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1. Introduction 

  Rolling element bearings are essential components in 

every rotating machinery, failure of roller bearings may lead 

to catastrophic breakdown and expensive downtime. 

Therefore, bearing defect detection attracts a lot of attention 

and has been the topic of extensive studies [1]. Bearing 

condition monitoring and defect diagnosis is highly demanded 

in modern machinery maintenance techniques. Due to the 

multiple vibration sources in rotating machinery, the vibration 

signals are contaminated by noise and random patterns; as a 

result, it is difficult to capture the fault conditions, especially 

in the early stage of the defect [2]. The envelope analysis 

method is robust for roller-bearing defect diagnoses. When a 

defect initiation, such as a small pit or crack in an operating 

surface of the roller bearing, impacts another contact bearing 

part, a strike is produced that causes resonances phenomenon 

in rotating machine parts. As the roller bearings works, strikes 

will happen periodically with an associated roller bearing 

fundamental frequencies, which are specially obtained by the 

placement of the defect on one of the rolling parts, inner race, 

and outer race [3]. In the traditional envelope analysis, the 

band-pass frequency filter concentrated at a resonance 

frequency of roller bearing with a bandwidth equal to the tin 

time of inner pass frequency is employed to the original signal. 

Most of the surrounding vibration signal from other rotating 

machine components is removed, resulting in the isolation of 

a resonance band. In this way, the faults vibration information 

from the roller bearing can be recognized, even in complicated 

machines such as a compressor. After filtering, the signal is 

demodulated using the Hilbert transform technique to produce 

its frequency spectrum. Then, it is possible to detect the roller 

bearing defect by the appearance of a final spectral diagram 

associated with a fault in the inner race, outer race, or one or 

more of the rolling elements. Furthermore, the selection of 

band frequency has a direct significant on the performance of 

envelope analysis. The selection of band frequency directly 

impacts the performance of envelope analysis [4]. The proper 

frequency band is still a challenging issue. The easiest 

approach is to set a wide band such as (e.g., 1–40 kHz), which 

includes resonance frequencies of bearing. However, the large 

band also contains dominant vibration signals from other 

machine parts such as gearbox, motors, etc. In addition, the 

wide frequency band, which includes high noise levels, 

hinders the envelope analysis's effectiveness in roller-bearing 

defect detection [5]. 

  Bechhoefer et al. [6] developed a method to obtain the 

best frequency bandwidth window for the envelope analysis 

method. In their approach, envelope kurtosis and spectral 

kurtosis are tools for getting the best frequency and bandwidth 

window. Meanwhile, it established a measure of effectiveness, 

which is a correlation between the fault of energy with total 

defect length. This parameter evaluated the ability of spectral 
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kurtosis/envelope kurtosis to predict the best envelope 

detection window. 

   Amini et al. [7] applied the acoustic emission envelope 

analysis for detecting faults in train axle bearing. For 

comparison, two types of datasets were recorded one actual 

from freight wagons with artificially defected axle bearings 

and the other from a customized test rig in a laboratory. They 

concluded that the envelope analysis method is feasible and 

effective for the detection of faults in train axle bearing in real-

world conditions. 

Xu et al. [8] investigated how to obtain the best resonance 

frequency band by using the enhanced Automatic band 

selection algorithm. Their method, firstly, applied time 

synchronous averaging and high-pass filtering to eliminate 

dominant speed-dependent (synchronous and 

nonsynchronous) spectral contents of the original vibration 

signal. Then, employed the wavelet packet transform and RMS 

to obtain the energy distribution of the residual vibration 

signal. Finally, selected the band with the highest energy 

contents for envelope analysis. Their results indicated that the 

proposed method is more useful than the present band 

selection technique and requires no advanced sensor 

technology. 

   Jia et al. [9] developed a two-stage technique for the 

identification of weak signals in roller bearing. Their method 

is based on a combination of cyclic Wiener filter and improved 

enhanced envelope spectrum. Firstly, processed the raw 

vibration signal by cyclic Wiener filter exploiting the spectral 

coherence approach and the noises are filtered out. 

