Behavior Assessment Of Various Filters Configuration In Removing Water Low Turbidity: A Statistical Treatment Assist. Professor Center for Environmental Researches and Pollution Control, University of Mosul Ahlam Z. Ameen Assist. Lecturer College of Engineering, University of Mosul #### **Abstract** The research focuses on the behavior of laboratory bench-scale filters that receive low-turbidity raw water. The filters have different configuration in terms of materials type, materials size and thickness. These filters operate under in-line and direct mode of filtration with different doses of alum and coagulant aid. A total of 200 filter runs were conducted. Statistical methods had been used in the determination of best configurations of tried filters. Analysis of variance (ANOVA) and Duncan multiple range test had been employed for this purpose. The results showed the superiority of filters operating under direct filtration mode compared to those of in-line filtration mode. It was thought that flocculation played a role in this result. Fine sand media of 0.56 mm E.S appeared to surpass the coarse media due to more trapping of impurities at pore spaces. The effect of coagulant aid addition was detected to act positively only with capping media filters, where an improvement in performance did occur. However, such improvement was low and did not justify importation of anthracite coal and coagulant aids and add an economic burden. **Keywords:** Filtration modes, Filtration, Water turbidity, Water treatment. تقييم سلوكية مختلف أنواع المرشحات في إزالة العكورة الواطئة: معالجة إحصائية ساطع محمود الراوي عبدالمحسن سعدالله شهاب أحلام زكي امين أستاذ مساعد مدرس مساعد مركز بحوث البيئة والسيطرة على التلوث كلية الهندسة قسم الهندسة حامعة الموصل حامعة الموصل 2007 #### الخلاصة يركز البحث حول أداء مجموعة من المرشحات المختبرية في معالجة مياه قليلة العكورة. هذه المرشحات ذات اوساط مختلفة المواد والاعماق والاحجام المؤثرة المرشحات بطريقتي الترشيح بالمسار والترشيح المباشر وتتغذى بجرع متغايرة التركيز من الشب ومساعدات التخثير. جرى تحليل النتائج احصائيا باتباع طريقة تحليل التباين واختبار دنكن بقصد تحديد أفضل تركيبة من هذه المرشحات. وقد أظهرت النتائج تفوق المرشحات العاملة بطريقة الترشيح المباشر على نظيرتها العاملة بطريقة الترشيح بالمسار، ويعتقد ان لعملية التلبيد في الترشيح المباشر دورا مهما في هذا التفوق. التمام أظهرت كفاءة أفضل من مرشحات الرمل ذات الحجم المؤثر الأكبر وهذا يعود الى تاثير حجم الفراغات بين حبيبات الرمل في اقتناص المزيد من الشوائب. ان استخدام مساعدات التخثير يفيد فقط في حالة استخدام مرشحات ثنائية الوسط إذ تتحسن أداء ممناعدات التحبير يفيد فقط في حاله استخدام مرسحات بنائية الوسط إد بتحسن اداء . وبنفس الوقت فان استخدام الأنثر اسيت أو مساعدات التختير لا يبر مواستير اد هاتين المادتين لأن الفرق ضئيل في مدى التحسن المراصل في كفاؤة الإزالة Received 2 August 2005 ## Introduction Chemically assisted rapid sand filtration of water is a multi-step treatment process. It includes chemical mixing, coagulation, flocculation, solids separation and filtration. This sequence of treatment is adopted worldwide and Iraq is no exception. The importance and necessity of such practices are highlighted by many studies [1-5]. However, the construction of dams and reservoirs may act as a huge sedimentation tank that reduce turbidity and change the quality of raw water received by downstream water treatment plants. Such situation encourages introduction of new modes of treatment systems, mainly direct and in-line filtration (Fig. 1). Each of these systems shall be designed