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Abstract 

Phytoremediation is considered as an economical and 

ecologically beneficial approach that has demonstrated efficacy 

in cleaning up contaminated water and soils. Particularly, 

phytoremediation is the only approach used for various types of 

wetlands when applied on a large scale to purify industrial 

effluent. Nonetheless, most research on the phytoremediation of 

contaminated water in wetland-type reactors has been done as a 

black box. The pollutant removal efficiency is the sole criterion 

used to assess performance, and data available regarding the 

processes and mechanisms involved in pollutant removal in 

these systems. Therefore, this chapter aims to provide a quick 

overview of the fundamental procedures of phytoremediation 

including characteristics, mechanisms, and microbial and plant 

Interactions in Rhizoremedation Processes. Furthermore, this 

chapter covered the difficulties and approaches associated with 

applying phytoremediation on a large scale, as well as the 

methods used by aquatic plants to eliminate both organic and 

inorganic pollutants from water and some examples of its 

industrial applications. 
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1. Introduction  

The elimination of water pollutants could not 

be achieved with conventional wastewater 

treatment. The wastewater effluent still 

contains traces of harmful contaminants. 

Therefore, an alternative technology is required 

to minimize pollutant concentration down to an 

acceptable level; various technologies for 

treating wastewater are presented.  

Nevertheless, the bulk of these techniques are 

expected to include substantial maintenance 

costs, carbon emissions would be high, 

excessive sludge output, and substantial energy 

requirements [1-3]. 
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Eco-friendly and inexpensive remediation 

techniques are necessary for the sustainable 

management of aquatic environments. 

However, both inorganic and organic pollutants 

may be eliminated by aquatic plants. The 

phytoremediation is used to remediate 

wastewater and absorb nutrients from the 

wastewater through their roots [4-6] 

Several plant species can accumulate specific 

contaminants. It has been demonstrated that 

phytoremediation is more successful, 

economical, and ecologically benign than 

traditional treatments like Thelypteris palustris, 

Brassica juncea, and Typha latifolia, have a 

high capacity for phytoremediation, which 

involves the use of the bioaccumulation 

process to remove heavy metals like Cu and Zn 

[7]. Pistia stratiotes and Salvinia mo- lesta are 

also commonly employed for the treatment of 

wastewater from domestic, industrial, and 

agriculture [8]. 

Plant species are not the only essential 

component of an effective phytoremediation 

process; the contribution of rhizosphere-

associated microbes is significant in the 

phytoremediation process [9].  Microorganisms 

contribute to the improvement of the 

phytoremediation process through 

bioaugmentation and biosorption [10]. It has 

been found that several organisms can improve 

the phytoremediation process, including 

Rhodococcus, Pseudomonas, Bacillus 95 

mycobacterium, Acidovo- rax, Alcaligenes, 

Paenibacillus [11].  

There is extremely limited evidence regarding 

the dynamics and mechanisms that govern 

pollutant removal in these systems and the 

performance is solely determined by the 

efficiency of the removal of pollutants. This 

chapter provides a brief overview of the 

fundamental procedures, parameters, and 

interactions between microbe-plant and rhizo-

remediation in phytoremediation. It also 

discusses the difficulties and strategies of 

phytoremediation, including how aquatic plants 

may remove both organic and inorganic toxins 

from water, as well as some examples of its 

usage in various industries. 

 

Phytoremediation Principles 

It is important to distinguish between the 

concepts of phytoremediation and 

bioremediation. Heterotrophic bacteria are the 

ones that aid in the bioremediation process by 

breaking down organic pollutants, mineralizing 

them, accumulating metals and other 

components, and oxidizing inorganic 

substances [12]. 

The phytoremediation technique relies on the 

ability of photoautotroph microorganisms to 

deal with pollutants through processes such as: 

 Releasing organic materials as byproducts of 

their metabolism during maintenance and 

growth, increases the population of 

heterotrophic bacteria. 

 Increase the number of facultative, anaerobic 

and aerobic organisms in the rhizosphere 

during root dieback by pumping oxygen into 

the root zone of the plant and releasing 

secondary metabolites. This will help these 

organisms break down or accumulate 

pollutants. 

 Pollutants are transported into active 

microbial zones through evapotranspiration, 

flow obstruction, and other mechanisms 

[13,14] 

More specifically, as Table 1 illustrates, 

phytoremediation techniques can be classified 

into numerous categories, including 

phytostabilization, phytovolatilization, 

phytodegradation, phytofiltration, and 

phytoextraction. 
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Table 1. Varieties of phytoremediation methods, influencing factors, and applications. 