Subsequently, obtained the enhanced envelope based on the 

sensitive frequency band. The innovation of the suggested 

technique is to fully excavate the advantages of cyclic Wiener 

filter and enhanced envelope simultaneously. 

        As a result of the mentioned research above, the 

traditional envelope analysis becomes very effective in severe 

fault cases and clearly distinguishes the fault characteristics. In 

many cases, the effectiveness of envelope analysis in 

extracting accurate fault information becomes unreliable when 

dealing with weak fault signals, particularly in the early stages 

of fault growth. Hence, to overcome this limitation it is 

important to modify the envelope analysis procedure. This 

work has two goals. First, improve the envelope detection 

process in obtaining the best frequency band and extracting 

automatic fault features. The second goal is employing the 

frequency fault features extracted from envelope analysis in 

machine learning techniques. 

        The remainder of this paper is organized as follows:  

The methodology of the suggested faults bearing diagnosis 

approach and the main process are introduced in Section II. 

Fault diagnosis experiments for rolling bearing are presented 

in Section III. The actual experimental evaluation and results 

analysis of the suggested method are described in Section IV. 

Finally, the conclusions are discussed in Section V. 

2. Methodology 

        This section highlights the frequency feature extraction 

and the main process of the fault-bearing model. The proposed 

automatic features extraction workflow for detection rolling 

bearing faults is shown in Fig. 1. The first stage included 

recording data from roller bearing with different levels of 

severe fault, various fault locations and multiple motor speeds. 
then, applying some important pre-processing enhancements 

methods that can be summarized as segmentation of every long 

data into equal time duration, removing the deterministic 

component from vibration data, and selecting the best 

frequency band which contains the most faults information. 

Finally, the modified envelope analysis is employed for 

extraction features at resonance bearing frequencies  

automatically. The main advantage of the suggested feature 

extracted technique is independent of speed and can be utilized 

from this in fault diagnosis and classification at different 

speeds and various of roller bearing types. 
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Fig .1 Flow chart of proposed fault diagnosis model 

2.1. Fundamental Fault Frequencies 

            A typical rolling element bearing has four main parts: 

the inner race (IR), the outer race (OR), the rolling elements 

(RE), and the cage(C). At the constant shaft speed of rotary 

machines, when a roller bearing has cracks or defects in any of 
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these parts, periodic vibration signals are generated, which 

produce a signal like the one in Fig.2. There are four basic fault 

frequencies: BPFI (ball pass frequency, inner race), BPFO 

(ball pass frequency, outer race), BSF (ball spin frequency), 

and FTF (fundamental train frequency). According to [10], the 

fault frequencies can be mathematically represented as 

follows.  
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         where fs is the shaft speed, n is the number of rolling 

elements, and 𝛼 is the contact angle, d and D represent ball 

diameter and pitch diameter, respectively. Theoretically, if the 

defect appears on any of the bearing components, a vibration 

signal is generated whenever the roller elements impact the 

defects component. The signal strength is directly affected by 

defects severity. The fundamental frequencies are beneficial 

for recognizing faults on the outer race, inner race, and the 

rolling element. These fault frequencies can appear and be 

captured via envelope analysis. 

 

 

Fig.2 Bearing geometry and strike signal [11]. 

2.2 Pre-Processing Algorithms  

2.2.1. Discrete Signal Separation  

          In The second step, remove the discrete (deterministic) 

signal generated from other vibration sources, such as shafts. 

The separation can be achieved by the autoregressive (AR) 

model and can be obtained by calculating the present time data 

value via the weighted sum of previous time values. As 

demonstrated in Fig.3, the discrete component of the 

autoregressive model is then subtracted from the raw signal to 

produce the residual signal. Also, the AR model can be 

constructed by using the following equations [12]. 

Fig.3 Process flow for obtaining the residual signals [ 13] 

𝑥𝑝(𝑛) = − ∑ 𝑎(𝑘) ∗ 𝑥(𝑛 − 𝑘)  
𝑝
𝑘=1                                       (5) 

𝑖𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟𝑚  𝑥𝑝 = −𝑥𝑎                                                (6) 

       Where x(n) is the raw signal, xp is deterministic signal at 

nth time step, a(k) weighting coefficients and can be 

calculated by solving Yule-Walker equation and x(n-k) is n- 

kth data. The order p directly influences the prediction 

accuracy, it should be calculated to ensure the residual 

vibration signal represents the defect as best as possible. There 

are several methods for obtaining the order p in this paper from 

the following equation. 