to produce water that meets the drinking water quality standards, with the minimum performance requirements for rapid sand filtration. Both types of treatment modes may be used for raw water that is consistently very low in turbidity, color, and dissolved organic carbon. The difference between the two types is that the forming pinpoint sized flocs are filterable in direct filtration and are settleable in in-line filtration [6]. **Fig. (1)** Water treatment processes for (a) conventional, (b) direct filtration and (c) in-line filtration [6]. These modes had been used and tried extensively in many parts of the world [7-9]. In Iraq most of the works were performed on a laboratory and bench scale experiments [10, 11]. However, none or very few papers tackled statistically the variables involved in the processes. It is the aim of this paper to focus on such issue. # **Materials and Methods** A bench-scale laboratory setup was locally manufactured. It consisted of four glass tubes each 53 mm diameter and 73 cm high. Each tube was provided with under-drain system at 25 mm from the bottom. Jar test apparatus, pH meter and thermometer were used to measure related characteristics. The used materials and their characteristics were listed in table (1). More than 200 test runs were conducted and the results were statistically analyzed using ANOVA and Duncan multiple range test. Such tests are thought to best fit interpretation of the obtained results. Table (1) Characteristics of used materials. | Characteristics | Items Characteristics | | |-----------------|-----------------------|--| |-----------------|-----------------------|--| | Raw water | Tigris River | |----------------------|---| | Raw Turbidity | Prevailing at water treatment plants. | | Sand material | Two sand types are used with effective size (E.S) of 0.56 mm and 1.1 mm. Uniformity coefficients are 2.32 and 1.48 respectively [5, 13]. | | Anthracite | One type is used with E.S of 0.93 mm and uniformity coefficient of 1.18 [14, 15]. | | Filter configuration | Single filters having sand thickness of 25, 35, 45, and 55 cm. Capping media filters having configurations of 15x10, 25x10, 35x10, and 45x10 cm. | | Alum | Al ₂ (SO ₄) ₃ .16H ₂ O, 99.7% pure. Alum is fed to rapid mix unit being diluted to 10% concentration (GT=30000) [14] | | Filtration rate | 5 m/hr | | Coagulant aid | LT22 type with 0.05 mg/l concentration | | pH of raw
water | 7.84- 8.3 | | Head loss | Filter run is stopped when effluent turbidity exceeds 1 ntu | ## **Statistical Analysis** The behavior of a set of different single and capping media filters were compared. Each set of (4) filters was run parallel and subject to the same conditions. Statistical methods had been used to help determine the best configuration of used filters in meeting the requirements of this study. Analysis of variance (ANOVA) and significant difference tests such as, Tukey's test and Schieffe's test are thought to act quite well in this task. However, it is proven that Duncan multiple range test is the most efficient one that may help in this work. The latter test avoids all demerits found in the above-mentioned tests [12]. These tests help finding the effect of the independent parameters included in the study on effluent turbidity and to compare between modes of filtration. The results were considered significant at $p \le 0.05$. Fig (2) shows the variable involved in this study. Effluent turbidity is taken as dependent variable and other