Type of 

phytoremediation 
Mechanisms Influential 

factors 

Applications Reference 

 

 

Phytodegradation/ 

phyto-oxidation 

Terrestrial and aquatic plants absorb, 

store, and break down organic 

compounds to produce harmless 

byproducts. This process is known as 

phytodegradation. Enzymes are involved 

in development and senescence. Also, 

engaged in the detoxification and 

metabolism of plants. 

 

 

 

Soil conditions, plant 

species, and pollutant 

concentration and 

composition. 

 

 

 

soil, sludges made of 

silt, surface and 

groundwater, wastewate

r,  compound-

contaminated air and 

wetlands, 

 

 

 

 

[15] 

[16] 

 

 

 

Phytofiltration 

Contaminants accumulating in the 

rhizosphere 

 

The plant needs to be 

highly metal-resistant, 

very adsorption-

surface-tolerant, and 

highly hypoxic-

tolerant. The kind and 

depth of contaminants 

affect long-term 

maintenance, which is 

very species-specific 

and inhibits plant 

growth. 

landfill leachates, 

phosphate, Wetlands, 

radioactive waste, 

organic compounds, 

nitrate and metals-

contaminated 

groundwater, 

ammonium, 

wastewater and 

pathogens 

[17] 

 

Phytovolatilization 

Change from toxic to less toxic 

compound. leaves' volatilization 

The potential for 

precipitation to cause 

pollutants to be 

redeposited into 

ecosystems 

groundwater up, Soils, 

sludge, sediments, and 

wetlands 

[18] 

 

 

Phytoextraction 

 

Hyperaccumulation transfers 

contaminants to plant tissues that can be 

harvested. 

 

Potential for 

contaminants to seep 

into groundwater 

 

 

Soil 

[19] 

 

 

 

Phytostabilization 

Reforestation to stop soil erosion and the 

transportation of absorbed pollutants 

 

Plants regulate the 

redox, pH, and soil 

gases that lead to 

sorption, precipitation, 

and speciation, which 

create stable mineral 

deposits. 

Soil, wetlands, 

leachate pond 

sediments, mining 

tailings,  certain 

pesticides, anilines, 

and phenols 

 

 

 

[20] 
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     Microbial and Plant Interaction in 

Rhizoremedation Processes 

The most crucial region for phytoremediation 

is the rhizosphere. The area where 

contaminants and the treatment agent (plant) 

come into touch is known as the rhizosphere 

[21].  Al-Ajalin et al. [22] found that the roots 

of plants significantly aided the removal of 

pollutants from wastewater. In addition to the 

root, rhizobacteria—a type of microbe—

strongly assist in the pollutant's breakdown 

within the rhizosphere [23]. Interactions 

between microbes and plant roots cause 

pollutants in the polluted media to be removed, 

as shown in Figure 1 [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Interaction between microbes and plants during phytoremediation 

 

The phytoremediation of contaminants from 

wastewater involves four main rhizosphere 

interactions: phytostabilization, 

phytostimulation biodegradation, and 

rhizofiltration [25] A process termed 

phytostimulation allows plants to exude their 

fluids into the rhizosphere. The exudates that 

are generated close to the root area create an 

ideal growing environment for rhizobacteria. 

Exudates encourage the formation of 

rhizobacteria, which engage in symbiotic 

relationships. Rhizodegradation and 

phytostimulation are inextricably linked 

processes. Rhizodegradation is the process by 

 

 

which contaminants in the rhizosphere are 

broken down by rhizobacteria [26]. 

There will be greater breakdown of 

contaminants as the more rhizobacteria 

proliferate. Rhizodegradation typically happens 

when wastewater with a high content of 

organic compounds is being treated. 

Rhizobacteria may function as a stabilizing 

agent in heavy metal-containing wastewater, 

converting the metals' ionic state into a stable 

state [27,28]. Additionally, rhizobacteria are 

capable of bioaccumulation, which stabilizes 

heavy metal levels inside of cells. However, 

plant exudates also contain complex 

compounds that can either directly bind with 
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metals to generate metal exudates that are 

subsequently stabilized in the rhizosphere (a 

process known as phytostabilization) or 

increase the solubility of metals (so that they 

can be treated further by rhizobacteria) [29]. 

