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Aabstract

In this article, the problem of double diffusive convective in a saturated porous medium of
a reacting solute using the Brinkman model has been studied. We analyze the effect of slip
boundary conditions on instability and stability of this model. The linear instability and nonlinear
energy stability theories are used. We analyze when stability and instability begin and determine
the critical Rayleigh number as a function of the slip coefficient. Furthermore, the effect of the
inclusion of the chemical reaction rate and the Brinkman coefficient on the instability and stability
of the model is considered. Moreover, the effects of the inertia coefficient on the linear instability
boundary have been investigated.

Keywords: Chemical reaction; Double-diffusive; porous medium; slip boundary
conditions; Brinkman model.

1 Introduction

Examination of the gradients of two class agencies, such as heat and salt, with differing
diffusion, simultaneously present in a fluid layer, can occur a variety of interesting convective
phenomena which cannot be in a single component fluid. In the last few decades, extensive
theoretical and experimental investigations have focussed upon convection in a fluid layer with
two or more stratifying agencies. Turner [1-3], Huppert and Turner [4], Platten and Legros [5]
have presented informative reviews of these studies. The significant difference between single
component and multi-component systems has led to attention to the study of two or multi-
component convection. In contrast to single component systems, convection begins even when the
density decreases with height, i.e., when the basic state is hydrostatically stable. Double diffusive
convection is of importance in a variety of areas such as high-quality crystal production, liquid gas
storage, oceanography, pure pharmaceutical production, solidification of molten alloys, and
geothermally heated lakes and magmas.

Combine chemical reaction with heat and mass transfer problems is important in a range
of processes and therefore, has received considerable attention in recent years. It appears in
processes such as drying, flow in a desert cooler, transfer of energy in the wet cooling tower, and
evaporation of the surface of the water body. . Potential applications of this type of flow can be
found in industries such as power industry, where among electric power generation methods is one
in which electrical energy is extracted directly from a moving conducting fluid.

The researchers gave a lot of attention convective prolems of heat and mass transfer that
are at the same time under the influence of chemical reactions because such processes are present
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in a variety of branches of science and technology [6-8]. This type of flow can be applied in many
industries, for example in the dynamic magnetic energy generators (MHD), cooling of nuclear
reactors and chemical industry. Free thermal flow occurs in nature not only because of temperature
variation, but also because of concentration difference or combination of these two effect.

In industrial applications, there are many transport processes, where simultaneous heat and
mass transport occur as a result of the common buoyancy effects of the spread of chemical species.
Free convection in a porous medium with chemical reactions effects has many applications in
geothermal and oil reservoir as well as in chemical reactors of porous structure.

The object of this paper is to study the problem of double-diffusive convection in porous
media using Brinkman model. Particularly, the effect of slip boundary conditions, chemical
reaction rate, and variable gravity were investigated. The interesting situation arises from a
geophysical and mathematical point of view when the layer is simultaneously heated and salted
from the bottom of the layer. In this case, the heating extends the fluid at the bottom of the layer
and this in turn wants to rise thereby encouraging motion due to thermal convection. However, the
heavy salt at the bottom of the layer has a completely opposite effect and this prevents the
movement through convective overturning. Thus, these two physical effects are competing against
each other. Because of this competition, the linear instability theory does not always describe the
physics of instability completely and subcritica instability region may arise before the linear
threshold is reached. Recent contributions to the study include instability in fluid and porous media
[9-18].

The paper plan is as follows. In the next section, we present the equations of governing and
derive the associated equations of disturbance. Next, we analyze the problem using the linear
instability theory (Section 3) and the nonlinear stability theory (Section 4). Since stability analyses
require solving the eigenvalue systems which have non-constant coefficients, these problems have
to be solved numerically and an appropriate numerical method is described in Section 5. In Section
6, the numerical results of linear and nonlinear theories are presented and discussed.