parameters are independent. Fig. (2) Variables involved in the experimental design ## **Results and Discussion** The results of analysis of variance for direct filtration and alum coagulant alone (table 2) show that alum dose has significant effect on effluent turbidity. As shown, when alum dose increases, a better effluent turbidity is obtained for the range of doses used in this research. Additionally, sand effective size has significant effect on effluent turbidity, i.e. the finer sand effective size is better. This is attributed to small pore space that traps more impurities. Also the interaction between alum dose and sand effective size appears to be significant. On the other hand, sand thickness and the existence of anthracite coal with sand show non-significant effect on the dependent variable, since direct filtration is used with low raw water turbidity and all the thicknesses of sand used in this research and anthracite conduct the same effect. **Table (2)** Analysis of variance for alum coagulant/Direct filtration. | Source of variation | SS | df | MS | F- | Sig. | |--|------|----|------|-------|---------| | | | | | value | | | Sand effective size | 1.95 | 1 | 1.95 | 44.18 | < 0.001 | | Filter type (single or capping) | 0.15 | 1 | 0.15 | 3.45 | 0.07 | | | | | | | (NS) | | Sand thickness | 0.25 | 4 | 0.06 | 1.43 | 0.23 | | | | | | | (NS) | | Alum dose | 2.82 | 4 | 0.70 | 15.93 | < 0.001 | | Sand effective size x Filter type | 0.03 | 1 | 0.03 | 0.72 | 0.40 | | | | | | | (NS) | | Sand effective size x Sand thickness | 0.13 | 4 | 0.03 | 0.74 | 0.57 | | | | | | | (NS) | | Filter type x Sand thickness | 0.00 | 2 | 0.00 | 0.03 | 0.98 | | | | | | | (NS) | | Sand effective size x Filter type x Sand | 0.00 | 2 | 0.00 | 0.03 | 0.97 | | thickness | | | | | (NS) | |--|------|----|------|-------|---------| | Sand effective size x Alum dose | 2.06 | 4 | 0.52 | 11.66 | < 0.001 | | Filter type X Alum dose | 0.23 | 4 | 0.06 | 1.28 | 0.28 | | | | | | | (NS) | | Sand effective size x Filter type x | 0.15 | 4 | 0.04 | 0.83 | 0.51 | | Alum dose | | | | | (NS) | | Sand thickness x Alum dose | 0.27 | 16 | 0.02 | 0.38 | 0.98 | | | | | | | (NS) | | Sand effective size x Sand thickness x | 0.29 | 16 | 0.02 | 0.41 | 0.98 | | Alum dose | | | | | (NS) | | Anthracite thickness x Sand thick x | 0.03 | 8 | 0.00 | 0.09 | 1.00 | | Alum dose | | | | | (NS) | | Sand effective size x Filter type x Sand | 0.04 | 8 | 0.00 | 0.11 | 1.00 | | thickness x Alum dose | | | | | (NS) | | Error | 3.54 | 80 | 0.04 | | | | Total | 12.3 | 15 | | | | | | 3 | 9 | | | | SS = Sum of square, df = degree of freedom, MS = Mean square, Sig. = level of significance, NS = Not significant When coagulant aid is used, the existence of anthracite coal shows significant effect on effluent turbidity (Table 3). Besides, sand effective size and alum dose still have significant effect on effluent turbidity. Also the bi-interactions between these three parameters show significant effect. These results encourage the use of single media filter with direct filtration for alum coagulant alone, while for capping media filters, coagulant aid is recommended. Table (3) Analysis of variance for alum and coagulant aid/Direct filtration. | Source of variation | SS | df | MS | F- | Sig. | |---------------------|----|----|----|----|------| | | | | | value | | |--|------|----|------|-------|--------------| | Sand effective size | 0.03 | 1 | 0.03 | 3.95 | 0.05 | | Filter type (single or capping) | 0.08 | 1 | 0.08 | 10.40 | <0.001 | | Sand thickness | 0.06 | 4 | 0.02 | 2.21 | 0.08