𝑜𝑟𝑑𝑒𝑟 𝑃 =
𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒  𝑓𝑟𝑒𝑞𝑢𝑛𝑐𝑦 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑢𝑛𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑛𝑐𝑦 
                 (7) 

2.2.2. Automatic Band Selection 

         The band selection is a crucial point in the overall 

envelope detection performance. For this purpose, in the third 

stage of pre-processing of vibration signal, a frequency band 

containing the roller bearing resonance frequencies capturing 

from residual signal. In addition, the modified automatic 

selection is based on the spectral kurtosis (SK) approach, 

which is the kurtosis in the time-frequency schema at each 

frequency line. When the defect is present, the SK values rise 

around the area of resonance frequencies of bearing and 

automatically select the maximum value with narrow 

bandwidth onto which the residual signal is filtered based on 

it. The short-time Fourier transform (STFT) functions is 

employed to define SK such as in the following equations [14]. 

𝑘(𝑓) =
〈|𝑠(𝑡,𝑓|4〉

〈|𝑠(𝑡,𝑓)2〉2 − 2                                                         (8) 

       Where 〈. 〉is the time-averaging operator, and s (t, f) is the 

STFT of the residual signal. The STFT represents a local 

Fourier transform for a specific time window. This paper uses 

the Hann window, one of several window functions, with 

length L and calculated based on the following equation. Also, 

can explain the frequency band selection procedure in Fig 4. 

𝑤(𝑙) = 0.5 (1 − 𝑐𝑜𝑠 (2𝜋
𝑙

𝐿−1
)) , 0 ≤ 𝑙 ≤ 𝐿 − 1                  (9) 

 

Fig.4 Automatic frequency band selection steps (a) Concept of STFT (b) 

Results of STFT (c) Result of SK 
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2.2. Envelope Spectrum Analysis 

         The aim of envelope analysis is to isolate the bearing 

signal from the raw signal interfaces with other noisy sources 

and make the fault information more distinguished. The 

essential steps of envelope detection and frequency feature 

selection can be summarized as applying bandpass filtering to 

the residual signal, constructing the envelope signal and the 

envelope spectrum calculation. In the first step, using a 

bandpass filter to the remaining signals within the band only. 

After that, the envelope of the bearing vibration signal can be 

determined by using the Hilbert transform. This technique is 

employed to obtain a complex real part from the original signal 

where the imaginary part is a phase-shifted copy of the real 

component, which can be calculated using the following 

equations [15]. 

  '

1
( ) ( )H s t s t

t
= •                                                          (10) 

 
1 ( )

( )
s t

H s t dt
t 



−

=
−                                                       (11) 

       where • is the convolution operator in (10) and H [s(t)] is 

an analytical part of the raw signal s(t). Then, the fast Fourier 

transformation FFT is applied to the envelope signal abs (H 

[s(t)]) to extract fault characteristics from the amplitudes at the 

fault frequencies. After complete detection, the developed 

program automatically captures the faults frequency and 

corresponding amplitudes. Finally, the frequency features 

vector consists of fifteen elements representing the amplitudes 

at multiples of bearing fault frequencies (i.e., (1:5) ×BPFI, 

(1:5) ×BPFO and (1:5) ×BSF, respectively).   

3. Experimental Work 

        In order to evaluate the proposed model, a bearing testbed 

was used. As shown in Fig .5, it consists of the following parts: 

electrical motor, coupling, a motion shaft, load, experimental 

bearing, and sensor. The self–aligning ball bearings (Bearing 

Number 1205) are employed as experimental bearing with 

different defect severity levels. Geometric parameters and 

calculated fault frequencies of the bearing are listed in Table 

1. Artificial defects in the forms of spot and fine slit are created 

in bearing components (i.e., inner race, outer race, and ball) by 

two different types of electrical discharge machines (EDM) 

