 9,5,4 \rangle', c_{32} = \langle 9,5,4 \rangle + \langle 9,5,4 \rangle' + \langle 9,4,3,2 \rangle^*$, then we have the Braure tree for this block, and the decomposition matrix for this block in table (2).

6. The Decomposition Matrix for the Block B₂ of Defect Three

In this block, we have $\langle \beta \rangle = \langle \beta \rangle'$ on $(5, \alpha) - regular classes$ (preliminaries 3) and all i.m.s. of the decomposition matrix for this block are double (preliminaries 7).

Lemma (6.1): The decomposition matrix for the block B_2 is $D_{18,5}^{(2)}$.

Proof: When we inducing d_{11} , d_2 , d_3d_{13} , d_5 , d_7 , d_6 , d_9 , d_{10} , d_{19}

(see table 5) to S_{18} and take the inducing in the block B_2 we have

 c_{11} , c_2 , c_3 , c_{13} , c_5 , c_7 , c_6 , c_9 , k_{10} , c_{19} respectively.

Case(1): c_{13} is not subtracted from c_{11} .

Suppose c_{13} is subtracted from c_{11} , then

 $(c_{11} - c_{13})\downarrow_{(r,\bar{r})} S_{17} = 2d_{11} + 2d_{12} - 2d_{13} - 2d_{14}$ is not p.s for S_{17} (see table 5). Then c_{13} is not subtracted from c_{11} .

Case(2): c_{19} is not subtracted from c_{9} .

Suppose c_{19} is subtracted from c_9 , then

 $(c_9 - c_{19}) \downarrow_{(r,\bar{r})} S_{17} = 2d_{17} + 2d_{18} - 2d_{19} - 2d_{20}$ is not p.s for S_{17} (see table 5). Then c_{19} is not subtracted from c_9 .

Case(3): $k_{10} - c_{19}$ is not subtracted from c_7 .

Suppose $k_{10} - c_{19}$ is subtracted from c_7 , then

 $(c_7 - (k_{10} - c_{19}))\downarrow_{(r,\bar{r})} S_{17} = d_{13} + d_{14} + d_{17} + d_{18} - d_{19} - d_{20}$ it is not p.s for S_{17} (see table 5).

S, $k_{10} - c_{19}$ is not subtracted from c_7 .

Case (4): k_{19} is subtracted from c_{10} .

Suppose k_{19} is not subtracted from c_{10} , then $(9,6,2,1)^* - (10,6,2) + (12,6)^*$ is m.s for S_{18} , but the restriction is not m.s for S_{17} (see table 5), then k_{19} is subtracted from c_{10} . Now since c_{11} , c_2 , c_3 , c_{13} , c_5 , c_7 , c_6 , $c_{9},k_{10} - c_{19}$, and c_{19} are linearly independent and $c_i - c_j$ is not p.s. for S_{18} for all $1 \le i, j \le 10$, then the decomposition matrix for the block B_2 is as given in table (3).

7. The Decomposition Matrix for the Principle Block B₁ of Defect Three All i.m.s. of the decomposition matrix for the principle block B_1 are associate (preliminaries 7) and $\langle \beta \rangle \neq \langle \beta \rangle'$ on $(5, \alpha)$ –regular classes (preliminaries 3).

Theorem (7.1)

The decomposition matrix for the spin characters of S_{18} is $D_{18,5} = D_{18,5}{}^{(1)} \oplus D_{18,5}{}^{(2)} \oplus D_{18,5}{}^{(3)} \oplus D_{18,5}{}^{(4)} \oplus D_{18,5}{}^{(5)} \oplus D_{18,5}{}^{(6)} \oplus D_{18,5}{}^{(7)}$

Proof: Until now we find the decomposition matrices for all blocks of S_{18} except the principle block, so to complete our proof we must find the decomposition matrix for the principle block.

By using (r, \bar{r}) -inducing of p.i.s. $d_1, d_{21}, d_{22}, d_3, d_{23}, d_{24}, d_5, d_6, d_{27}, d_{28}, d_{29}, d_{30}, d_9, d_{10}$ of S_{17} (see table 6,7) to S_{18} and take the inducing in the block B_1 we have $k_1, k_{21}, k_{22}, k_3, k_{23}, k_{24}, k_5, k_6, k_{27}, k_{28}, k_{29}, k_{30}, k_9, k_{10}$ respectively.

