

Design and Implement Pseudo Random Number Generator for Block Cipher

Encryption Algorithm
Maytham M. Hammood

 1
, Tayseer S. Atia

2
 , Ahmed Y. Yousuf

2

1 Department of Computer Science , University of Tikrit , Tikrit , Iraq
2 Department of Computer Science and Information System , University of Technology , Baghdad , Iraq

(Received 15 / 5 / 2008 , Accepted 5 / 6 / 2008)

Abstract
The generation of pseudo-random numbers is an important and common task in computer programming. While

cryptography and certain numerical algorithms require a very high degree of apparent randomness, many other

operations only need a modest amount of unpredictability

Random numbers play an important role in the use of encryption for various network security applications. This paper

design and implement a proposed Pseudo Random Number Generator for use in block cipher algorithm as a session key

with an initialization vector) IV) to use them in cryptographic applications. The generator structure’s makes use of

HMAC algorithms with preprocess and post process stage to generate pseudo random sequence with length of 652-bit.

Keywords: HMAC,RNG,PRNG,IV,SHA,IDEA,CFB.

Introduction
A random number generator (often abbreviated as

RNG) is a computational or physical device designed to

generate a sequence of numbers or symbols that lack any

pattern, i.e. appear random. Computer-based systems for

random number generation are widely used, but often fall

short of this goal, though they may meet some statistical

tests for randomness intended to ensure that they do not

have any easily discernible patterns. Methods for

generating random results have existed since ancient

times, including dice, coin flipping, the shuffling of

playing cards, the use of yarrow stalks in the I Ching, and

many other techniques.

The many applications of randomness have led to many

different methods for generating random data. These

methods may vary as to how unpredictable or statistically

random they are, and how quickly they can generate

random numbers [1].

Almost all cryptographic protocols require the generation

and use of secret values that must be unknown to

attackers. For example, random number generators are

required to generate public/private keypairs for

asymmetric (public key) algorithms including RSA,

DSA, and Diffie-Hellman. Keys for symmetric and

hybrid cryptosystems are also generated randomly.

RNGs are also used to create challenges, nonces (salts),

padding bytes, and blinding values. The one time pad –

the only provably-secure encryption system – uses as

much key material as ciphertext and requires that the

keystream be generated from a truly random process.

Because security protocols rely on the unpredictability of

the keys they use, random number generators for

cryptographic applications must meet stringent

requirements.

The most important is that attackers, including those who

know the RNG design, must not be able to make any

useful predictions about the RNG outputs. In particular,

the apparent entropy of the RNG output should be as

close as possible to the bit length. According to

Shannon1, the entropy H of any message or state is:

where pi is the probability of state i out of n possible

states and K is an optional constant to provide units (e.g

1/log(2) bit). In the case of a random number generator

that produces a k-bit binary result, pi is the probability

that an output will equal i, where 0≤ i ≤ 2
k
 Thus, for a

perfect random number generator, pi = 2
-k

 and the

entropy of the output is equal to k bits. This means that

all possible outcomes are equally (un)likely, and on

average the information present in the output cannot be

represented in a sequence shorter than k bits. An RNG

for cryptographic applications should appear to

computationally-bounded adversaries to be close as

possible to a perfect RNG [2].

Pseudorandomness
Traditionally, the concern in the generation of a sequence

of allegedly random numbers as been that the sequence

of numbers is random in some well-defined statistical

sense. Uniform distribution, Independence and

Unpredictability criteria are used to validate that a

sequence of numbers is random. The distribution of

numbers in the sequence should be uniform: that is, the

frequency of occurrence of each of the numbers should

be approximately the same. Independence means that no

one value in the sequence can be inferred from the

others. In applications such as reciprocal authentication

and session key generation, the requirement is not so

much that the sequence of numbers be statistically

random but that the successive members of the sequence

are unpredictable. With "true" random sequences, each

number is statistically independent of other numbers in

the sequence and therefore unpredictable [3].

Proposed Pseudo Random Number generator
Pseudo-random number generators (PRNGs) are

algorithms that can automatically create long runs (for

example, millions of numbers long) with good random

properties. The proposed Pseudorandom number

generator classify as computational Pseudo-random

number generators. Figure (1) shows the structure of the

proposed random number generator this generator makes

use of the HMAC structure found in [4] that is used to

compute message authentication code with some

modification to the internal structure and buffer value to

accommodate our purpose.

http://en.wikipedia.org/wiki/Pseudo-random_number
http://en.wikipedia.org/wiki/Number
http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Dice
http://en.wikipedia.org/wiki/Coin_flipping
http://en.wikipedia.org/wiki/Shuffling
http://en.wikipedia.org/wiki/Playing_card
http://en.wikipedia.org/wiki/I_Ching
http://en.wikipedia.org/wiki/Applications_of_randomness
http://en.wikipedia.org/wiki/Randomness
http://en.wikipedia.org/wiki/Statistical_randomness
http://en.wikipedia.org/wiki/Statistical_randomness
http://en.wikipedia.org/wiki/Pseudo-random_number_generator
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Pseudo-random_number_generator
http://en.wikipedia.org/wiki/Pseudo-random_number_generator

Figure (1) The Proposed Random Number Generator

This PRNG takes as input the following items:

H (m): 160-bit message digest computed using SHA-1.