2 Mathematical formulation and governing equations

Let us consider a layer € bounded by two horizontal planes . Let d >0,Q = R? = 0,d)
and Oxyz be a Cartesian frame of reference with unit vectors i, j,k . Also, assuming that the

Oberbeck-Boussinesq approximation is valid (cf. [21] and [23] and references therein), the flow
in the porous medium is governed by Darcy’s law

avj ¢ = —fvi - pi —kiH(2)p(T C) + AAv;, 1)
vii =0, (2)

MilT’t VT = VAT, (3)

¢C 1 +V;Cj = kVZC — Ky (C—Cy), (4)

we have denoted v,T, p, ,C, H, «, g, Kl,CO,Z, a,& and k. to be the velocity,

temperature, pressure, concentration, gravitational acceleration, permeability, viscosity, chemical
reaction rate, reference concentration, Brinkman coefficient, inertia coefficient, porosity and salt
diffusivity, respectively. The density p is of the form
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p(T.C) = pg(1-a (T —Tg) + e (C—Cp))
where pq is a reference density, T, is a reference temperature, o is a thermal expansion
coefficients, and o is the solutal expansion coefficients. The derivation of equations (1) - (4)

can be found in [21].
The fluid is subjected to the buoyancy forces resulting from temperature difference
(TL =Ty ) and the diffusion of mass due to the concentration difference (C, —Cy, ) between the

upper and lower planes where T >Ty and C_ > Cy .The steady state, for which there is no
fluid flow, is given by

o _gdC_ AC_z., = dp_ =
V=0, = -SIRCEm, T =BTy, = -9(2) p(T.C).
where
Fiem) = —> {1-n(1-cosh(&)Jcosh( 2) — Ensinh (£ L)
d’>"" " sinh(&) d d”
§:A1d,A12::—j,AC =[CL-Cy [ AT =T -Ty |J7:§—(L:1/3=Ad—-r-

To investigate the stability of these solutions, we introduce perturbations (U;, p,&,¢) by
Vi =Uj +V;, p=P+p, T=60+T, C=¢+C.

The perturbation equations are nondimensionalized according to the scales (stars denote
dimensionless quantities)

x=x"d, t=t"2% y=uu®, 0=T%", g=C*y", P=PP",
Y7
c# =y LdAC R, = Kppac dAC T*-u dzy,B
PoKcAcK MK KpPokiat
[q2
Rt: —d Kpo'Bat’g/\:l,U:—d 'P:d_ﬂu’
HK & K00 K
_ d%u _ ey
pr - ) - .
M1 xpopki KpoKe

where p; and pg are the thermal and solute Prandtl numbers and th and RC2 are the thermal

and solute Rayleigh numbers, respectively. The dimensionless perturbation equations are (after
omitting all stars)

aljy =-Uj—p;j+ RikjH (2)0 — R:kjH (2)¢ + AAu;, (5)
ujj =0, (6)
Pr (0 +Myu; 0;) = Ryw+ V20, (7)
0
Ps(fy +£Uig;) = ReF(D)W+ V29— &2, (8)

~

with w=u3, o and A are non-dimensional equivalents of & and A, respectively, and
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__ ¢
F@= G (&)

These equations hold on {z € (0,1)}x{(X,y) eRz}. In (5)-(8), we select H(z) =1-«&z . Since the
fluid is incompressible we have that w, =—(u x +Vv y). Therefore w,, =—(u yx; +V y,), and

{1+n(1-cosh(&))}cosh(&z) + Ensinh(&z).

from the boundary conditionson U and V we see that W satisfies
w=0=¢=0, w,=N_ w, a z=0, 9)
w=0=¢=0, w,=-Nyw, at z=1, (10)
In (9) and (10), N and N, are dimensionless parameters of A4, and A, , respectively.