Case(1): By (preliminaries 5), then k_1 is split to l_1, l_2 .

Case(2): k_{10} is not subtracted from l_1 , since

1- when $c_1 = k_1$ we have $(\langle 10,4,3,1 \rangle^* + \langle 15,3 \rangle^* + \langle 13,3,2 \rangle - \langle 11,4,3 \rangle)$ is m.s for S_{18} , but $(\langle 10,4,3,1 \rangle^* + \langle 15,3 \rangle^* + \langle 13,3,2 \rangle - \langle 11,4,3 \rangle) \downarrow_{(3,3)} S_{17} = \langle 10,4,2,1 \rangle + \langle 10,4,2,1 \rangle' + \langle 15,2 \rangle + \langle 15,2 \rangle' + \langle 12,3,2 \rangle^* - \langle 11,4,2 \rangle^*$ is not m.s for S_{17} (see table7), similarly for $c_1 = k_1 - d_4$

2-when $c_1 = k_1 - 2d_4$ we have $(\langle 10,4,3,1 \rangle^* + 2\langle 18 \rangle + 2\langle 18 \rangle' + \langle 13,3,2 \rangle - \langle 11,4,3 \rangle)$ is m.s for S_{18} , but $(\langle 10,4,3,1 \rangle^* + 2\langle 18 \rangle + 2\langle 18 \rangle' + \langle 13,3,2 \rangle - \langle 11,4,3 \rangle) \downarrow_{(3,3)} S_{17} = \langle 10,4,2,1 \rangle + \langle 10,4,2,1 \rangle' + 4\langle 17 \rangle^* + \langle 12,3,2 \rangle^* - \langle 11,4,2 \rangle^*$ is not m.s for S_{17} (see table 7)

Case(3): Since $\langle 13,3,2 \rangle \neq \langle 13,3,2 \rangle'$ on $(5,\alpha)$ -regular classes, then k_3, k_5 are split [12] as $k_3 = l_3 + l_4$ and $k_5 = l_5 + l_6$.

Case(4): Since $\langle 11,4,3 \rangle \neq \langle 11,4,3 \rangle'$ on $(5,\alpha)$ -regular classes, then k_6 is split [12] as $k_6 = l_7 + l_8$.

Case(5): l_8 is not subtracted from l_{23} .

Suppose l_8 is subtracted from l_{23} , since $\varphi(18)$, $\varphi(18)'$ is complex and (13,4,1), (13,4,1)' is real, then we have contradiction with (preliminaries 5).

Then l_8 is not subtracted from l_{23} . Similarity for l_7 is not subtracted from l_{24} .

Case(6): Since $\langle 9,6,3 \rangle \neq \langle 9,6,3 \rangle'$ on $(5,\alpha)$ -regular classes, then k_9, k_{10} are split [12] as $k_9 = l_9 + l_9'$ and $k_{10} = l_{10} + l_{10}'$.

Hence, each $k_{21}, k_{22}, l_3, l_4, k_{23}, k_{24}, l_5, l_6, l_7, l_8, k_{27}$

 $k_{28}, k_{29}, k_{30}, l_9, l'_9, l_{10}, l'_{10}$ is p.i.s .

Case(7): when $d_1 - 2d_4$ is p.i.s for S_{17} (see table 7), then:

If $c_1 = l_1 - (l'_{10} + l''_{10})$, since $\langle 10,4,3,1 \rangle^* + \langle 15,3 \rangle^* + \langle 13,3,2 \rangle - \langle 11,4,3 \rangle$ is m.s for S_{18} , but the restriction is not m.s for S_{17} , then $c_1 \neq l_1 - (l'_{10} + l''_{10})$

Case(8): when $d_1 - d_4$ is p.i.s for S_{17} (see table 7), then:

If $c_1 = l_1 - l'_{10}$, since $(10,4,3,1)^* + (15,3)^* + (13,3,2) - (11,4,3)$ is m.s for S_{18} , but the

restriction is not m.s for S_{17} , then $c_1 \neq l_1 - l'_{10}$. **Case(9):** when d_1 is p.i.s for S_{17} (see table7), then: If $c_1 = l_1 - l'_{10}$, since $\langle 10,4,3,1 \rangle^* + \langle 15,3 \rangle^* + \langle 13,3,2 \rangle - \langle 11,4,3 \rangle$ is m.s for S_{18} , but the restriction is not m.s for S_{17} , similarly when we take $c_1 = l_1 - (l'_{10} + l''_{10})$, then $c_1 = l_1$. Hence from case 7,8,9 we have $c_1 = l_1$ or $c_1 = l_1 - l'_{10}$ or $c_1 = l_1 - (l'_{10} + l''_{10})$. Similarly $c_2 = l_2$ or $c_2 = l_2 - l'_{10}$ or $c_2 = l_2 - (l'_{10} + l''_{10})$. Then the decomposition matrix for the principle block is $D_{18,5}^{(1)}$ is as given in table (4).

Table(T)											
The degree	The spin	The decompositio									
of the spin	characters	matrix for the bloc									
characters		B_4									
4243200	(12,4,2)	1									
4243200	(12,4,2)'		1								
19801600	(9,7,2)	1		1							
19801600	(9,7,2) ′		1		1						
85542912	⟨7,5, 4,1⟩*			1	1						
		d_{33}	d_{34}	d_{35}	d_{36}						

where $c_{33}=d_{33}$, $c_{34}=d_{34}$, $c_{35}=d_{35}$, $c_{36}=d_{36}$

Table (2)										
The	The spin	The								
degree of	characters	decor	nposition							
the spin		matri	ix for the							
characters		block								
		$B_3 D_{18,5}^{(3)}$								
435200	(14,4) *	1								
9574400	(9,5,4)	1	1							
9574400	〈 9,5,4〉'	1	1							
913920	(9,4,3,2) *		1							
		d_{31}	<i>d</i> ₃₂							

where $c_{31} = d_{31}$, $c_{32} = d_{32}$.

The degree	The spin	The decomposition matrix for the block									
of the spin	Characters				Ē	$B_2 D_1$	(2))			
characters					_	2-1	0,5				
4096	(17,1) *	1									
30464	(16,2)*	1	1								
69888	(15,2,1)		1	1							
69888	(15,2,1)'		1	1							
1584128	(12,6)*	1	1		1						
3311616	(12,5,1)	2	1	1	1	1					
3311616	(12, ,5,1)	2	1	1	1	1					
1723392	(12,3,2,1)*			1		1					
1810432	(11,7) *	1			1		1				
9517824	(11,5,2)	2	1		1	1	1	1			
9517824	(11,5,2)'	2	1		1	1	1	1			
7676928	(11,4,2,1)*					1		1			
4852224	(10,7,1)	2			1	1	1		1		
4852224	(10,7,1)'	2			1	1	1		1		
13069056	(10,6,2)	2	2	1	1	1	2	1	1	1	
13069056	(10,6,2)'	2	2	1	1	1	2	1	1	1	
16293888	(10,5,2,1) *		2				2	2		2	
190009.536	(9,6,2,1) *	2	2	1		1	2	1	1	2	1
8712704	(8,7,2,1)*	2		1		1			1		1
2193408	(7,6,5)		1	1			1			1	
2193408	(7,6,5)′		1	1			1			1	
203046912	(7,6,4,1)*	2	2	1			2		2	2	1
10723328	(7,6,3,2)*	2					2		2	1	1
3734016	(7,5,3,2,1)						2		1	1	
3734016	(7,5,3,2,1)'						2		1	1	
1357824	(6,5,4,2,1)								1		
1357824	< <u>6,5,4,2,1</u> γ'								1		
		\overline{d}_{21}	d_{22}	d_{23}	\overline{d}_{24}	\overline{d}_{25}	d_{26}	d_{27}	d_{28}	d_{29}	\overline{d}_{30}

Table (3)

where $c_{11} = d_{21}$, $c_2 = d_{22}$, $c_3 = d_{23}$, $c_{13} = d_{24}$, $c_5 = d_{25}$, $c_7 = d_{26}$, $c_6 = d_{27}$, $c_9 = d_{28}$ and $k_{10} - c_{19} = d_{29}$, $c_{19} = d_{30}$.