However, plant roots physically remediate 

wastewater by filtering out larger chemicals 

within their roots. This technique was mostly 

used in the treatment of contaminants with 

species of fibrous roots. Following the 

completion of multiple processes in the 

rhizosphere, a plant proceeds with 

phytoextraction, whereby it utilizes transfer 

mechanisms to assimilate contaminants and 

then concentrates them within its cells [30]. 

Both the pollutant and its intermediary 

compounds after they have been broken down 

by rhizobacteria can be the subject of 

phytoextraction. Using a sub-surface or free-

surface constructed wetland to treat wastewater 

does not significantly differ in its methods [31]. 

Innovative Approaches in Plant-Microbe 

Collaboration  

Even though applying phytoremediation to 

remediate industrial wastewater has several 

benefits, this technique still has some 

difficulties. Table 2 summarizes some of the 

phytoremediation implementation issues along 

with potential solutions. 

Table 2: Challenges and strategies for applying phytoremediation technique 

 

 

 

 

 For phytoremediation to be effective, several 

factors must be met, such as temperature, 

humidity, sunlight, and specific nutrients 

needed for the growth of plants. Thus, all of 

these requirements must be satisfied during 

application to yield the best removal 

efficiency [32]. Because tropical regions have 

year-round sunshine and the ideal temperature 

and humidity for plant growth, 

phytoremediation is thought to be highly 

appropriate for usage there; unlike sub-

tropical regions, a controlled environment is 

necessary. To keep the ideal climatic 

conditions for plants to cure contaminants, 

greenhouse treatment is advised [33]. Plants 

can sustain their performance year-round in a 

regulated setting, which could result in the 

appropriate removal efficiency. Since the 

rhizosphere is where contaminants and 

treatment agents come into contact, it is the 

most crucial area for phytoremediation. When 

plant roots do not make good touch with 

contaminants, this could become problematic 

[34]. To address this problem, the design of a 

Challenges Strategies 

In the rhizosphere, there is little contact 

with pollutants 

Development of an effective wetland system 

Area requirement Provide an ideal growing environment 

Environmental circumstances Controlled environment under  ideal 

circumstances 

Plant's ability to tolerate pollutants Phytotoxicity test and range finding 

Time requirement Integrated treatment technology 

Biomass management Biomass conversion into useful products 
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suitable artificial wetland must be completed before the application. 

When creating a suitable artificial wetland, 

there are many critical factors to take into 

account such as the kind of plants, features of 

the pollutants, depth of the constructed 

wetland, how the pollutants are disposed of, the 

kind of wetland that will be utilized, and the 

plant growth medium [35]. By employing the 

biological approach, studies must be aware that 

specific pollutant concentrations can interfere 

with phytoremediation's ability to work. Only 

specific plants that can withstand significant 

pollutant loading may be more effective at 

elimination during treatment. Before applying 

phytoremediation, it is necessary to select the 

right species and execute range finding and 

phytotoxicity tests in order to prevent plant 

mortality, which could lower removal 

performance [36]. 

Plants can serve as the primary treatment 

option if they can tolerate a pollution 

concentration of 100%. However, the second or 

third option for treatment should be selected if 

the plant can tolerate only lower concentrations 

of contaminants. These challenges are closely 

associated with the rate at which plants degrade 

contaminants while receiving treatment [37]. 

Chemical treatment has a different reaction 

than Biological treatment. Stoichiometry of 

reaction is based on the products and 

equilibrium of reactants to regulate the 

degradation of pollutants in chemical 

treatment. Given that biological treatments 

entail complicated systems involving multiple 

components occurring during treatment, plants' 

capabilities cannot be simply calculated as 

products equilibrium and reactants [38]. The 

majority of studies recommend using 

phytoremediation as a secondary or tertiary 

treatment to address these problems and clean 

wastewater before releasing it into bodies of 

water. 

The primary course of treatment is chemical 

treatment, which could decrease the pollutant 

load during the phytoremediation stage and 

result in a higher removal rate, hence cutting 

down on the amount of time and surface area 

needed for treatment [39]. Plant biomass is 

generated as the plant grows throughout the 

treatment and can be regarded as extensive in 

quantity. If harmful compounds were treated by 

phytoremediation, the generated plant biomass 

must be managed in accordance with the 

accepted practices for managing toxic 

compounds [40] 

Numerous studies on exploiting biomass have 

been effectively implemented to transform 

biomass into various products such as animal 

feed, fertilizer, charcoal, adsorbent, and 

biofuel. By applying these conversion 

alternatives, phytoremediation-based 

wastewater treatment may result in a cleaner 

production strategy through treatment by 

products [41-43]. 