3 Linear instability

In order to study linear instability, we discard the nonlinear terms in (5)-(8). A time
dependence such as uj = eu;(x), 7 = e 7(x),0 = e?1O(x), ¢ = e“tg(x) is now assumed and

then, after removing, the pressure perturbation the linearized instability equations that arise from
(5)-(8) are found to be

GaAW = —AW+ RiH (2)A 0 — RgH (2) A" ¢+ AN, (11)
op, 0 = Ryw+ V20, (12)
opsp = ReF(2)W+V2g—£%, (13)

where A" = 6%/ox? +82/8y2, and (11) hold on R? x(0,1) . To proceed from equations (11), a
plane tiling form h(x,y) is introduced, see e.g. [23, 24]), and then we put w=W(z)h(x,y),

0=0(2)h(x,y) and ¢=d(z)h(x,y) and introduce the wavenumber a by A'h=-a°h .
Equations (11)-(13) then yield the following eigenvalue problem

A(D? —a?)?W —(D? —a?)W —a’RH (2)® + a’R.H (2)® = ca(D? —a®)W,
(D? —a?)®+ RW = op,O,
(D? —a? —£2)D + R.F (2)W = p oD,

(14)
where D =d/dz. In (14), z<(0,1), and the boundary conditions are
®@=®=W=DW-N_ D?W =0, at z=0,
©@=®=W =DW+NyDW =0, at z=1,
Detailed numerical results are presented in Section 6.

(15)

4 Nonlinear energy stability theory

When linear analysis is adopted, it is assumed that the perturbation to the steady state is
small, so the nonlinear terms are eliminated from the set of partial differential equations. Linear
analysis has often proved to provide little information about the behavior of the nonlinear system
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[23]. In such cases, instability can only be derived from linear thresholds, as any potential growth
in nonlinear terms is not considered.

Let V be a period cell for a disturbance to (5)-(8), and let HH and (-,-) be the inner

product and norm on L2(V). Next, multiply (5), (7) and (8) by u;, € and ¢ and integrating
over V ,we obtain

d
= el ==l = VUl + [ RkH@uieaV — [ RekiH (@)uiddV + A [ njuu; ds,
(16)
e Lo = f,Rwesv —|v e, 1)
and
e S 10l” = [ RE@wWAV - Vo - 14" (19)
By introducing a coupling parameters 4;,4, >0 we may then derive
dE
“—=1-D, 19
m (19)
where the functions E and | are given by
A
E) = p, 210f" + P 221" + S’ (20)
and
I = R (P1(2)0, W) — R (W2 (2)0, W), (21)
with the dissipation D being defined by
D =2|V6| +[u]” + 1 Vel + 258 + 1| vul® (22)
A quPds+-2[  ju?ds,
N ‘o Ny 209y

where dS isasurface element, W;(z) =H(2)+ 4, ¥2(z) =H(z)—A,F(z) and u isexplicitly
written as u = (u,v,w). Define Rg by
1 I
= = — 23
Re = max g, (23)
where H is the space of admissible functions, i.e. u;j,8,¢ ¢ Hi(V) with uj solenoidal and
uj,0,¢ satisfying the boundary conditions. Then from (19) we derive
dE
—<-DA1-— 24
<D E) (24)
We now are required to show that provided Rg >1, then E(t) decays to zero for all E(0)

(i.e. the perturbations u , 8, ¢ will decay for all initial data ug , 6y, dg). If we let
1o 1
c1 ={NLH NG A, 22,226, 43 and ¢z = (1)
E

then from (24) we have the inequality
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dE
gt (u|® +[g]” +[VO|* +|Vg|* +|vu|® + j@QL lul? ds + ‘[aQu lul? ds).

(25)
We now make wuse of the following Poincare’s inequalities. For some
(u+119,714) €[0,0)x[0,0)x[0,0) it holds that

ol <[Vul + I@QL lu? ds + j@QU lul? ds,

2 2 2 22 (26)
10" <IVel" nyldl” <[Vel” -
Applying (26) to (25), and letting ¢3 = min{r,779,7,4}, We obtain
dE
i <ssass (101" + 2l + 2l (27)
<2650 + [ +ul")
Finally, setting ¢, = 2min{4'p,;*, 4, p;',a '} we obtain from (22)
dE A
E <o (2ol + Zp o + S = -0, @9
where ¢ =¢1626364 >0, provided Rg >1. This may be integrated to yield
E(t) <e “'E(0). (29)