The degree	The spin								The o	lecon	npositi	ion ma	trix fo	or the p	orincip	le bloc	k B ₁				
of the spin	characters																				
characters	(10)	1	1		-			1	1												
256	(18)	1																			
256	(18)	2	1	1	1																
139264	(15,3)*	2	2	1	1																
439296	(14,3,1)			I		1															
439296	(14,3,1)'	-			1		1														
974848	(13,5)*	3	3	1	1			1	1												
1492992	(13,4,1)	2	2	1		1		1		1											
1492992	(13,4,1)'	2	2		1		1		1		1										
1005312	(13,3,2)					1				1											
1005312	(13,3,2)′						1				1										
5431296	(11,4,3)	2	2					1	1	1		1									
5431296	(11,4,3)'	2	2					1	1		1		1								
1244672	(10,8)*	3	3					1	1					1	1						
14074368	(10,5,3)	4	4	1	1			2	2			1	1	1	1	1	1				
14074368	(10,5,3)'	4	4	1	1			2	2			1	1	1	1	1	1				
12690432	(10,4,3,1)*							1	1			1	1			1	1				
2050048	(9,8,1)	2	2					1		1				1				1			
2050048	(9,8,1)′	2	2						1		1				1				1		
17425408	(9,6,3)	3	3	1	1	1		1	1	1		1		1	1	1	1	1		1	
17425408	(9,6,3)'	3	3	1	1		1	1	1		1		1	1	1	1	1		1		1
29872128	(9,5,3,1)*	2	2	1	1			1	1			1	1	1	1	2	2			1	1
8146944	(8,7,3)	1	1			1				1								1		1	
8146944	(8,7,3)'	1	1				1				1								1		1
11202048	(8,6,4)	1	1	1	1	1								1	1	1	1			1	
11202048	(8,6,4)'	1	1	1	1		1							1	1	1	1				1
18765824	(8,5,4,1)*	2	2	1	1									1	1	1	1	1	1	1	1
19035648	(8,5,3,2)*	2	2											2	2	1	1	1	1	1	1
2376192	(8,4,3,2,1)													1	1	1					
2376192	(8,4,3,2,1)'													1	1		1				
1584128	(6,5,4,3)*																	1	1		
		C.	Ca	da	<i>d</i> .	d-	d.	d_	d	d _o	dia	<i>d</i>	dia	dia	<i>d</i>	d.	<i>d</i>	<i>d</i>	dia	dia	$d_{\alpha\alpha}$

Table(4)

Table(5)													
The degree	The spin		The	decon	npositi	ion ma	atrix fo	or the	block	<i>B</i> ₂			
of the spin	characters												
characters													
1920	(16,1)	1											
1920	(16,1)'		1										
465920	(11,6)	1		1									
465920	(11,6)′		1		1								
1980160	(11,5,1)*	2	2	1	1	1	1						
1305600	(11,3,2,1)					1							
1305600	(11,3,2,1)'						1						
2545920	(10,6,1)*	2	2	1	1	1	1	1	1				
622336	(8,6,2,1)	1	1			1		1		1			
622336	(8,6,2,1)'	1	1				1		1		1		
2872320	(7,6,3,1)	1	1					1	1	1			
2872320	(7,6,3,1)′	1	1					1	1		1		
565760	⟨6,5,3,2,1⟩ *							1	1				
		d_{11}	d_{12}	d_{13}	d_{14}	d_{15}	d_{16}	d_{17}	d_{18}	d_{19}	d_{20}		

Table(6)

The degree	The spin	The decomposition matrix for the block B_3										
of the spin	character											
characters												
56320	(14,3)	1										
56320	(14,3)		1									
161280	(13,4)	1		1								
161280	(13,4)′		1		1							
2872320	(10,4,3)*			1	1	1	1					
183040	(9,8)			1				1				
183040	(9,8) ′				1				1			
6223360	〈 9,5,3 〉 *	1	1	1	1	1	1	1	1	1	1	
2872320	(9,4,3,1)					1				1		
2872320	(9,4,3,1)'						1				1	
3351040	(8,5,4)*	1	1					1	1	1	1	
1697280	(8,4,3,2)							1	1	1		
1697280	(8,4,3,2)'							1	1		1	
		d_{21}	d_{22}	d_{23}	d_{24}	d_{25}	d_{26}	d_{27}	d_{28}	d_{29}	d_{30}	