and measured by a microscope. Therefore, wire-cut EDM and 

drilled EDM   are used for generated fine slit and spot faults, 

the samples of healthy and faulty bearing conditions are shown 

in Fig.6. The experimental work was done at the labs of the 

University of Basrah. The experimental bearing was applied to 

the non-drive end, and the accelerometer was attached in the 

horizontal direction with a sampling frequency equal to 48000 

Hz. In this work, the data sets were recorded from 20 bearings 

and can be classified into five different conditions: normal, 

inner race faults, outer race faults, ball faults and combined 

faults During the experiment, three data sets were collected for 

three different speeds (i.e., 1200, 1500, and 1800 rpm). The 

time duration of each data is 100 seconds, and a segmentation 

process is applied with 5 seconds for a segment. Therefore, the 

segmentation process separates all the data sets into 20 

samples each. Thus, the created fault dataset used for the 

experiments for each speed contains a total of 400 samples (20 

normal samples + 5 inner fault severities × 20 samples + 6 

outer fault severities ×20 samples + 6 ball fault severities ×20 

samples + 2 combined fault severities ×20). 

Fig .5 Test rig structures 

Table 1. Bearing specification 

 

  After all data sets are prepared, the feature vector is generated 

for each sample in the dataset. In MATLAB software, all the 

pre-processing steps and envelope analysis were done and we 

finally got three datasets with dimensions (400*15), each 

collected at a specific speed and can be employed in the future 

machine learning work. The details of the self–aligning ball 

bearing dataset with created faults are given in Table 2. 

 
Fig. 6 Bearing conditions (a) healthy (b) outer race defect 

(c) inner race defect (d) ball defect 

Paramter Value 

Inner Diameter 25 mm 

Outside Diameter 52 mm 

Ball Diameter 7 mm 

Width 15 mm 

BPFI 7.11×Shaft Frequncy 

BPFO 4.9×Shaft Frequncy 

BSF 2.57×Shaft Frequncy 

FTF 0.41×Shaft Frequncy 
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Table 2. Bearings and dataset specifications 

 

4. Experimental Results and Analysis 

         A bearing dataset with artificial faults was used to verify 

the effectiveness and feasibility of the proposed faults 

detection. Moreover, firstly the overall detection performance 

of the presented technique is tested based on the smallest fault 

sizes in datasets. In other words, checking the diagnosis ability 

diagnosis at an early stage of fault growth because the fault at 

this stage has low amplitude and short duration compared with 

surrounding noises leads to difficulty capturing reliable fault 

information and getting effective detection. In addition, after 

verifying from the diagnosis performance at the smallest faults 

can be applying this technique into other faulty bearings and 

different rotating speed. Also, this work employed the same 

validation procedure presented in [16,17], but they used data 

sets from other papers not collected in their works. In practice, 

the verification is done based on the following cases in the 

Table 3. 

Table 3. Verification bearings specifications 

 

 

4.1. Bearing Normal Vibration Signal Analysis 

        The pre-filtering and diagnosis results of normal 

condition bearing are shown in Fig 7. The following figure is 

divided into sub-figures and described as follows. The raw 

signal was collected from the accelerometer sensor, the 

residual signal after removing the deterministic parts by the 

AR model, spectral kurtosis for selecting the best frequency 

band based on the maximum value, the envelope signal after 

applying the Hilbert transform and finally, the envelope 

spectrum and fault frequency features selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 Pre-processing and envelope analysis results of normal condition. 

         As seen in figure 7, the raw signal of the normal 

condition has a small range between peaks value and after 

deleting the discrete part, the residual signal becomes 

smoother compared to the original signal. In addition, the SK 

value distribution appeared with two maximum peaks, but the 

developed program followed the exact maximum value and 

filtered the signal based on it. Also, the envelope spectrum 

doesn’t detect any fault frequency but shows a small amplitude 

value at a rotating frequency (20 Hz) and can analyze as 

misalignment and this can prove that the proposed technique 

cannot detect the roller bearing problems only. 