(NS) | | Alum dose | 0.19 | 7 | 0.03 | 3.77 | <0.001 | | Sand effective size x Filter type | 0.05 | 1 | 0.05 | 6.81 | 0.01 | | Sand effective size x Sand thickness | 0.01 | 4 | 0.00 | 0.18 | 0.95
(NS) | | Filter type x Sand thickness | 0.01 | 2 | 0.01 | 0.87 | 0.42
(NS) | | Sand effective size x Filter type x Sand thick | 0.00 | 2 | 0.00 | 0.01 | 0.99
(NS) | | Sand effective size x Alum dose | 0.08 | 4 | 0.02 | 2.76 | 0.03 | | Filter type x Alum dose | 0.11 | 4 | 0.03 | 3.80 | 0.01 | | Sand effective size x Filter type x Alum dose | 0.02 | 2 | 0.01 | 1.34 | 0.27
(NS) | | Sand thickness x Alum dose | 0.03 | 25 | 0.00 | 0.16 | 1.00
(NS) | | Sand type x Sand thickness x alum | 0.03 | 14 | 0.00 | 0.28 | 1.00
(NS) | Vol.15 | Anthracite thickness x Sand thick x Alum dose | 0.01 | 8 | 0.00 | 0.20 | 0.99
(NS) | |--|------|----|------|------|--------------| | Sand effective size x Filter type x Sand thickness x Alum dose | 0.00 | 4 | 0.00 | 0.05 | 1.00
(NS) | | Error | 0.61 | 84 | 0.01 | | | | Total | 1.59 | 16 | | | | | | | 7 | | | | NS = Not significant For the data of in-line filtration and alum coagulant alone, the analysis of the results show that sand thickness and alum dose has significant effect on effluent turbidity, while sand effective size and filter type appears to have non-significant effect (Table 4). This indicates that using single media filter with adequate alum dose and sand thickness will produce better results as they show significant effect on the operation. Also when in-line filtration is used, little importance may be given to sand effective size as it is not significant for this mode of filtration. Table (4) Analysis of variance for alum coagulant/In-line filtration. | Source of variation | SS | <u>df</u> | MS | F-
value | Sig. | |---------------------------------|------|-----------|-----|-------------|--------------| | Sand effective size | 0.02 | 1 | 0.0 | 0.75 | 0.39
(NS) | | Filter type (single or capping) | 0.02 | 1 | 0.0 | 0.71 | 0.40
(NS) | | Sand thickness | 0.57 | 4 | 0.1 | 5.61 | < 0.001 | | | | | 4 | | | |--|------|----|----------|-------|--------------| | Alum dose | 4.74 | 8 | 0.5 | 23.44 | <0.001 | | Sand effective size x Filter type | 0.16 | 1 | 0.1
6 | 6.39 | 0.01 | | Sand effective size x Sand thickness | 0.04 | 4 | 0.0 | 0.38 | 0.82
(NS) | | Filter type x Sand thickness | 0.04 | 2 | 0.0 | 0.80 | 0.45
(NS) | | Sand effective size x Filter type x Sand thick | 0.01 | 2 | 0.0 | 0.11 | 0.89
(NS) | | Sand effective size x Alum dose | 0.40 | 4 | 0.1 | 3.94 | 0.01 | | Filter type x Alum dose | 0.14 | 4 | 0.0 | 1.36 | 0.25
(NS) | | Sand effective size x Filter type x Alum dose | 0.07 | 2 | 0.0 | 1.31 | 0.27
(NS) | | Sand thickness x Alum dose | 0.28 | 29 | 0.0 | 0.39 | 1.00
(NS) | | Sand effective size x Sand thickness x Alum dose | 0.05 | 14 | 0.0 | 0.13 | 1.00
(NS) | | Filter type x Sand thickness x Alum dose | 0.07 | 8 | 0.0 | 0.32 | 0.96
(NS) | | Sand effective size x Filter type x Sand thickness x Alum dose | 0.02 | 4 | 0.0 | 0.23 | 0.92
(NS) | | 2 92 | $2 \begin{vmatrix} 0.0 \\ 3 \end{vmatrix}$ | | | |--------|--|------|------| | 5 18 | 3 | | | | 3 | | | | | | 6 18 | 6 18 | 6 18 | NS = Not significant When coagulant aid is used with alum in in-line filtration, sand effective size shows different behavior and it has significant effect on effluent turbidity (Table 5). Additionally, filter effective size and alum dose are also significant. Based on these results, when it is intended to use coagulant aid with in-line filtration, the type of filter should be considered, in addition to finer effective size of sand and adequate alum dose. Table (5) Analysis of variance for alum and coagulant aid/In-line filtration. | Source of variation | SS | d.f | MS | F-