 

Selection of Aquatic plants for effective 

Phytoremediation 

 

Phytoremediation requires aquatic plants in 

order to degrade and remove contaminants 

from aquatic environments such as ferns, 

freshwater-adapted angiosperms and 

pteridophytes. For the treatment of wastewater, 

aquatic plants are mostly favored over 

terrestrial ones because of their higher biomass 

production, quicker growth rate, and superior 

capacity to remove contaminants from 

wastewater due to direct contact [44]. Diverse 

pollutants have different harmful effects on 

aquatic plants. A few detrimental reactions of 

aquatic plants to pollutants in the water include 

chlorosis, decreased growth, withering, a 

decrease in the length or volume of roots and 

shoots, a decrease in chlorophyll, plant death, 

and a decrease in photosynthetic activity [45]. 

De Campos et al. (2019) conducted a study 

wherein Pistia stratiotes exposed to a high 

concentration of arsenite indicated that while 

this species could sustain their biomass, there 
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was notable chlorosis in the leaves, a decrease 

in the root volume, and cell membrane 

destruction [46]. 

Different aquatic plants have different 

capacities to absorb pollutants. Consequently, it 

is important to consider the traits of the chosen 

plants in order to lessen the adverse impacts on 

the growth of the plants in a phytoremediation 

method. tolerance to the intended heavy metals' 

harmful effects, high growth rates, widely 

dispersed, highly branched root system, 

capacity to break down pollutants, control 

chemical speciation, handle high 

concentrations of the heavy metals, shifting 

heavy metal accumulation from the roots to the 

shoots, high bioaccumulation potential 

increased above-ground biomass production 

[47,48]. 

Wastewater is a blend of several heavy metals, 

chemicals and pure water from commercial, 

industrial, agricultural, and household sources. 

Pesticides (deltamethrin, 

hexachlorocyclohexane, glyphosate, 

fenhexamid), personal care products and 

pharmaceuticals (i.e., pain relief medication, 

hormones, and antibiotics) and persistent 

organic pollutants constitute the main organic 

pollutants. In contrast, the most common 

inorganic pollutants include nutrients (P, K, 

and N) and metalloid elements (Cu, Fe, Pb Al, 

Cd and Ni). Given that, these different 

contaminants have various detrimental 

consequences on the ecosystem; their presence 

warrants considerable consideration [49,50] 

According to Fletch et al. (51), such toxins 

have the potential to have the following 

negative consequences on chronic toxicity, 

eutrophication, antibiotic resistance and 

endodontic disruption and environment 

Types of aquatic plants 

 Aquatic plants have received a lot of attention 

because of their capacity to purify 

contaminated water bodies. These plants are 

the greatest choice for breaking down 

pollutants in a phytoremediation system 

because of their extensive root systems. 

Aquatic plants can be divided into three 

categories based on the way they grow: free-

floating, emergent and submerged plants [52]. 

Aquatic plants that have submerged roots and 

floating leaves are known as free-floating 

plants. Numerous free-floating aquatic plants 

have undergone in-depth research and have 

been given the go-ahead to be used in various 

phytoremediation systems such as water 

hyacinths (Eichhornia), water lettuce (Pistia), 

Duckweeds (Wolffia and Lemna Spirodela) and 

water ferns (Salvinia, Azolla). These plants are 

well-known for their capacity to remove a 

broad range of heavy metals, organic and 

inorganic pollutants, nutrients, and pesticides, 

from many different sources, including sewage, 

runoff from farms, and domestic and industrial 

wastewater. Furthermore, those plants can 

flourish in contaminated areas with extreme 

variations in pH, temperature, and nutrition 

levels [45, 53].  The term "submerged aquatic 

plants" refers to mud-rooted plants that 

typically thrive underwater. The primary 

component that absorbs pollutants is their 

leaves including water mint (Mentha aquatic), 

hornwort (Ceratophyllum demersum), 

Esthwaite waterweed (Hydrilla), watermilfoil 

(Myriophyllum) and pondweed (Potamogeton). 

The majority of these plants are typically found 

in lakes, ponds, and streams with slow currents. 

Furthermore, several variables, including 

temperature, pH, and the types and 

concentrations of contaminants, affect how 

well these plants remove pollutants [54,55]. 