Therefore the condition Rg >1 is sufficient to ensure that all perturbations in D decay at least
exponentially as time evolves and hence Rg =1 gives a stability boundary. It is left for us to
I(u,6,0) is
D(u,6,¢)
at a maximum, i.e. U, © and ¢ have been optimally chosenin H, then forall (h,y,¢)eH we
have that

perform the maximization necessary to find Rg, as defined in (23). If the quotient

d 1u+th0+1y,¢+10)
dt D(u+1th,0+ 1y, d+ 1)

)lz=0=0. (30)

: . . | . : :
Using the quotient rule, and assuming D IS at a maximum, we obtain

d  I(u+th6+1ty,¢+10) B 1 d
a- —g=———(—l(u+1th,6+1y,d+ _
dt D(U+Th,9+rw,¢+r(p))|T_O D(U,G,d))(dr U+t W, 0+ 19) | =0

C1(u,6,9) d

D(U,0.4) ds DU+ 0+ 7w 0+ 70) <o)

1 d 1 d
= —1I(u h,e , - —— — D(u h’e ’ _
D(U,e,d))(dr (U+th,0+1y,0+10) =0 Re de (u+1h,0+ 1,0 +1¢) |;=0)

1 (i |
D(u,6,¢) dt

(u+1th,0+ty,0+19)|.=0 —% D(u+1th,0+ 1y, 0+ t0) |:=0).

I . . :
and so D Is at a maximum provided that
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di [(u+1th,0+ty,0+19)|.=0 _di D(u+1th,0+ 1y, ¢+ 10) |.=¢= 0. (31)
T T
Calculating the above derivatives,

d

J U+ Th 0+ 1y, 0 +79) =0 = Ry (i01(2), ) + R (Ww1 (2), )

—Re(kigw2(2),hi) —=Rc (Wy2(2), 9)
= ki (Rt0p1(2),~Redy2(2) i) + (Re (Wit (2),w), i) = Re (W2 (2), ),

S D(U+th, 0+ 7,0+ 70) == 21 (A0, ) ~ 245 (36,0)
T

+2(ui,hi)+2x2a2(¢,<p)—2x(Au,hi)+xj6Qui,jhinjds—xjmuihi,jnjds

Once more, the surface integrals vanish on 0Q\{0Q)| W €Y, }, owing to the periodicity of h,y
and ¢, while the surface integralof y0; and ¢¢; vanish altogether. Therefore, applying the
boundary conditionson U and h at Q and Q,

aQUi,jhinde—J.aQUihi’jnde = J.aQ(uivjhi —uihi,j)nde

- faQU (ui, jh _“ihi,j)”jdsJFIaQL(Ui,jhi —ujh; j)n;ds

_ 1 1 i
= _IaQU N—L(Uihi —ujh;)dS _'[GQL E(uihi —u;h;)dS = 0.
Therefore
diD(u+rh,6+r\|/,(|)+t(p) le=0= —2A1 (A0, y) — 215 (Ad, )
T

+2(uj, ) + 24287 (4,0) — 22(Au, y)
We include the conditions h; ; =0 by way of a Lagrange multiplier £(x),
(hi,i>¢) = (<) i, 1) —(hi, & i) =—(hi, &)
Finally, grouping all our terms in hj,i» and ¢, we obtain for equation (31)
((24Au; —2u+ReKjy1 (2)0 - Rokiv2 (2)4), hy) (32)
+(RMAO+ Ry (2)W).y) + (2428 — 229E% —Rey2 ()W), 9) = 0.
The functions h,i» and ¢ were chosen arbitrarily from H. Therefore, in general, we must have
2AAU; — 2u; + Re ki W10 — R ki Wag = £,
RiWViW+24A0=0, 2A,A¢— 2/1252415— R.Wow=0,
where ¢ isalagrange multiplier. To remove the lagrange multiplier we take the third component
of the double curl of (23),, and introducing the normal mode representation and notation as
presented in Section 3, thus (23) then becomes
A(D? —a?)?W —2(D? —a?)W +a’R, ¥, = a’R,¥,0,
24(D?-a%)@+ Ry VW =0, 24,(D?-a%—&£2)d—R,WW =0,
together with boundary conditions (15). Then, the critical Rayleigh Rag we can evaluate by

(33)

(34)
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fixing a’ , A1 and A, , then, we utilize the golden section search to minimize Rag for a?

and then maximize Rag for 4; and A, to compute Rag for nonlinear stability theory, from

Rag = max min R*(a%, 41, 42), (35)
ST
where we have stability for all R? < Rag . The numerical results have been introduced in the

following section and compared with linear instability theory. Numerical results of nonlinear
thresolds have been introduced in Section 6.