value | Sig. | |--|-------|-----|------|-------------|--------------| | Sand effective size | 3.16 | 1 | 3.16 | 5.43 | 0.02 | | Filter type (single or capping) | 9.89 | 1 | 9.89 | 16.99 | <0.001 | | Sand thickness | 1.82 | 4 | 0.46 | 0.78 | 0.54
(NS) | | Alum dose | 23.90 | 10 | 2.39 | 4.11 | <0.001 | | Sand effective size x Sand thickness | 0.09 | 4 | .02 | 0.04 | 1.00
(NS) | | Filter type x Sand thickness | 6.08 | 2 | 3.04 | 5.22 | 0.01 | | Sand effective size x Alum dose | 1.30 | 7 | 0.19 | 0.32 | 0.94
(NS) | | Filter type. x Alum dose | 5.74 | 2 | 2.87 | 4.93 | 0.01 | | Sand thickness x Alum dose | 18.78 | 32 | 0.59 | 1.01 | 0.47
(NS) | | Sand effective size x Sand thickness x Alum dose | 0.12 | 21 | 0.01 | 0.01 | 1.00
(NS) | | Filter type x Sand thickness x Alum dose | 11.91 | 4 | 2.98 | 5.11 | <0.001 | | Error | 53.57 | 92 | 0.58 | • | • | |-------|-------|---------|------|---|---| | Total | 133.8 | 18
3 | • | | | NS = Not significant Table (6) compares the performance of both modes of filtration using different alum doses and sand effective sizes for alum coagulant alone. It is clear that the best effluent turbidity for direct filtration mode can be obtained with alum dose of 7 mg/l or more for sand with ES of 0.56 mm and 9 mg/l or more for sand with 1.1 mm ES. Similarly, when in-line filtration mode is used, the best efficiency is achieved with sand of ES 0.56 mm and an alum dose of (9) mg/l or more only. The same level of effluent turbidity can not be obtained with sand of 1.1 mm ES. These results indicate that direct filtration was more flexible in application with sand effective size and alum dose. **Table (6)** Effect of the interaction of type of filtration, sand type and alum dosage on effluent turbidity. | Alum
Dose | Direct f | iltration | In-line filtration | | | |--------------|---------------------|---------------------|---------------------|---------------------|--| | (mg/l) | Sand
Type I | Sand Type
II | Sand Type
I | Sand Type
II | | | 2 | - | - | - | 0.79 ± 0.07 ij | | | 3 | - | - | - | 0.63 ± 0.05 | | | 4 | - | - | 0.88 ± 0.11 jk | 0.65 ± 0.04 hi | | | 5 | - | - | 0.65 ± 0.04 hi | 0.52 ± 0.06 gh | | | 6 | - | - | 0.44 ± 0.03 fg | 0.44 ± 0.03 fg | | | 7 | 0.23 ± 0.02 a-d | 0.93 ± 0.12 k | 0.36 ± 0.06 def | 0.32 ± 0.02 c-f | | | 8 | 0.20 ± 0.02 abc | 0.38 ± 0.12 d-g | 0.31 ± 0.04 b-f | 0.43 ± 0.03 fg | | | 9 | 0.20 ± 0.02 abc | 0.25 ± 0.02 a-d | 0.15 ± 0.02 | 0.42 ± 0.02 efg | | | 10 | 0.17 ± 0.01 abc | 0.28 ± 0.13 a-e | 0.16 ± 0.02 abc | - | | | 11 | 0.16 ± 0.01 | 0.28 ± 0.04 | - | - | |----|-----------------|-----------------|---|---| | | ab | a-e | | | Means with different letters vertically and horizontally mean significant difference at p<0.05. Filter configurations as related to sand thickness for both modes with alum and coagulant aid are illustrated in table (7). Here when comparing the performance of single media filters, it appears that direct filtration mode show superiority for both sand effective sizes. The performance of in-line mode of filtration gets improved when using capping media filter configuration and sand with 0.56 mm ES. The direct filtration mode does not show any change for both sand effective sizes and filter configuration. **Table (7)** Interaction of type of filtration and sand effective size according to sand thickness in capping and single media filters (alum and coagulant aid were added) | | Media | Direct filtration | | In-line filtration | | |----------------|--------------------|-----------------------|-------------------|--------------------|-------------------| | Filter