The	The spin		The decomposition matrix for the principle block $B_1 D_{175}^{(1)}$									
degree of	characters	,,,										
the spin												
characters												
256	(17)*	1										
13312	(15,2)	1	1									
13312	(15,2)'	1	1									
56576	(14,2,1)*		1	1								
326144	(12,5)	3- <i>x</i>	1		1							
326144	(12,5)'	3- <i>x</i>	1		1							
1005312	(12,4,1)*	4- <i>x</i>	1	1	1	1						
678912	(12,3,2)*			1		1						
2558976	(11,4,2)*	4- <i>x</i>			1	1	1					
439296	(10,7)	3- <i>x</i>			1			1				
439296	(10,7)'	3- <i>x</i>			1			1				
4978688	(10,5,2)*	8- <i>x</i>	2		2		2	2	2			
10183680	(10,4,2,1)						1		1			
10183680	(10,4,2,1)'						1		1			
1867008	(9,7,1)*	4- <i>x</i>			1	1		1		1		
5544448	(9,6,2)*	6- <i>x</i>	2	1	1	1	1	2	2	1	1	
3620864	(9,5,2,1)	2	1				1	1	2		1	
3620864	(9,5,2,1)'	2	1				1	1	2		1	
4978688	(8,7,2)*	2		1		1				1	1	
2193408	(7,6,4)*	2	2	1				2	2		1	
14257152	(7,5,4,1)	2	1					1	1	1	1	
14257152	(7,5,4,1)′	2	1					1	1	1	1	
2489344	(7,5,3,2)	2						2	1	1	1	
2489344	(7,5,3,2)′	2						2	1	1	1	
1357824	⟨7,4,3,2,1⟩*							2	1			
792064	(6,5,4,2)									1		
792064	(6,5,4,2)									1		
		<i>C</i> ₁	d_2	d_3	d_4	d_5	d_6	d_7	d_8	d_9	d_{10}	

Table(7)

References

[1] I. Schur, uber die Darstellung der symmetrischen und der alternierenden gruppe durch gebrochene lineare subtituttionen, j. Reineang. Math. 139(1911) 155-250.

[2] A.O. Morris, The spin representation of the symmetric group, Proc. London Math. Soc.12 (1962) 55 - 76.

[3] C. Bessenrodt, A.O. Morris, J.B. Olsson, Decomposition matrices for spin characters of symmetric groups at characteristic 3, j. Algebra 164 (1994) 146 - 172.

[4] A.K.Yassen, Modular spin representations of the symmetric group, Ph.D. thesis, Aberystwyth, (1987).

[5] S.A.Taban, Modular Spin characters of the symmetric group S_{15} , p = 5, J. college of Teachers (1994) 1 - 16.

[6] S.A.Taban, On the decomposition matrices of the projective characters of the symmetric groups, M.Sc. thesis, Basrah University (1989).

[7] N.S.Abdullah, On the decomposition matrices of the projective characters of the symmetric group, M.Sc. thesis Basrah University (2009) .

[8] J.A.Resan, On the decomposition matrices of the projective characters of the symmetric group, M.Sc. thesis Basrah University (2010) .

[9] M.Issacs, Character theory of finite groups, Academic press, (1976).

[10] A.O.Morris, A.K. Yassen, Decomposition matrices for spin characters of symmetric group, proc. Royal Socity of Edinburgh 108A (1988) 145 - 164.

[11] G.James, A.Kerber : The representation theory of the symmetric group, Reading, Mass, Aaddison-Wesley, (1981).

[12] C.W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Sec. printing (1966) .

مصفوفة التجزئة للمشخصات الاسقاطية لزمرة التناظرية ٢٦٨معيار 5

المستخلص

في هذا البحث تم أيجاد مصفوفة التجزئة للمشخصات الاسقاطية لزمرة التناظرية S₁₈معيار 5 ، بأستثناء مشخصين أسقاطيين معياريين لم يتم تحديدهما.