5 Numerical technique

In this section, we use the Chebyshev collocation method to solve the eigenvalue system

(21) and (41). The eigenvalue systems (14) and (34) have been solved using the Chebyshev
collocation method, for more details [6-18].

In the Chebyshev collocation method, system (14) is rewritten in terms of second and
third order derivatives only. Letting I1=DW, (14) can be expressed as the four 2nd order
equations. The system is then transformed onto the Chebyshev domain (-1,1) and the
solutions W and & treated as independent variables and expanded in a series of Chebyshev
polynomials

N N N N
W = ZWnTn (2), = ZHnTn (2), ©®= Z®nTn (2),®= Zq)nTn (2), (36)
n=0 n=0 n=0 n=0
then, we insert (36) into the equations (14), and then substitute the Gauss-Labatto points which
are defined by
bl
N-3
Thus, we obtain 4N —4 algebraic equations for 4N +4 unknowns Wy,...Wy, Ilgp,....ITy,

yi =cos(—), i=0,..,N-2. (37)

0q,....0N, Pg,....PyN . Now, we can add six rows using the boundary conditions (15) as follows
N N N
BC;: Y W, =0, BCy: > (-1)"W, =0, BCz:> n’Nyll,+I, =0,

n=0 n=0 n=0

N N
BC4: > (-1)"n?NyI1, —(-1)"I1, =0, BCs:Y 0, =0,
n=0 n=0

N N N
BCs: . (-1)"®,=0, BC;:> ®,=0, BCg: > (-)"®, =0.
n=0 n=0 n=0
Using the above notations, we can obtain the following generalised eigenvalue problem:
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2D -1 0 0 O O O O
BC, 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BC, 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qp @ -a’RZ a’R. ~a%al 22D O O
0.0 BC; 0.0  0..0 0.0 0.0 0.0 0.0
0.0 BC;, 0.0  0..0 0.0 0.0 0.0 0.
RIL O Q O |[X=¢/ O O I 0 X, (38)
0.0 0.0 BCs 0.0 0.0 0.0 0.0 0..0
0.0 0.0 BCs; 0.0 0.0 0.0 0.0 0..0
RS O 0 Q4 O O 0 pl
0.0 0.0 0.0 BCy 0.0 0.0 0.0 0..0
0.0 0.0 0.0 BCg 0.0 0.0 0.0 0.0

where X =Wp,...WyN,0®q,....0N,Pg,....QF), O isthe zeros matrix,

D(ny,n2) =Ty, (zn, ),

2 —_ n
D(ng,ny) —Tn2 (an)’
Z(ng,n2) = H(zp )1 (g, n2),
Qp :ﬂa4l(n1,n2)+azl(n1,n2),
Q= A(8D%(ny,np) —4a”D(y, n)) - 2D(ny, ny),
Qp =4D?(ng,np)—a’l(ny,ny),
Q3 = 4D (ng,n) - (@% +£%)1 (ng, np),
m =0,..,N—-2 and Ny =0,...,N.
We computed the differentiation matrices, which are corresponded to the trail functions (38)

analytically using Matlab routines.
We have solved system (38) for eigenvalues Oj by using the QZ algorithm from

Matlab routines. Once the eigenvalues oj are found we use the secant method to locate where

0? , O = GJR +G} being the real and imaginary parts of eigenvalue gj- The value of R

which makes GlR =0, GlR being the largest eigenvalue, is the critical value of R for a?

fixed. We then use golden section search to minimize over a2 and find the critical value of R?

for linear instability. Numerical results are reported in the next section. In our use of the
Chebyshev collocation method, we used polynomial of degree between 20 and 30. Usually
25 was found to be sufficient but convergence was checked by varying the degree by examining
the convergence of the associated eigenvector (which yields the approximate associated
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eigenfunction).