These plants maintain their roots below the 

water's surface while growing their branches 

and leaves above it. The common emergent 

aquatic plants that are useful for 

phytoremediation include foxtail flats edge 

(Cyperus alopecuroides), bulrush (Scirpus), 

reed canary grass (Phalaris arundinacea), 

cattails (Typha) and common reed (Phragmites 

australis). Due to their relative ease of 
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harvesting, these plant species have drawn a lot 

of interest in the field of nutrient 

phytoremediation and are frequently used in 

constructed wetland construction [45,53]. 

Additionally, transgenic plants are another kind 

of plant that has sparked attention in 

phytoremediation. In order to improve the 

detoxification of organic contaminants and 

enable higher metabolism, transgenic plants 

were modified to carry out certain gene 

functions, hence facilitating more efficient 

phytoremediation. Using this method, organic 

contaminants in the rhizosphere zone are 

broken down by enzymes secreted by 

integrated genes. Tailored Nicotiana tabaccum 

and Arabidopsis thaliana are two examples of 

transgenic plants that effectively eliminate 

mercury, cadmium, and heavy metals [56]. 

Numerous aquatic plant species have been 

extensively researched for their potential in 

phytoremediation, with some significant 

achievements. Several typical aquatic plants 

that have been used in phytoremediation 

experiments recently are shown in Table 3. It 

should be highlighted, nonetheless, that the 

efficiency of a pollutant's degradation depends 

on several interrelated parameters, such as the 

physicochemical features of the pollutant plant, 

length of exposure, the characteristics of the 

surrounding environment, and the 

concentration of the pollutant [57]. 

 

Table 3: Current research on phytoremediation employing some famous aquatic plants 

Plant species Life form Target contaminant Removal effectiveness Reference 

 

 Pistia stratiotes 

 

 

Free-floating 

 

phosphates, 

Ammonium-Nitrogen, 

Chemical 

oxygen demand, 
nitrates 

73.72-92.89% for 

phosphates, 

76.78–98.79% for 

Ammonium-Nitrogen, 

47.82–88.00% for 

chemical oxygen demand 

and 

16.92-97.14% for nitrates 

[58] 

 Scirpus validus 
Emerged 

Decabromodiphenyl ether 
72.22-92.84% [59] 

 Myriophyllum 

aquaticum 
Submerged Total phosphorus 78.2–89.8% [60] 

 Lemna minuta 
Free-floating Phenol and  Hexavalent 

chromium 

phenol 100% and  75–

85%  for Hexavalent 

chromium 

[61] 

  Lead 82.23-93.19% [62] 

Typha latifolia Emerged As, Hg Pb, Zn and Cu 
>80% for all metals, with 

Pb at 64%. 
[63] 

  
Nickel, lead, and  Cadmium 

84% for  Nickel, 95% 

for  lead, and 93% 

for  Cadmium 

[64] 

  Chromium 96.70% [65] 

 Lemna minor 
Free-floating Methylene Blue Dye 

(MBD) 

80.56% [27] 

Spirodela polyrhiza 
Free-floating Ofloxacin 93.73–98.36% [66] 
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Constructed wetlands for effective industrial 

wastewater treatment   

The most popular phytoremediation model, 

which adheres to the fundamentals of 

phytoremediation, is the constructed wetland.  

Sub-surface flow built wetlands (SSFCW) and 

free water surface flow constructed wetlands 

(FWSCW) are the two main categories of 

constructed wetlands (CW). Subsurface flow 

can be divided into several categories: vertical 

flow (VF) CW, horizontal flow (HF) CW, free 

vertical flow (FVF) CW, and hybrid-type CW  

[77]. A constructed wetland can eliminate a 

large amount of organic contaminants, 

particularly nutrients like phosphorus and 

nitrogen. To improve the effluent's quality, a 

constructed wetland could be added to an 

integrated wastewater treatment plant's system 

following biological secondary treatment 

[78,79]. Table 4 summarizes the extensive use 

of constructed wetlands in several industries. 