Fault 
Type 

Fault 
Size (mm) 

Training 
Samples 

(1200 rpm) 

Testing 
Samples 

(1500 rpm) 

Testing 
Samples 

(1800 rpm) 

Normal none 20 20 20 

Inner 

0.4 20 20 20 

0.6 20 20 20 

0.7 20 20 20 

0.73 20 20 20 

0.98 20 20 20 

Outer 

0.39 20 20 20 

0.642 20 20 20 

0.86 20 20 20 

0.9 20 20 20 

1.047 20 20 20 

1.27 20 20 20 

Ball 

0.355 20 20 20 

0.4 20 20 20 

0.625 20 20 20 

0.75 20 20 20 

0.85 20 20 20 

1.12 20 20 20 

Combined 

Inner = 0.4 

Outer =0.642 

Ball =0.355 

20 20 20 

Inner = 0.6 
Outer =0.642 

Ball =0.75 

20 20 20 

Bearing 

Condition 
Fault Size (mm) Speed (RPM) 

Fault 
Characteristic 

Frequency (Hz) 

Normal none 1200 none 

Inner 0.4 1200 142.2 

Outer 0.39 1200 97.8 

Ball 0.355 1200 51.4 

Combined 
Inner = 0.4 

Outer =0.642 

Ball =0.355 

1200 

All of 

components 
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4.2. Inner Race Fault Vibration Signal Analysis 

        The pre-processing results and envelope analysis are 

illustrated in Fig .8, which includes the original vibration 

signal, residual signal and analyzed envelope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 Pre-processing and envelope analysis results of inner race fault 

         As shown in figure 8, the raw signal has observable 

periodical peaks due to the fault in the inner race and can 

clearly distinguish after removing the discrete vibration noises. 

Also, the SK obtained the exact frequency band and can be 

seeing that through the envelope analysis results. From the 

spectrum can observe pure peaks at BPFI (142.2 Hz) and its 

harmonics. In addition, it can be seen that 1xBPFI has the 

largest peak, making fault detection proper for future fault 

classification. 

4.3. Outer Race Fault Vibration Signal Analysis 

       The proposed detection results based on the outer race 

fault are shown in Fig.9. In the experiment, the raw signal is 

collected from the fault mounted in the sensor direction for 

getting intensive fault information. 

 

Fig.9 Pre-processing and envelope analysis results of outer race fault 

        From figure 9, it can be seeing the presented method 

achieved the aims of the work and effectively separated the 

outer fault signal from other vibration sources. Moreover, 

appeared gradually peaks at calculated BPFI (97.8Hz) and its 

harmonics in the envelope spectrum. Meanwhile, in every 

spectrum, should appear at least three harmonics to make sure 

there is a fault present. 
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4.4. Roller Fault Vibration Signal Analysis 

         In order to detect the roller fault, advanced detection 

techniques are required because the roller have rotating motion 

in multiple directions, slippage and clearance. Also, usually 

dominant roller faults at 2× BSF [18]. For this reason, 

verification from suggested method based on roller fault is 

illustrated in Fig.10. 

 

Fig.10 Pre-processing and envelope analysis results of roller fault 

      As is seen in figure 10, the residual signal has a lot of 

periodical spikes due to the roller fault striking the inner and 

outer races simultaneously. Also, it can be seen the first six 

harmonics of BSF (51.4 Hz) are outstanding in the spectrum 

and mostly in the roller fault cases the highest peak appeared 

at the second harmonic frequency. 

4.5. Combined Fault Vibration Signal Analysis 

          In order to evaluate the presented method performance 

based on a combined fault so in the experiment employed three 

different faults in one roller bearing. Further, multiple 

vibration sources lead to increasing interference and 

overlapping between signals and become detection more 

difficult. The detection results based on the combined fault are 

shown in Fig.11. 

 

 

Fig.11 Pre-processing and envelope analysis results of combined fault 

       As seen in the above figure, all the fundamental fault 

frequencies and their harmonics are clearly obtained and can 

be fully recognized between peaks at resonance frequencies. 