Type | thickne
ss (cm) | Sand
0.56 mm
ES | Sand 1.1
mm ES | Sand 0.56
mm ES | Sand 1.1
mm ES | | Single | 25 | 0.19 ±
0.02
ab | 0.16 ± 0.05 | 0.39 ± 0.05
b | 0.69 ± 0.13
c | | | 35 | 0.17 ±
0.02
a | 0.16 ± 0.02 | 0.44 ± 0.06
b | 0.62 ± 0.12
b | | | 45 | 0.17 ±
0.02
a | 0.16 ± 0.02 | 0.41 ± 0.06
b | 0.64 ± 0.13
c | | | 55 | 0.14 ±
0.02
a | 0.14 ± 0.02 | 0.34 ± 0.05
b | 0.58 ± 0.11
c | | Cappi
ng | 15 x
10* | 0.22 ±
0.03
a | 0.32 ± 0.05 | 0.17 ± 0.02 | 0.71 ± 0.12
b | | | | 0.21 ± | 0.29 ± 0.04 | 0.14 ± 0.02 | 0.70 ± 0.12 | |--|---------|------------|-----------------|-----------------|-----------------| | | 25 x 10 | 0.03
a | a | a | b | | | | | 0.07 . 0.04 | 0.10 . 0.01 | 0.50 + 0.44 | | | 35 x 10 | $0.19 \pm$ | 0.25 ± 0.04 | 0.13 ± 0.01 | 0.58 ± 0.11 | | | | 0.02 | a | a | b | | | | a | | | | | | | 0.17 ± | 0.22 ± 0.04 | 0.14 ± 0.02 | 0.47 ± 0.09 | | | 45 x 10 | 0.02 | a | a | b | | | | a | | | | ^{*} The first value represents sand thickness, while the second indicates anthracite coal thickness. Means with different letters horizontally mean significant difference at $p \le 0.05$. The interaction between type of filtration and filter configuration for different levels of sand thickness and sand effective sizes (when coagulant aid were used with alum) are shown in table (8). Better results are obtained with single or capping filters when using direct filtration mode for different sand thickness. When in-line filtration mode is used, the same results are obtained with the capping filters only, having sand with effective size of 0.56 mm. From these results it is preferable to use direct filtration since its performance has the flexibility with sand effective size and type of filter. Similarly, capping media filters having finer sand effective size is needed for in-line filtration mode **Table (8)** Interaction of type of filtration and filter effective size according to sand thickness and sand effective size (alum and coagulant aid was added). | San
d | Media | Direct filtration | | In-line filtration | | | | |----------|-------------------|-------------------|-----------------|--------------------|-----------------|--|--| | E.S. | thickness
(cm) | Filter type | | | | | | | (mm
) | | Single | Capping | Single | Capping | | | | | 25 | 0.19 ± 0.02 | 0.21 ± 0.03 | 0.39 ± 0.05 | 0.14 ±
0.02 | | | | 0.56 | | a | a | b | a | | | | | 35 | 0.17 ± 0.02 | 0.19 ± 0.02 | 0.44 ± 0.06 | 0.13 ±
0.01 | | | | | | a | a | b | a | | | | | 45
55 | 0.17 ± 0.02 | 0.17 ± 0.02 | 0.41 ± 0.06 | 0.14 ± 0.02 | | | | | | a | a | b | a | | | | | | 0.14 ± 0.02 | - | 0.34 ± 0.17 | - | | | | | | a | | b | | | | | 1.10 | 15 x 10* | - | 0.32 ± 0.01 | - | 0.71 ± 0.12 | | | | | | | a | | b | | | | | 25 x 10 | 0.16 ± 0.01 | 0.29 ±
0.04 | 0.69 ± 0.13 | 0.70 ±
0.12 | |--|---------|-----------------|----------------|-------------|----------------| | | 23 X 10 | a | a | b | b | | | 35 x 10 | 0.16 ± 0.01 | 0.25 ± 0.03 | 0.62 ± 0.12 | 0.58 ±
0.11 | | | | a | a | b | b | | | 45 x 10 | 0.16 ± 0.02 | 0.22 ± 0.03 | 0.64 ± 0.13 | 0.47 ±