Returning to the nonlinear eigenvalue system (41), the the Chebyshev collocation method

yields:
2D -1 O 0 O O 0
BC, 0.0 0.0 0..0 0.0 0.0 0.0
BC, 0.0 0.0 0..0 ) 0..0
0, © O 05a%R.A, O O 05a%A;
0.0 BC3; 0.0 0..0 0.0 0.0 0.0
0.0 BC, 0.0 0...0 0.0 0 0...0
0 0 240, 0 R|-A; © 0 X, (39)
0.0 0.0 BCg 0...0 0..0 0.0 0..0
0..0 BCg 0...0 0..0 0 0...0
—“ReAy O 0 22,03 O O 0
0.0 0.0 BC, 00 0..0
BCg
where

Aq(ng,n2) = (A +H(zp )1 (0, N2),
Az(ng,nz) = (H(zn ) —22F(2))1 (M1, n2).
Then, the critical Rayleigh Rag we can evaluate by fixing a?, A1 and A, then, we utilize the

golden section search to minimize Rag for a? and then maximize Rag for 4; and 4, to
compute Rag for nonlinear stability theory, from

Rag = max minR%(a%,A1,17), (40)
Mk a2
where we have stability for all R? < Rag . The numerical results have been introduced in the

following section and compared with linear instability theory.

6 Stability analysis results

The numerical results are presented for H(z) =1-ez and N = Ny = Ng. To study the
possibility of a wide-scale gravitational field (sign can also be change) we select & to vary from
0 to 1. In this paper, the results are introduced for N =Ny =Ng, M;=1, p, =1 and
Ps =5.

The linear instability and nonlinear stability thresholds are presented in Figure 1. If the

linear theory is achieved by stationary convection, we note the convergence between the linear and
nonlinear thresholds. However, this relationship of convergence will not continue as the solute
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Rayleigh number increases, which show that the linear theory may fail to simulate physics
appropriately of the onset of convection. The behavior of linear instability curves is perfectly
consistent with what we have seen [25]. The kink in the curves represents the point at which
convection switches from steady convection (o = 0) to oscillatory (o, = 0,0 = 0). Note that for

small values R, the stationary mode appears in the linear instability, however, as R; increases

the oscillatory mode become present in the linear instability thresholds. Figure 1 confirms that the
increase in values of R; leads to an increase in the values of the critical Rayleigh number which

confirms the stabilising effect of R..

400

350

300

250 -

Ra

200 —

150

100 . ; . ; . . . .

Figure 1: : The critical thermal Rayleigh number of linear theory (solid line) and nonlinear theory (dashed line)
plotted against the solute Rayleigh number R, where £ =1=0.1 and a =Ng=&=n3n=1.

Figure 2 explains the linear instability and nonlinear stability thresholds, with critical
thermal Rayleigh number Ra plotted against ¢ .where 1=0.1, a=Ng=&{=7=1 and
R. =20. In this figure, with small values of & Itis clear that the linear and nonlinear thresholds

have an acceptable relationship, indicating the appropriateness of linear theory to predict the
physics of the onset of convection. With increased the value of & these thresholds have a lower
correlation. It is interesting to note that the oscillation mode is presented at linear instability
thresholds when & <0.8, otherwise, the stationary mode appears in linear instability.
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Ra

600 +

500

400

300 —

200

100 . ;

Figure 2: The critical thermal Rayleigh number of linear theory (solid line) and nonlinear theory (dashed line)
plotted against &, where 1 =0.1, a=Ng=&=7=1 and R; =20.

Figure 3 shows critical linear and nonlinear boundaries for a variety values of A. In this
figure, we note that an increase in A values makes the system to become more stable. Since the
results of linear instability and nonlinear stability show not good agreement, we conclude that (for
the ranges of the parameters explored), the linear theory does not accurately cover the physics of
the onset of convection. Thus, the results of instability are supported by a large area of subcritical
instability. However, for a fixed value of £=0.1, «=Ng=¢&=7=1 and R, =20, we see that

oscillatory convection is occurring for A<0.7 and when A>0.7 we shall witness stationary

convection.