The experimental results prove the proposed methods are 

effective for detecting roller bearing problems with different 

fault natures and under strong noise conditions. Furthermore, 

the final diagnosis results based on 1500 rpm and 1800 rpm for 

normal, inner race fault, outer race fault, ball fault and 

combined fault are presented in figures 12,13,14,15 and 16 

respectively. 
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(a) 

 

(b) 

Fig.12 Diagnosis results of normal condition (a) at 1500 rpm (b) at 1800 rpm  

 

(a) 

 

 

(b) 

Fig.13 Diagnosis results of inner race fault (a) at 1500 rpm (b) at 1800 rpm  

 

(a) 

 

(b) 

Fig.14 Diagnosis results of outer race fault (a) at 1500 rpm (b) at 1800 rpm  
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(a) 

 

(b) 

Fig.15 Diagnosis results of ball fault (a) at 1500 rpm (b) at 1800 rpm  

 

(a) 

 

 

 

(b) 

Fig.16 Diagnosis results of combined fault (a) at 1500 rpm (b) at 1800 rpm  

The diagnosis results at 1500 rpm and 1800 rpm showed high 

detection accuracy for different roller bearing conditions. 

Finally, after totally complete the verification parts we 

applying the proposed method into other faulty bearing and 

getting frequency feature matrices based on three different 

speeds. The extracted features of the samples under study are 

summarized Table 4 ,5 and 6 for motor speed 1200 rpm, 1500 

rpm and 1800 rpm respectively. 

Table 4. Extracted features of samples at 1200 rpm 

 

 

 

Peaks at Fundamental Fault Frequencies 

Frequency 

(Hz) 

Normal 

Condition 

Inner 

Fault 

Outer 

Fault 

Ball 

Fault 

Combined 

Fault 

1*BPFI 0.0084 1.4058 0.0338 0.0373 0.5603 

2*BPFI 0.0085 0.991 0.0361 0.0348 0.3029 

3*BPFI 0.0097 1.0851 0.0339 0.0317 0.1895 

4*BPFI 0.0086 0.7451 0.0238 0.0518 0.1934 

5*BPFI 0.0095 0.5318 0.0208 0.0565 0.1855 

1*BPFO 0.0136 0.1169 0.7423 0.0672 0.5375 

2*BPFO 0.01 0.08 0.3395 0.0888 0.5369 

3*BPFO 0.0083 0.0897 0.2616 0.0557 0.3029 

4*BPFO 0.0074 0.1596 0.1439 0.0644 0.1637 

5*BPFO 0.0082 0.188 0.0671 0.043 0.1199 

1*BSF 0.0078 0.1238 0.0255 0.5095 0.6856 

2*BSF 0.0074 0.3311 0.0352 0.6726 0.5375 

3*BSF 0.0084 0.1294 0.0238 0.3611 0.5603 

4*BSF 0.0079 0.1245 0.0418 0.6156 0.5369 

5*BSF 0.0077 0.0808 0.026 0.3283 0.3294 
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Table 5. Extracted features of samples at 1500 rpm 

 
Table 6. Extracted features of samples at 1800 rpm 

 

5. Conclusions 

        This paper proposed a more general and effective faults 

feature extraction technique applicable to rolling element 

bearings. The following conclusions could be drawn from the 

work: 

 

1.  The features extracted represented the acceleration peaks 

at fundamental fault frequencies of roller bearing. 

2.  The proposed method involves pre-processing and 

envelope analysis methods. In the pre-processing stage, 

the AR model is employed for separating the fault signals 

from other deterministic components. 

3.  The best center frequency is selected based on the 

maximum SK value with narrow bandwidth to eliminate 

as much as possible the other vibration sources from 

passing to the next analysis process.  

4. The filtered signal is analyzed by using the envelope 

approach to distinguish between bearing faults 

characteristics and make the frequency features clearer 

and easily extracted.  

5. A bearing dataset containing different levels of fault 

severities and health conditions was used to validate the 

proposed method, especially the bearing in the early stage 

of fault growth. Also, each bearing condition was 

collected at three different rotating speeds. 

6.  The diagnosis results showed the developed method 

effectively extracts the features at calculated resonance 

bearing frequencies and proves the significance of the 

enhancements in a pre-filtering stage in the overall 

detection performance. 

7.  Based on experimental findings, the future direction of 

work benefits from the developed method on faults 

diagnosis and classification at different speeds because 

the frequency features are independent of both speed 

variation and bearing type. 
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