Current time: 32-bit value repeated five times to be of

length 160-bit.

Seed: 192-bit value stored in file called seed.bin.

Current date: 32-bit value repeated five times to be of

length 160-bit.

And the following process:

SHA-1: Takes input from two sources the first one from

the seed and the second one XOR operation between the

current time and H (m).

 And output 160-bit value.

F Function (Expansion function): This function takes

input of length 80 bit and produces output of length 128-

bit. It works as follows:

Divide the 80-bit value into four parts of 20-bit each.

Each part is divided further divided into four parts of 5-

bits each; these 5-bits are used as index to produce 8-bits

from the Substitution Table shown below. As shown

each index in this Table carries XOR operation between

a constant value and the value of the 5-bits itself. These

constant values are taken from the fractional part of the

constant rate (22/7). These resulted each 8-bits from each

5-bits are processed further as shown in Figure (2) to

produce an 8-bit value. Then for all the four parts the

same processes are repeated. Finally the values of these

parts are combined to produce the128-bit value

||

SHA-1

F

||

IDEA-CFB

SHA-256

Seed H(M)

Session

key

&

IV

Current

date

Current time

160 –bit

128- bit

80 bit

Table (1) Substitution Table

Index value Index value Index value

22 B22 0f

23 B23 24

24 B24  cd

25 B25  3c

26 B26  fc

27 B27  70

28 B28  48

62 B29  c8

03 B30  ee

 03 B31  ad

11 B11  71

12 B12  12

13 B13 fb

14 B14  1c

15 B15  2e

16 B16  4b

17 B17  1e

18 B18  78

19 B19  f5

20 B20  ff

21 B21  9e

0 B0  f9

 1 B1 7a

2 B2  e4

3 B3  98

4 B4  7b

5 B5  fe

6 B6 19

7 B7  74

8 B8  8f

9 B9  82

10 B10  8d

Figure (2) F Function details

IDEA-CFB: Takes as input 288-bit combined from the

SHA-1 output and the F function output and outputs 256

bit as a session key and IV.

SHA-256: Takes the output of the IDEA-CFB to produce

new seed for the next generation

Experimental Result
This section present some examples that explain the

implementation of the proposed pseudo random number

generator, also show the initialization needed, finally,

statistical test was computed to judge the correctness of

the generated sequence, Figure (3) shows the input data

to generator and the output generated sequence with the

evaluated test

.

Substitution table

 

||

32-bit

128-bit

80-bit

20- bit

5-bit

8-bit

8-bit

As shown in Figure(3) the evaluated test for the

generated sequence are pass for the frequency, serial,

auto correlation test and fail in poker, run test this mean

that the generated sequence is acceptable sequence since

it can pass three tests fro five tests.

Conclusion
This paper present pseudo random number generator to

generate pseudo random sequence of length 652-bit to be

used with block cipher algorithm as a session key or the

secret key for cryptographic application. The generator

structure consists of preprocess stage to input random

data to use in initialization stage, the generate stage

which depend on the structure HMAC algorithm that

yield the pseudo random sequence and post process stage

to generate random seed to be used in next generation,

the output sequence was tested using the statistical tests

to check the correctness of the generated sequence and its

show that its pass three testes from five tests each time

which give an indication to accept the sequence as a

correct sequence.

References
1.http://en.wikipedia.org/wiki/Random_number_generation"

2. THE INTEL® RANDOM NUMBER GENERATOR

CRYPTOGRAPHY RESEARCH, INC. WHITE PAPER

PREPARED FOR INTEL CORPORATION Benjamin

Jun and Paul Kocher April 22, 1999

3. Stallings W., “NETWORK Security Essentials:

Applications and standards”, Prentice Hall, New Jersey,

2000.

4. N. Freed, N. Borenstein, “RFC2045: MIME part one:

Format of Internet Message Bodies”, Standard Track,

Network working Group.

 Site [www.fags.org/rfcs/rfc2045.html].

 الملخص
توعشديةةتومةةاوعمليةةتوليديةةروام اةةشووادة ةةياريتولةلةةة ومةة ي يتويميمةةتوي ةةشرةتو.ةةاوة ماةةتوادفشرةةيعضواشدمةةشوااوادلاديةة ويةةةةدواد يا ميةةش وادةرريةةتوللالةةعور اةة

دم للة ولاةيقةش وامةاواد ةةكش ضوهة اوادة ياريتو.شاوهنشكوعمليش ولفلشجومقرا واكة وماوعرووادقر ةوعلىوادلنةأضوام اشووادة ياريتوللةعوري اوميمشو.ةاوادلادية و
دةةيمكاوارةةل راميمشو.ةةاوو IVادةفةةيويمةةمووييندةة وميدةةروا اةةشووع ةةياريتومقلةة خومرةةل راملو.ةةاو يا ميةةش وادلاديةة وادكللةةاوكمدلةةشخورةة ومةة وايمةةتولييرةةتواةلراريةةت

 ة ضو652ةةريتودليديرورلرلتو ةلوع ياريتوةايلوم وم افلومةشداتواةليتويو HMAC لاةيقش وادلادي وهيكلوادميدروادمقل خويرلديروماو يا ميتو

Figure (0) Input and output result and evaluated test for

the proposed pseudo random number generator

http://en.wikipedia.org/wiki/Random_number_generation