0.09 | | | | a | ab | с | b | | | | 0.18 ± 0.01 | 0.22 ±
0.01 | 0.51 ± 0.03 | 0.38 ±
0.04 | | | | a | a | С | b | The first value represents sand thickness, while the second indicates anthracite coal thickness. Means with different letters horizontally mean significant difference at $p \le 0.05$. # **Conclusions** Treating the obtained data statistically, it appears that: The effect of anthracite coal is needed only when coagulant aid is used with alum. Filters operating under direct filtration mode show better performance in turbidity removal compared to those acting under in-line mode. **Vol.15** - 3. Filters working on direct filtration with finer sand effective size are proven to achieve better performance. - For filters operating under in-line filtration and alum coagulant alone, little importance is given to sand effective size. However, when coagulant aid is used with alum, filters with finer sand effective size get better performance. - Direct filtration mode requires flocs that are less treated with alum than in-line filtration mode. - The performance of capping media filters is little improved with in-line filtration mode by adding coagulants. Besides, less sand thickness of filters can be used. - 7. For both modes it is not justified to import anthracite as the difference in performance between single and capping media filters is very little. Coagulant aids may improve the performance of filters. However such improvement does not also justify importing these materials and add an economic burden. #### References - 1. Lusardi J. Peter and Phill J. Consonery. Factors Affecting Filtered Water Turbidity. 1999; AWWA, 91(12): 28-40, USA. - 2. Twort A.C Don D. Ratnayaka and Malcolm J. Brundt. Water Supply. 5th edition, Chapter (7): Storage, Clarification, and Filtration of Water, p. 276-316, Butterworth Book Co. UK, 2001. - 3. Rangwala S.C, KS. Rangwala and PS. Rangwala. "Water Supply and Sanitary Engineering". Chapter (8): Filtration of Water, p. 195-216, Charotar Publishing House, India, 2001. - 4. Abdul-Majid E. Environmental Engineering. Al-Shorook House, p. 102-105, Amman, Jordan (Arabic Text), 1995. - 5. Al-Rawi S.M. Status of Filtration Units. Arabic Journal of Sciences, No. 26 P48-54, Tunisia, 1996. - 6. Alberta. Environment Protection. "Design Standards Waterworks Systems", USA, 1997. - 7. State of Utah "Division of Administration Rules. Monitoring of Water Quality: Drinking Water Standards. USA, 2004. - 8. Code of Federal Regulations 40CFR142. Protection of the Environment. Part 141-National Primary Drinking Water Regulations, USA, 2005. - 9. Saskatchewen. Environment: A Guide to Waterworks Design. (From Internet), 2002. - 10.Ameen A.Z. Use of Direct and In-line Filtration Methods in Treating Low Turbidity of Drinking Water". M.Sc. Thesis, Mosul University, pp. 78, Iraq. (Arabic Text), 1998. - 11. Rashid M.A. "Treatment of Tigris River by Direct Filtration". M.Sc. Thesis, Baghdad University, pp. 93, Iraq, 1989. - 12.Al-Rawi Kh.M. "Design of Experiments". Dar Alkutub for Publishing, Mosul University, pp324, Iraq, (Arabic Text), 1986. - 13.Paul N. Handbook of Water and Wastewater Treatment Technology. Marcel Dekker, Inc., USA, 1995. - 14.Twort A.C., Ratnayaka D.D. and Brandt M.J. Water Supply. 5th ed., Butterworth, UK, 2001. - 15.Steel E.W. and McGee T.J. Water Supply and Sewerage. 5th ed., McGraw-Hill Book, Int. Student ed., 1979. - 16.Degremont. Water Treatment Handbook. 6th ed., France, Vol. 1, 1991. ___ Vf % > 0.0Vf % = 0.0