Ra

1200

1000

800

600

400 —

200

Figure 3: The critical thermal Rayleigh number of linear theory (solid line) and nonlinear theory (dashed line)
plotted against A, where € =0.1, a =Ng=&=n7=1and R, =20.
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In Figure 4,we display the critical Rayleigh numbers at which stability and instability
begin as a function of the slip coefficient, Ny. From Figure 4, it is clear that the region of
subcritical instabilities between the linear and nonlinear thresholds is very large. Also in this
figure, we note that the instability curve always lies below the stationary convection one and thus
the oscillatory convection is always dominant, for the fixed valueof ¢, 4, a, &, n and R;.

500 —

400 —

Ra

300

200

100 4 . ;

Figure 4: The critical thermal Rayleigh number of linear theory (solid line) and nonlinear theory (dashed line)
plotted against N, where ¢ =4=0.1, a=&=1n=1 and R, =20.

Figure 5 shows the effect £ on critical Rayleigh numbers of linear and nonlinear theories.
This figure shows that the increasing in & value leads to make the system more stable, which is
physically expect. Moreover, note that the oscillatory convection is always dominant as for all
critical values of o we have o #0.
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Figure 5: The critical thermal Rayleigh number of linear theory (solid line) and nonlinear theory (dashed line)
plotted against &, where §=4=0.1, a =Ng=7=1and R, =20.

A visual representation of the linear instability and global nonlinear stability thresholds
is given in Figure 6. In Figure 6 the spectrum of o is found numerically to always be not real and
hence the nature of convection was always oscillatory. Figure 6 shows the stabilizing effect of
increasing 7. The decrease in Ra in Figure 6, is to be expected due to the definition of 77. For

example, 7=0.5 corresponds to ¢  =—cy . If we take 7n=0.6 this corresponds to
c. =-3c /2. The coefficient of ¢ increasesas 7 increases and this means that the stabilizing
effect due to heavier fluid above is lessening.
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Figure 6: : The critical thermal Rayleigh number of linear theory (solid line) and nonlinear theory (dashed line)
plotted against 77, where ¢ =A4=0.1, « =Ng=&=1 and R; =20.
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Figure 7 gives a visual representation of the linear instability and nonlinear stability
thresholds, with critical thermal Rayleigh number Ra plotted against R, and for various « .

The remaining parameters are held fixed at £ =1=0.1 and Ny =& =7 =1. This figure shows

the effect of increasing « on the critical Rayleigh number. It is clear from this figure that an
increase in « causes the system to become more stable. For «=1,23,4 and 5 and

R. >14,20,24,28 and 32, respectively, the oscillatory convection branch is lowest, leading to
this kind of instability at onset.

1000

800 —

600

Ra

400

200

Figure 7: Thecritical linear thermal Rayleigh number Ra plotted against the solute Rayleigh number R, with
a varying between 1 and 5,and £=4=0.1 and Ng =& =n=1

6 Conclusions

The problem of double diffusive convective movement of a reacting solute in a viscous
incompressible occupying a plane layer in a saturated porous medium using Brinkman model has
been introduced. We have used the slip boundry coditions planes and no approximation is made
in the analysis.The results of linear instability theorem show the area where the instability can
occur. The nonlinear theory, which is valid for all initial data, has also been introduced for the
model and the thresholds have provided which ensure the global stability when the Rayleigh
number is less than these thresholds. The nonlinear thresholds which have been found here, are
not close to those of linear theory, thus, we can conclude that the linear instability theory is not
accurate in predicting the onset of convective motion. This is important since the virtual
appearance of subcritical instabilities guarantees that linearised instability theory does not capture
the physics of the onset of convection. Figures 2, 3 and 6, refers to the stabilizing effect of ¢, A4
and 77, respectively. However, Figures 4 and 5 show the stabilizing effect of increasing Ny and

&, respectively.
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