 

 

 

 

 

Antibiotic 

 Scirpus grossus 
Emerged SS, color and 

COD 

87.2% for SS 

55.8% for color and 

66.1% for COD 

[67] 

  Clomazone - Herbicides 90% [68] 

 Hydrilla 

verticillate 
Submerged 

Suspended Solid, COD and 

BOD 

 

55.55% for Suspended 

Solid, 77.78% for 

COD and 

66.72% for BOD 

[69] 

  Caesium and  Cobalt 60% for  Caesium and 

90% for  Cobalt 

[70] 

Eichhornia 

crassipes 

 

Free-floating dissolved organic nitrogen 
and Ammonium nitrogen 

>99% for dissolved 
organic nitrogen and 
Ammonium nitrogen 

[71] 

  
BOD, COD and  TSS 

93% for BOD 88% for 

COD  and 

98% for TSS 

[72] 

  Phenol 90-99% [73] 

Phragmites 

australis 
Emerged 

Paroxetine and  bezafibrate   

Pharmaceuticals 

65-95% for paroxetine 

and 47-75% for 

bezafibrate 

[74] 

 Scirpus 

mucronatus 
Emerged 

Total Petroleum 

Hydrocarbon 

(TPH) 

74.9-82.1% 
[75] 

 Myriophyllum 

spicatum 
Submerged Zinc oxide 29.5-70.3% [76] 
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Table 4: Constructed wetland treatment of industrial wastewater. 
 

 

Industry 

 

Wastewater 

 

Plant 
Removal 

(%) 

 

Year 

 

Country 

 

Tannery 

Industry 

 

- 

 

Typha latifolia  and 

Phragmites australis, 

 

COD: 92 

BOD5: 88 

 

2005- 

2006 

 

Portugal 

 

Sugar 

industry 
Molasses after Anaerobic 

 

Thalia dealbata ,Typha 

augustifolia  

and  Cyperus involucratus 

 

BOD5: 88–89 

N-NH4+: 77- 82%,  

SS: 90–93 

Total phosphorus: 70–76  

COD: 67 

Molasses pigment: 72–77 

 

 

   

2007 

 

Thailand 

 

Glass 

industry 

Wastewater from the 

factory's machinery and 

the washing of glass 

sheets. 

 

Pampas grass 

 

TSS: 99 

COD: 90 

TP: 96 

BOD5: 90 

TN: 95 

 

 2018 

 

 

               Iran 

 

 

Tannery 

Industry 

 

 

 

- 

I. pseudacorus 

Canna indica, 

Stenotaphrum 

secundatum, 

P. australis, and 

T. latifolia 

 

 

BOD5: 41–58 

COD: 41–73 

 

 

 

 

- 

 

 

 

Portugal 

 

 

 

 

Winery 

industry 

 

 

 

 

 

- 

 

Nymphaea rustica, Elodea 

Canadensis, 

demersum, Ceratophyllum, 

Phragmites australis, Typha 

latifolia and  Nymphaea 

alba 

 

COD: 87-98 

Total nitrogen: 50-90 

BOD5: 92-98 

Total phosphorus: 20-60 

TSS: 70-90 

 

 

 

 

 

 

2001 

 

 

 

 

 

Italy 

 

 

 

 

Winery 

industry 

 

 

 

winery, 

 sewage 

 

, Iris pseudacorus L,  

Scirpus lacustris L., 

Canna indica L.,  

Cyperus Papyrus var. 

Siculus, 

 Nymphaea alba L., 

Phragmites australis L 

and  Scirpus lacustris L. 

 

 

 

Removal  

81% for BOD5, 78% for 

COD and 69% for 

TSS 

 

 

 

 

2014-

2018 

 

 

 

 

 

Italy 

 

 

 

Dairy industry 

 

 

Dewatering aerobic 

sludge. 

 

 

 

 

Phragmites australis 

 
N-NH +:4 

89.2–85.7%, 

TKN: 82.4–76.5%, 

TP: 30.2– 

40.6% 

BOD5: 88.1– 90.5%, 

 

 

 

 

2012 

 

 

 

 

Poland 
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Conclusion 

One of the first methods for eliminating 

contaminants from the environment, especially 

in soil and water, is phytoremediation. The 

utilization of the interaction between plant 

roots and root microbes is the fundamental idea 

behind phytoremediation. In order to develop a 

more reliable, successful, and efficient model, 

an in-depth understanding of the mechanisms 

behind the interactions between microbes and 

root plants is necessary. The preferred model 

for phytoremediation is the constructed 

wetland. This model's versatility and 

robustness give it many possibilities going 

forward. Recently, constructed wetland 

systems can incorporate several developed 

technologies, including Microbial Fuel Cells. It 

is important to investigate the possibilities of 

integrating phytoremediation with another 

cutting-edge technology in order to lower costs 

and improve effluent quality. 
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